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As one of the fundamental traits governing the operation of quantumworld, the uncertainty
relation, from the perspective of Heisenberg, rules the minimum deviation of two
incompatible observations for arbitrary quantum states. Notwithstanding, the original
measurements appeared in Heisenberg’s principle are strong such that they may
disturb the quantum system itself. Hence an intriguing question is raised: What will
happen if the mean values are replaced by weak values in Heisenberg’s uncertainty
relation? In this work, we investigate the question in the case of measuring position and
momentum in a simple harmonic oscillator via designating one of the eigenkets thereof to
the pre-selected state. Astonishingly, the original Heisenberg limit is broken for some post-
selected states, designed as a superposition of the pre-selected state and another
eigenkets of harmonic oscillator. Moreover, if two distinct coherent states reside in the
pre- and post-selected states respectively, the variance reaches the lower bound in
common uncertainty principle all the while, which is in accord with the circumstance in
Heisenberg’s primitive framework.
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1 INTRODUCTION

The non-commutativity in quantummechanics leads to the essential contradistinction between itself
and classical mechanics. Among diverse quantum phenomena, the uncertainty relation is
representative, which was first uncovered by Heisenberg [1], then generalized via Robertson [2]
to any two observables A and B for arbitrary kets of the following form,

〈 ΔA( )2〉〈 ΔB( )2〉≥ 1
4
〈 A, B[ ]〉| |2, (1)

where 〈(ΔA)2〉 ≔ 〈A2〉 − (〈A〉)2, represents the variance of measuring a quantum system via A, so
does 〈(ΔB)2〉.

However, there exist some shortcomings for standard Heisenberg uncertainty principle (Eq. 1).
On the one hand, for instance, the derivation of the z components of angular momentum increases in
the case of a three-level problem [3], though the information we have gathered therein increases,
which is discordant with classical information theory. Thus the concept of entropy was imported into
the field of uncertainty relation [4, 5].

On the other hand, initial uncertainty relation only involves strong measurement, and it may
destroy the measured system inevitably in most cases, which leads to another way of exploring
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Heisenberg uncertainty principle relying on the heritage of weak
measurement. In 1988, Y. Aharonov et al. [6] proposed the
concept of “weak value” to overcome the blemish of
measurement collapse in quantum mechanics. The weak value
of an observable O is denoted as

〈O〉w ≔
〈ψf

∣∣∣∣O ψi

∣∣∣∣ 〉
〈ψf |ψi〉

, (2)

with |ψi〉 and |ψf〉 representing the states of pre- and post-
selections respectively.

In recent illuminating works, Song and Qiao [7] constructed a
new type of uncertainty relation in weak measurement with the
help of a non-Hermitian operator defined in [8]. Additionally,
Hall et al. [9] generalized the representation theorem given by
Shikano and Hosoya [10] and studied the uncertainty relation via
weak values. Afterwards, Šindelka, and Moiseyev [11] considered a
Heisenberg-like situation that measuring a quantum system “weakly”
via an observableAwithout imposing postselection, following a strong
measurement by another observable B subsequently. But there is
hardly any work involving researching Heisenberg-like uncertainty
principle via replacing mean value by weak value merely, which is the
simplest case in this field.

In this work, we study the Heisenberg-like uncertainty relation
in the case of measuring position and momentum in a one-
dimensional (1D) simple harmonic oscillator with the pre-selected
state appointed as one of its eigenstates.We found that if post-selected
states are specified as a superposition of the pre-selected state and
another eigenstates of harmonic oscillator, primitive Heisenberg
relation fails. Furthermore, providing the pre- and post-selected
states are designed as two distinct coherent states, the variance in
the sense of weak values will arrive at the lower bound in usual
Heisenberg principle all through, which is in agreement with
Heisenberg’s original argument.

This paper is organized as follows: In Section 2 we show our
main results about Heisenberg-like uncertainty principle through
replacing expectation values by weak values in rudimental
Heisenberg’s idea. Four major parts are included in this
section. In Section 2.1, we retrospect some basic knowledge
about 1D simple harmonic oscillator in occupation number
representation. And then in Section 2.2, we study two non-
orthonormal cases of selected states by considering |ψi〉 � |0〉 and
|ψi〉 � |n〉 (n ∈ Np, i.e., n is a positive integer), respectively. Next
in Section 2.3, we explore the orthogonal selected states as the
limitation of non-orthogonal circumstances. And in Section 2.4,
the pre- and post-selected states are designed as two coherent
states. Finally in Section 3, we make a summary and bring up
some open questions.

2 REPLACING MEAN VALUES BY WEAK
VALUES
2.1 Simple Harmonic Oscillator in
Occupation Number Representation
Set n ∈ N the quantum number referring to energy levels of given
1D simple harmonic oscillator with Hamiltonian H. Let

|n〉 (n ∈ N) the eigenkets thereof, then via Schrödinger
equation H|n〉 � En|n〉, we obtain En � (n + 1/2)Zω as the
formula of energy, with Z the Plank constant up to a factor 1/(2π),
and ω the vibration frequency of corresponding oscillator. Especially
when n � 0, E0 � (1/2)Zω implies the ground state energy.

Define the annihilation operator a and the creation operator
a†, which satisfy

a n| 〉 � �
n

√
n − 1| 〉,

a† n| 〉 � �����
n + 1

√
n + 1| 〉, (3)

where a|0〉 � 0.
Postulate that α ≡

�����
mω/Z

√
, X ≡ αx, and P ≡ [α/(mω)]p, with

m expressing the mass of aforementioned harmonic oscillator.
Note that X and P are Hermitian. After that, from the canonical
commutative relation (x, p) � iZ, we have (X, P) � i, together with

X � 1�
2

√ a + a†( ),
P � 1

i
�
2

√ a − a†( ). (4)

Next we will compute the Heisenberg-like uncertainty
principle with weak values by combining Eqs 1, 2 and some
properties of 1D harmonic oscillator.

2.2 Non-orthonormal Selected States
This subsection includes the situations of non-orthonormal pre-
and post-selections. When the pre-selected state is initialized as
|n〉, its post-selected partner is set as cos θ|n〉 + sin θ eiφ|m〉,
where θ ∈ (0, π/2) ∪ (π/2, π), φ ∈ [0, 2π) and n ≠ m.

Case 1.—n � 0, |ψi〉 � |0〉.
In this case, we set |ψf〉 � cos θ|0〉 + sin θ eiφ|m〉, where θ ∈ (0,

π/2) ∪ (π/2, π), φ ∈ [0, 2π) and m ∈ Np. Thereby,
〈ψf |ψi〉 � cos θ, and

〈X〉w � 〈ψf

∣∣∣∣X ψi

∣∣∣∣ 〉
〈ψf |ψi〉

� cos θ〈0| + sin θ e−iφ〈m|[ ] a + a†( ) 0| 〉�
2

√
cos θ

� tan θ e−iφ〈m|1〉�
2

√

� tan θ e−iφ δm, 1�
2

√ ,

where δm, n implies the Kronecker delta symbol.
Thereafter, we arrive at

〈X〉w( )2 � tan2 θ e−i2φ δ2m, 1

2
, (5)

and

〈X2〉w � 〈ψf

∣∣∣∣ a2 + aa† + a†a + a†( )2[ ] ψi

∣∣∣∣ 〉
2〈ψf |ψi〉

� 1 + �
2

√
tan θ e−iφ δm, 2

2
.

(6)

Combine Eq. 6with Eq. 5 together, then we attain the variance
of X in the form of weak value as follows
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〈ΔX〉2w ≡ 〈X2〉w − 〈X〉w( )2

� 1 + �
2

√
tan θ e−iφ δm, 2 − tan2 θ e−i2φ δ2m, 1

2
.

(7)

On the other hand,

〈P〉w � 〈ψf

∣∣∣∣P ψi

∣∣∣∣ 〉
〈ψf |ψi〉

� cos θ〈0| + sin θ e−iφ〈m|[ ] a − a†( ) 0| 〉
i

�
2

√
cos θ

� i tan θ e−iφ δm, 1�
2

√ ,

which indicates that

〈P〉w( )2 � −tan
2 θ e−i2φ δ2m, 1

2
, (8)

and

〈P2〉w � 〈ψf

∣∣∣∣ aa† + a†a − a2 − a†( )2[ ] ψi

∣∣∣∣ 〉
2〈ψf |ψi〉

� 1 − �
2

√
tan θ e−iφ δm, 2

2
.

(9)

Therefore,

〈ΔP〉2w ≡ 〈P2〉w − 〈P〉w( )2

� 1 − �
2

√
tan θ e−iφ δm, 2 + tan2 θ e−i2φ δ2m, 1

2
,

(10)

then we can calculate the uncertainty relation in terms of weak
values, namely.

〈ΔX〉2w〈ΔP〉2w � 1 − tan2 θ
�
2

√
e−iφ δm, 2 − tan θ e−i2φ δ2m, 1[ ]2

4

� 1 − tan2 θ 2 e−i2φ δ2m, 2 + tan2 θ e−i4φ δ4m, 1[ ]
4

,

(11)

which means that

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣ � 1 − tan2 θ 2 e−i2φ δ2m, 2 + tan2 θ e−i4φ δ4m, 1[ ]

4

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣
� 1
4

∣∣∣∣∣∣ 1 − tan2 θ 2 δ2m, 2 cos 2φ( ) + tan2 θδ4m, 1 cos 4φ( )[ ]{ }
+i tan2 θ 2 δ2m, 2 sin 2φ( ) + tan2 θ δ4m, 1 sin 4φ( )[ ]∣∣∣∣∣∣

� 1
4

�����������������������������������������
1 − tan2 θ 2 δ2m, 2 cos 2φ( ) + tan2 θδ4m, 1 cos 4φ( )[ ]{ }2
+tan4 θ 2 δ2m, 2 sin 2φ( ) + tan2 θ δ4m, 1 sin 4φ( )[ ]2

√√
� 1
4

��������������������������������������
1 + tan4 θ 4 δ4m, 2 + tan4 θ δ8m, 1( )

−2 tan2 θ 2 δ2m, 2 cos 2φ( ) + tan2 θδ4m, 1 cos 4φ( )[ ]
√√

≥
1
4

�������������������������������������������������
1 + tan4 θ 4 δ4m, 2 + tan4 θ δ8m, 1( ) − 2 tan2 θ 2 δ2m, 2 + tan2 θδ4m, 1( )√

� 1
4
1 − tan2 θ 2 δ2m, 2 + tan2 θδ4m, 1( )∣∣∣∣∣ ∣∣∣∣∣. (12)

Analysis—For A � X, B � P, the Heisenberg uncertainty
relation is given by

〈ΔX〉2〈ΔP〉2 � 〈ΔX〉2〈ΔP〉2
∣∣∣∣ ∣∣∣∣≥ 1

4
. (13)

In this work, the Heisenberg-like uncertainty relation with
weak values is modified as

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣≥ 1

4
. (14)

We now compare Eq. 12 with Heisenberg-like uncertainty
relation (Eq. 14) in virtue of different m.

1) If m ≠ 1 and m ≠ 2, |〈ΔX〉2w〈ΔP〉2w| � 1/4, the relation (Eq.
14) holds, and it is in coincidence with the usual Heisenberg
uncertainty relation (Eq. 13).

2) If m � 1,

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣ � 1

4

�����������������������
1 + tan8 θ − 2 cos 4φ( )tan4 θ

√
.

Then we have (1/4)|1 − tan4 θ|≤ |〈ΔX〉2w〈ΔP〉2w|≤
(1/4)(1 + tan4 θ), and the left equality sign holds once φ �
0, π/2 or π; While φ � π/4 or 3π/4, the right equality sign is
obtained. In the interval of θ ∈ (0, arctan( �

24
√ )) ∪

(π − arctan( �
24

√ ), π), it is possible for |〈ΔX〉2w〈ΔP〉2w| to
arrive at some values less than 1/4. While for other legal θ,
the uncertainty relation (Eq. 14) holds. See Figure 1 for more
details. It is worth mentioning that once |〈ΔX〉2w〈ΔP〉2w|
reaches the lower bound, and θ � π/4 or 3π/4, the variance
|〈ΔX〉2w〈ΔP〉2w| vanishes, and further study shows that
〈ΔX〉2w � 〈ΔP〉2w � 0, which implies the product of weak
values corresponding to two incompatible observables X and P
can be measured precisely. The result is reasonable, since strong
measurement is substituted by weak measurement, then the
disturbance for quantum system weaken, and two incompatible
observations may be assured simultaneously.

3) If m � 2,

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣ � 1

4

������������������������
1 + 4 tan4 θ − 4 cos 2φ( )tan2 θ

√
.

After that, (1/4)|1 − 2 tan2 θ|≤ |〈ΔX〉2w〈ΔP〉2w|≤
(1/4)(1 + 2 tan2 θ), and the left equality sign holds once φ �
0 or π; While φ � π/2, the right equality sign is obtained. In
the case of θ ∈ (0, π/4) ∪ (3π/4, π), it is possible for
|〈ΔX〉2w〈ΔP〉2w| to arrive at some values less than 1/4. And
in other cases, the uncertainty relation (Eq. 14) holds. In like
manner, there exist two ideal θ � arctan(1/ �

2
√ ) or π −

arctan(1/ �
2

√ ) when φ � 0 or π/2, such that the product of
the weak values of X and P is affirmatory.

In one word, the Heisenberg uncertainty principle can be
broken in the sense of weak values when we fix the pre-selected
state as |ψi〉 � |0〉, then set the post-selections to the superposition
of |0〉 and |1〉 or |2〉. More general cases will be discussed similarly.

Case 2.—|ψi〉 � |n〉, n ∈ Np.
Let |ψi〉 � |n〉, and |ψf〉 � cos θ|n〉 + sin θ eiφ|m〉, where θ ∈

(0, π/2) ∪ (π/2, π), φ ∈ [0, 2π), n, m ∈ Np, and n ≠ m. Likewise,
〈ψf |ψi〉 � cos θ, then
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〈X〉w � 〈ψf

∣∣∣∣X ψi

∣∣∣∣ 〉
〈ψf |ψi〉

� cos θ〈n| + sin θ e−iφ〈m|[ ] a + a†( ) n| 〉�
2

√
cos θ

� tan θ e−iφ
�
n

√
〈m|n − 1〉 + �����

n + 1
√

〈m|n + 1〉( )�
2

√

� tan θ e−iφ
�
n

√
δm, n−1 +

�����
n + 1

√
δm, n+1( )�

2
√ .

In this case,

〈X〉w( )2 � tan2 θ e−i2φ
�
n

√
δm, n−1 +

�����
n + 1

√
δm, n+1( )2

2

� tan2 θ e−i2φ n δ2m, n−1 + n + 1( ) δ2m, n+1[ ]
2

.

(15)

Similarly, we can compute that

〈X2〉w � 〈ψf

∣∣∣∣ a2 + aa† + a†a + a†( )2[ ] ψi

∣∣∣∣ 〉
2〈ψf |ψi〉

� cos θ〈n| + sin θ e−iφ〈m|[ ] a2 + aa† + a†a + a†( )2[ ] n| 〉
2 cos θ

�
cos θ〈n| + sin θ e−iφ〈m|[ ]�������

n n − 1( )√
n − 2| 〉 + 2n + 1( ) n| 〉 + ������������

n + 1( ) n + 2( )√
n + 2| 〉[ ]

2 cos θ

� n + 1
2
+

tan θ e−iφ�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
2

.

(16)

Then

〈ΔX〉2w ≡ 〈X2〉w − 〈X〉w( )2

� n + 1
2
+

tan θ e−iφ
�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
−tan2 θ e−i2φ n δ2m, n−1 + n + 1( ) δ2m, n+1[ ]

2
.

(17)

Similarly, we have

〈P〉w � 〈ψf

∣∣∣∣P ψi

∣∣∣∣ 〉
〈ψf |ψi〉

� cos θ〈n| + sin θ e−iφ〈m|[ ] a − a†( ) n| 〉
i

�
2

√
cos θ

� i tan θ e−iφ
�����
n + 1

√
δm, n+1 − �

n
√

δm, n−1( )�
2

√ ,

which indicates that

〈P〉w( )2 � −tan
2 θ e−i2φ n + 1( ) δ2m, n+1 + n δ2m, n−1[ ]

2
, (18)

and

〈P2〉w � 〈ψf

∣∣∣∣ aa† + a†a − a2 − a†( )2[ ] ψi

∣∣∣∣ 〉
2〈ψf |ψi〉

� cos θ〈n| + sin θ e−iφ〈m|[ ] aa† + a†a − a2 − a†( )2[ ] n| 〉
2 cos θ

�
cos θ〈n| + sin θ e−iφ〈m|[ ]

2n + 1( ) n| 〉 − �������
n n − 1( )√

n − 2| 〉 − ������������
n + 1( ) n + 2( )√

n + 2| 〉[ ]
2 cos θ

� n + 1
2
− tan θ e−iφ

�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
2

.

(19)

Hence,

FIGURE 1 | The variation diagram of |〈ΔX〉2w〈ΔP〉2w|with respect to the superposition parameter θ ∈ (0, π/2) ∪ (π/2, π) in the case of |ψ i〉 � |0〉 andm � 1. The blue
line represents the lower bound of |〈ΔX〉2w〈ΔP〉2w|, so does the grey line connecting the upper bound of |〈ΔX〉2w〈ΔP〉2w|, which is greater than 1/4 all the time.
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〈ΔP〉2w ≡ 〈P2〉w − 〈P〉w( )2

� n + 1
2
−
tan θ e−iφ

�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
−tan2 θ e−i2φ n + 1( ) δ2m, n+1 + n δ2m, n−1[ ]

2
.

(20)

which means that

〈ΔX〉2w〈ΔP〉2w
� n + 1

2
( )2

−
tan θ e−iφ

�������
n n − 1( )√

δm, n−2 +
������������
n + 1( ) n + 2( )√

δm, n+2[ ]
−tan2 θ e−i2φ n + 1( ) δ2m, n+1 + n δ2m, n−1[ ]⎧⎨⎩ ⎫⎬⎭2

4

� n + 1
2

( )2

− tan2 θ e−i2φ

4
n n − 1( ) δ2m, n−2 + n + 1( ) n + 2( ) δ2m, n+2[ ]

−tan
4 θ e−i4φ

4
n + 1( )2 δ4m, n+1 + n2 δ4m, n−1[ ]

� 1
4

2n + 1( )2 − tan2 θ e−i2φ n n − 1( ) δ2m, n−2 + n + 1( ) n + 2( ) δ2m, n+2[ ]{
−tan4 θ e−i4φ n + 1( )2 δ4m, n+1 + n2 δ4m, n−1[ ]}. (21)

After that, we can calculate the absolute value of Eq. 21, namely

〈ΔX〉2w〈ΔP〉2w
∣∣∣∣ ∣∣∣∣
� 1
4

∣∣∣∣∣∣ 2n + 1( )2 − tan2 θ e−i2φ n n − 1( ) δ2m, n−2 + n + 1( ) n + 2( ) δ2m, n+2[ ]
−tan4 θ e−i4φ n + 1( )2 δ4m, n+1 + n2 δ4m, n−1[ ]∣∣∣∣∣∣
≥
1
4

∣∣∣∣∣∣ 2n + 1( )2 − tan2 θ n n − 1( ) δ2m, n−2 + n + 1( ) n + 2( ) δ2m, n+2[ ]
−tan4 θ n + 1( )2 δ4m, n+1 + n2 δ4m, n−1[ ]∣∣∣∣∣∣. (22)

Analysis—Analogously, we will analyze the value of m in the
following way:

1) If m ≠ n − 2, m ≠ n − 1, m ≠ n + 1 and m ≠ n + 2,
|〈ΔX〉2w〈ΔP〉2w| � (1/4)(2n + 1)2 > 1/4, because n > 0, thus it
coincides with the Heisenberg uncertainty relation.

2) If m � n−2,

1
4

2n + 1( )2 − n n − 1( )tan2 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 2n + 1( )2∣∣∣∣
+n n − 1( )tan2 θ|.

Once n � 1, then |〈ΔX〉2w〈ΔP〉2w| � 9/4> 1/4, nevertheless, m �
n−2 � −1 is illegal. Hence we focus on the situation of n > 1. By
|(2n + 1)2 − n(n − 1)tan2 θ|≥ 1, we have tan2 θ ≥ [(2n + 1)2 + 1]/
[n(n − 1)], or tan2 θ ≤ [(2n + 1)2 − 1]/[n(n − 1)], and the
uncertainty relation always holds. Otherwise, there exist
unviolated situations if [(2n + 1)2 − 1]/[n(n − 1)]≤ tan2 θ ≤
[(2n + 1)2 + 1]/ [n(n − 1)].

3) If m � n−1,

1
4

2n + 1( )2 − n2 tan4 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 2n + 1( )2 + n2 tan4 θ
∣∣∣∣ ∣∣∣∣,

which implies that when tan4 θ ≥ [(2n + 1)2 + 1]/n2 or
tan4 θ ≤ [(2n + 1)2 − 1]/n2, |〈ΔX〉2w〈ΔP〉2w|≥ 1/4 forever, while

for [(2n + 1)2 − 1]/n2 ≤ tan4 θ ≤ [(2n + 1)2 + 1]/n2, the
limitation 1/4 may be broken.

4) If m � n + 1,

1
4

2n + 1( )2 − n + 1( )2 tan4 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 2n + 1( )2∣∣∣∣
+ n + 1( )2 tan4 θ|.

Therefore when tan4 θ ≥ [(2n + 1)2 + 1]/(n + 1)2 or
tan4 θ ≤ [(2n + 1)2 − 1]/(n + 1)2, |〈ΔX〉2w〈ΔP〉2w|≥ 1/4 all the
while, but for [(2n + 1)2 − 1]/(n + 1)2 ≤ tan4 θ ≤
[(2n + 1)2 + 1]/(n + 1)2, counterexamples could be found.

5) If m � n + 2,

1
4

2n + 1( )2 − n + 1( ) n + 2( )tan2 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 2n + 1( )2∣∣∣∣
+ n + 1( ) n + 2( )tan2 θ|.
After that, via |(2n + 1)2 − (n + 1)(n + 2)tan2 θ|≥ 1, we
attain tan2 θ ≥ [(2n + 1)2 + 1]/[(n + 1)(n + 2)], or tan2 θ ≤
[(2n + 1)2 − 1]/[(n + 1)(n + 2)], and the uncertainty relation is
not violated all through. However, in the case of [(2n + 1)2 −
1]/[(n + 1)(n + 2)]≤ tan2 θ ≤ [(2n + 1)2 + 1]/[(n + 1)(n + 2)],
violations might appear.

2.3 Orthonormal Pre- and Post- Selected
States
Following the above deduction, when θ → π/2, 〈ψf |ψi〉 → 0,
or the pre- and post-selected states tend to be mutual
orthogonal phase differently. For instance, assume that n �
0 and m � 1, in so doing,

1
4
1 − tan4 θ
∣∣∣∣ ∣∣∣∣≤ 〈ΔX〉2w〈ΔP〉2w

∣∣∣∣ ∣∣∣∣≤ 1
4
1 + tan4 θ
∣∣∣∣ ∣∣∣∣, (23)

and we can see from Figure 1 that once 〈ψf |ψi〉 → 0, the
product of two deviations in the form of weak values is
tending towards infinity, which agrees with Heisenberg’s
statement.

2.4 Coherent States of the Simple Harmonic
Oscillator
The coherent state of the simple harmonic oscillator is
devised to simulate the classical oscillator [12], which can
be represented as

z| 〉 � eza
†−zpa 0| 〉 � e− z| |2 ∑

n�0

zn��
n!

√ n| 〉, z ∈ C, (24)

with the following traits:

a z| 〉 � z z| 〉, a z| 〉( )† � 〈z|a† � zp〈z|. (25)

After that, label the pre- and post-selected states as |zi〉 and
|zf〉 respectively, then the weak value of X reads
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〈X〉w � 〈zf |X zi| 〉
〈zf |zi〉 � 〈zf | a + a†( ) zi| 〉�

2
√

〈zf |zi〉 � zpf + zi�
2

√ , (26)

which implies that

〈X〉2w � zpf + zi�
2

√[ ]2

� zpf( )2 + z2i + 2zpf zi
2

. (27)

For that matter,

〈X2〉w � 〈zf |X2 zi| 〉
〈zf |zi〉 � 〈zf | a2 + aa† + a†a + a†( )2[ ] zi| 〉

2〈zf |zi〉
� 〈zf | a2 + 2a†a + 1 + a†( )2[ ] zi| 〉

2〈zf |zi〉
� z2i + 2zpf zi + zpf( )2 + 1

2
.

(28)

Thus,

〈ΔX〉2w ≡ 〈X2〉w − 〈X〉w( )2 � 1
2
. (29)

With the same argument, the weak value of P can be
expressed as

〈P〉w � 〈zf |P zi| 〉
〈zf |zi〉 � i〈zf | a† − a( ) zi| 〉�

2
√

〈zf |zi〉 � i zpf − zi( )�
2

√ , (30)

then

〈P〉2w � i zpf − zi( )�
2

√[ ]2

� 2zpf zi − zpf( )2 − z2i
2

. (31)

Thus,

〈P2〉w � 〈zf |P2 zi| 〉
〈zf |zi〉 � 〈zf | aa† + a†a − a2 − a†( )2[ ] zi| 〉

2〈zf |zi〉
� 〈zf | 2a†a + 1 − a2 − a†( )2[ ] zi| 〉

2〈zf |zi〉
� 2zpf zi − z2i − zpf( )2 + 1

2
.

(32)

which means that,

〈ΔP〉2w ≡ 〈P2〉w − 〈P〉w( )2 � 1
2
, (33)

namely

〈ΔX〉2w〈ΔP〉2w � 1
4
. (34)

Obviously, the uncertainty relation for the coherent state
of the simple harmonic oscillator in the sense of weak value
reaches the lower bound of Heisenberg uncertainty relation
(Eq. 13) all the while, which is in accord with the traditional
case using expectation value.

3 SUMMARY

We delve into the case of measuring position and momentum in a
simple harmonic oscillator with pre-selected states as eigenstates and

the post-selections as the superposition states. Remarkably, wefind out
that Heisenberg’s claim for two incompatible observables fails in the
situation of weak values for typical selections listed previously. But the
weak value canonical uncertainty relation holds for the simple
harmonic oscillator in coherent states.

Our work may offer a beneficial supplement in the field of
uncertainty relation with weak measurement, and beat the
standard Heisenberg limit. Of course, we do not consider
complete process of weak measurement, as none interaction
Hamiltonian of quantum system with environment appear,
hence the present work is not appropriate for experimental
test, which we are struggling for.

In fact, although Heisenberg’s principle is sufficiently elegant and
classical in current textbooks, it cannot undergo the test relating to
weak measurement [13]. Nevertheless, two generalizations, the one is
presented via M. Ozawa [14] and the other is dedicated by C.
Branciard [15], about Heisenberg’s work, were successfully verified
in the same experiment [13]. Then canwediscover amore general and
concise uncertainty formula to unify all current results?Andwhy is the
nature of quantum world uncertainty (see1 as one of the 125 open
questions in Science)? We may understand these questions more
thoroughly by dint of geometry. Some papers have appeared, e.g., [16,
17]. We anticipate more progress on the relation between the
uncertainty relations and the weak measurements in the near future.
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