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This article develops two new empirical likelihood methods for long-memory time series models
based on adjusted empirical likelihood and mean empirical likelihood. By application of Whittle
likelihood, one obtains a score function that can be viewed as the estimating equation of the
parameters of the long-memory time seriesmodel. An empirical likelihood ratio is obtainedwhich
is shown to be asymptotically chi-square distributed. It can be used to construct confidence
regions. By adding pseudo samples, we simultaneously eliminate the non-definition of the
original empirical likelihood and enhance the coverage probability. Finite sample properties of the
empirical likelihood confidence regions are explored through Monte Carlo simulation, and some
real data applications are carried out.
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1 INTRODUCTION

The empirical likelihood (EL) method is originally designed to construct a confidence region only for
independent data [1,2]. Nowadays, it is quite popular in the statistical inference of time series,
(dependent data) thanks to the asymptotical independent property of the periodogram ordinates, see
[3], [4], and [5]. EL received considerable attention because of its nice statistic properties. For
example, it runs a low risk of a misspecified probability model by setting up a semi-parametric
moment model; it is easy to construct a confidence region or interval under the chi-square
approximation; there is no need to calculate the covariance estimates when it is used to
construct confidence regions; and the shape of confidence region that is naturally driven by data.

In spite of nice properties of EL, it still does not work well for the case of small sample or high-
dimensional data. Its main drawback is the large coverage error of the corresponding confidence region.
One reason for the under-coverage is that the original EL ratio poorly approximates to the chi-square
limiting distribution. This under-coverage issue can be alleviated to some extent by the Bartlett correction
[6]. Another reason for the under-coverage is the non-definition problem of the EL ratio.When the sample
size is small, the definition of the original EL ratio often does not exist. [7] proposed adjusted EL by adding
pseudo points to ensure the original convex hull lie on the opposite of the origin, which not only eliminates
the non-definition but also improves the accuracy of approximation with the conventional level of
adjustment. [8] put forward the optimal adjustment level to improve the chi-square approximation with a
high-order precision, but the problem is not solved. Afterward, [9] derived an adjustment factor from the
Bartlett correction and proved by adding two pseudo observations; the new adjusted EL (AEL) has the
same order of chi-square approximation as the Bartlett correction. Many research studies about choosing
an optimal adjustment factor arose, such as [10], [11], [12], and [13]. In practice, when the dimension of the
unknown parameter is large, it is difficult to calculate the Bartlett correction factor. Recently, the mean EL
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(MEL) was proposed to improve the precision of the EL-based
confidence regions by constructing a new pseudo data point [14].
By greatly increasing the sample size, the MEL method leads to a
more accurate chi-square approximation. Hence, the corresponding
coverage error is reduced, and the coverage probability is enhanced.

For time series, EL inherits the undesirable problem of under-
coverage. To the best of our knowledge, there have been some works
applying AEL on the improvement of the precision of the EL-based
confidence region, such as [15] and [16]. But under their proposed
conventional adjustment level a � max (1, log(n)/2), the precision of
chi-square approximation distribution of AEL is not obviously
enhanced. In this article, we propose another adjustment level to
construct new AEL for the parameters in stationary short- and long-
memory time series models with Gaussian noise. Following the Liu &
Chen’s method, our proposed AEL possesses a high-order
approximation to chi-square distribution by adding two pseudo
observations. We also propose the MEL method for estimating the
parameters of stationary time series models. By increasing the sample
size, the MEL does enhance the confidence precision. The Monte
Carlo simulation results indicate that our proposed AEL-based
confidence regions benefit more accurate coverage probabilities
than those of the original EL and the previous AEL. When the
sample size is moderate, the coverage probability based on MEL is
comparable to the previous AEL. There is no need to compute the
Bartlett correction factor for MEL, which is a challenge when the
dimension of the parameter vector is large.

The remainder of this article is organized as follows; in Section 2,
we present the proposed AEL and MEL ratio statistics for parameters
in stationary ARMA and ARFIMA processes and deduce their
asymptotical chi-square properties. Monte Carlo simulation results
are provided in Section 3 to show the improved finite-sample
performance of our methods. Real data examples are presented in
Section 4. Section 5 is the brief proof of the theorem.

2 METHODOLOGY

In this section, we derive the asymptotical chi-square properties
of the new AEL and MEL ratio statistics for the parameters in

representative stationary short- and long-memory models, that is,
ARMA and ARFIMA models. We begin with introducing the
moment-estimating equations of parameters in these models.

2.1 Estimating Equations
Suppose, we have a time series {Xt}t�1,...,T satisfying the
relationship

Φ B( ) I − B( )dXt � Θ B( )ϵt, t ∈ Z, d ∈ 0, 0.5[ ),
where Φ(B) � ∑p

i�0ϕiB
i and Θ(B) � ∑q

i�0θiBi with ϕ0 � θ0 � − 1
and B is the backward operator. The two polynomials have no
common factor to avoid the parameter redundancy. All roots of
their corresponding equations strictly lie out of the unit circle to make
sure that the model is stationary and invertible, which is the most
important setup for many time series studies. d is the constant
memory parameter and ϵt is a Gaussian white noise with mean 0
and variance σ2. Then, when d � 0, it is the popular ARMA (p,q)
(short-memory) model. When d ∈ (0, 0.5), it is the widely used
ARFIMA (p,d,q) (long-memory)model [17]. σ2 is often considered as
a nuisance parameter. Then, β � (ϕ1, . . . , ϕp, d, θ1, . . . , θq) is the
parameter vector of our interest with the dimension m � p + q + 1.
Many important literatures come up with the application of the
fractional long-memory model ([18], [19], and [20]).

By taking the derivative of Whittle likelihood [21], the
estimating equations are derived as

∑N
i�1

ψi I ωi( ), β( ) � ∑N
i�1

I ωi( )
fi β( ) − 1( ) z ln fi β( ){ }

zβ
� 0,

where N � [(T − 1)/2] and [x] is the integer part of x. The
periodogram ordinates are denoted as

I ωi( ) � ∑T
t�1

xt sin ωit( )⎡⎣ ⎤⎦2 + ∑T
t�1

xt cos ωit( )⎡⎣ ⎤⎦2⎧⎨⎩ ⎫⎬⎭/2πT,
ωi � 2πi/T, i � 1, . . . , N,

and the spectral density function is

fi β( ) � σ2

2π

∣∣∣∣1 − e−iωi
∣∣∣∣−2d|Θ e−iωi( )|2

|Φ e−iωi( )|2.

2.2 AEL of β
It is well known that when the origin lies out of certain convex
constraints Ωβ � ψi(I(ωi), β), i � 1, . . . , N{ } involving the
computation of EL, the solution of the optimization problem
does not exist, which results in the no definition of EL and the
under-coverage of the corresponding confidence region. In this
section, we propose a new AEL in time series to ensure the well
definedness of AEL and improvement of the coverage probability
of confidence regions.

For simplicity, denote ψidψi (I (ωi), β). Based on the original
sample set Ωβ � ψi, i � 1, . . . , N{ }, for a given β, the empirical
log-likelihood ratio is defined as

R β( ) � −2sup ∑N
i�1

lnNpi, pi > 0,∑N
i�1

pi � 1,∑N
i�1

piψi � 0
⎧⎨⎩ ⎫⎬⎭.

TABLE 1 |Coverage probabilities (average length) of confidence intervals of θ �0.2
in MA (1).

EL AEL MEL AEL*

Level T CP(AL) CP(AL) CP(AL) CP(AL)

0.90 60 0.857 (0.428) 0.884 (0.463) 0.874 (0.452) 0.895 (0.963)
100 0.866 (0.324) 0.883 (0.339) 0.878 (0.334) 0.887 (0.607)
200 0.885 (0.227) 0.893 (0.233) 0.892 (0.231) 0.896 (0.306)

0.95 60 0.921 (0.520) 0.938 (0.578) 0.937 (0.560) 0.946 (1.382)
100 0.928 (0.389) 0.941 (0.409) 0.939 (0.407) 0.944 (0.874)
200 0.934 (0.271) 0.940 (0.279) 0.940 (0.279) 0.942 (0.407)

0.99 60 0.975 (0.715) 0.987 (1.068) 0.987 (0.806) 0.988 (2.440)
100 0.981 (0.522) 0.987 (0.561) 0.989 (0.566) 0.988 (1.652)
200 0.983 (0.359) 0.986 (0.369) 0.987 (0.376) 0.987 (0.733)
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TABLE 2 | Coverage probabilities of confidence intervals of d in ARFIMA (0,d,0).

Level T EL AEL MEL AEL* EL AEL MEL AEL*

0.90 d � 0.1 d � 0.2

20 0.796 0.875 0.840 0.899 0.803 0.882 0.845 0.910
30 0.815 0.874 0.850 0.905 0.819 0.874 0.851 0.908
50 0.838 0.874 0.862 0.898 0.830 0.863 0.852 0.897
100 0.848 0.866 0.859 0.889 0.848 0.871 0.863 0.891

d � 0.3 d � 0.4

20 0.800 0.885 0.843 0.908 0.786 0.870 0.830 0.899
30 0.813 0.865 0.843 0.905 0.824 0.873 0.852 0.912
50 0.827 0.862 0.848 0.895 0.818 0.856 0.841 0.893
100 0.848 0.866 0.859 0.891 0.838 0.857 0.853 0.889

0.95 d � 0.1 d � 0.2

20 0.868 0.953 0.951 0.948 0.865 0.953 0.949 0.947
30 0.889 0.935 0.923 0.950 0.882 0.932 0.922 0.949
50 0.899 0.929 0.920 0.944 0.899 0.929 0.921 0.944
100 0.909 0.922 0.921 0.935 0.908 0.922 0.921 0.933

d � 0.3 d � 0.4

20 0.860 0.954 0.949 0.947 0.862 0.955 0.949 0.945
30 0.880 0.930 0.922 0.948 0.880 0.931 0.919 0.949
50 0.898 0.926 0.919 0.944 0.896 0.928 0.917 0.945
100 0.907 0.920 0.918 0.937 0.907 0.921 0.918 0.939

0.99 d � 0.1 d � 0.2

20 0.932 1 0.954 0.978 0.930 1 0.954 0.976
30 0.956 0.991 0.975 0.984 0.958 0.993 0.977 0.988
50 0.968 0.986 0.983 0.990 0.969 0.986 0.984 0.989
100 0.974 0.981 0.982 0.985 0.971 0.981 0.981 0.983

d � 0.3 d � 0.4

20 0.931 1 0.956 0.976 0.925 1 0.954 0.980
30 0.955 0.991 0.972 0.986 0.955 0.990 0.973 0.987
50 0.972 0.984 0.983 0.989 0.965 0.984 0.981 0.987
100 0.972 0.980 0.980 0.983 0.972 0.979 0.979 0.984

TABLE 3 | Coverage probabilities of 95% confidence intervals of ϕ in AR (1).

T EL AEL MEL AEL* EL AEL MEL AEL*

ϕ � 0.2 ϕ � 0.5

20 0.876 0.953 0.913 0.950 0.874 0.926 0.906 0.936
30 0.900 0.943 0.927 0.956 0.876 0.928 0.910 0.934
50 0.913 0.936 0.932 0.946 0.903 0.929 0.921 0.936
100 0.927 0.939 0.937 0.943 0.910 0.925 0.920 0.930
200 0.941 0.947 0.948 0.948 0.920 0.928 0.929 0.934

ϕ � 0.7 ϕ � 0.9

20 0.841 0.938 0.881 0.933 0.788 0.889 0.838 0.900
30 0.862 0.919 0.890 0.937 0.815 0.874 0.845 0.883
50 0.865 0.904 0.888 0.922 0.813 0.857 0.838 0.897
100 0.893 0.911 0.905 0.921 0.809 0.835 0.829 0.913
200 0.908 0.916 0.918 0.922 0.828 0.840 0.840 0.889
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If the origin contains in the convex set Ωβ, by a simple
Lagrange multiplier calculation, pi � 1/(1 + λτβψi) and the
Lagrange multiplier λβ is the solution to ∑N

i�1ψi/(1 + λτψi) � 0.
Therefore, the level of the 1 − α confidence region is
constructed as

β: R β( )≤ χ2m,1−α{ },
where χ2m,1−α is the 1 − α quantile of chi-square distribution with
the degreem of freedom. Such EL-based confidence regions often
suffer from the problem of under-coverage.

To overcome such drawback, we propose a new AEL
following the Liu & Chen’s method. By adding two pseudo
observations, the AEL not only guarantees the likelihood ratio
to be always well defined but also obviously improves the
coverage probability of the confidence region in stationary
time series. Set the two pseudo observations ψN+1 � −a1 �ψ and
ψN+2 � a2 �ψ, where a1, a2 are positive and �ψ � (∑N

i�1ψi)/N.
Then, for each given β, the new AEL ratio statistic is
defined as

RA β( ) � −2sup ∑N+2

i�1
ln N + 2( )pi, pi > 0, ∑N+2

i�1
pi � 1, ∑N+2

i�1
piψi � 0

⎧⎨⎩ ⎫⎬⎭.

By the Lagrange method, we have

RA β( ) � 2 ∑N+2

i�1
ln 1 + λ*β( )τψi( ), (1)

where the Lagrange multiplier λ*β satisfies the equation

∑N+2

i�1

ψi

1 + λτψi

� 0. (2)

[22] proved such AEL ratio statistic RA (β0) approximated
to chi-square distribution with order O (n−2) for the
independent sample when β0 is the true value. Here, we
assert that such result is preserved for the stationary time
series model as the following theorem:

Theorem 2.1. Assume the characteristic function of ψ satisfies
Cram�er’s condition,

lim sup‖t‖→∞|E exp itTψ){ }|< 1.
Also E‖ψ‖18 <∞ and var(ψ) are positive definites. If β0 is the true
value, then

Pr RA β0( )≤ x( ) � Pr χ2m ≤ x( ) + Op n−2( ). (3)

Consequently, the 1 − α confidence region for β based on AEL
is constructed as

β: RA β( )≤ χ2m,1−α{ },
whose coverage error is O (n−2).

Remark 1. The proof of Theorem 2.1 is similar to that of
Theorem 1 in [22], hence is omitted. The two positive
adjustment factors a1 and a2 are also obtained following
the way of [22]. That is, a1 and a2 originate from the
Bartlett correction factor. It is the intrinsic relationship
between the new AEL and the Bartlett-corrected EL that
makes the precision of approximation to enhance
obviously. In practice, a1 and a2 are replaced by their
moment estimators, which do not affect the order of chi-
square approximation. For more details, refer to [22].

2.3 MEL of β
When the dimension of the parameter vectorm ≥ 3, it is difficult to
compute the Bartlett correction factor. To avoid the computation
and to resolve the under-coverage problem, we derive the MEL
method in this subsection. By greatly increasing the sample size,
MEL is constructed on the pseudo sample set
~Ωβ � (ψi + ψj)/2; 1≤ i≤ j≤N{ }. For simplicity, we denote ~Ωβ �
g1, . . . , gK{ } with gkd(ψi + ψj)/2 and K � N(N + 1)/2.
Then, the MEL ratio for given β is defined as

RM β( ) � −2sup ∑K
k�1

log Kpk( ): pk ≥ 0, ∑K
k�1

pk � 1, ∑K
k�1

pkgk � 0
⎧⎨⎩ ⎫⎬⎭.

By a simple Lagrange calculation, we have

RM β( ) � 2∑K
k�1

ln 1 + λ**β( )τgk( )/ N + 1( ), (4)

TABLE 4 | Coverage probabilities of 95% confidence regions of (ϕ1, ϕ2) in AR (2).

(ϕ1, ϕ2) EL AEL MEL AEL* EL AEL MEL AEL*

T � 20 T � 30

(0.3.0.2) 0.743 0.816 0.810 0.871 0.830 0.869 0.887 0.933
(0.1.0.7) 0.649 0.753 0.725 0.856 0.724 0.782 0.785 0.906
(0.7.0.2) 0.639 0.723 0.718 0.840 0.759 0.799 0.819 0.918
(0.4.0.5) 0.629 0.714 0.702 0.849 0.711 0.760 0.779 0.900

T � 50 T � 100

(0.3.0.2) 0.860 0.882 0.900 0.948 0.879 0.892 0.903 0.928
(0.1.0.7) 0.770 0.803 0.819 0.929 0.787 0.807 0.817 0.936
(0.7.0.2) 0.802 0.829 0.851 0.920 0.825 0.839 0.846 0.933
(0.4.0.5) 0.785 0.819 0.830 0.910 0.799 0.817 0.830 0.925
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and the Lagrange multiplier λ**β is the solution to

∑K
k�1

gk

1 + λτgk
� 0. (5)

Theorem 2.2. Under the assumptions of A1–A4 [4], if β0 is
the true value, RM(β0) → χ2m in distribution as n → ∞.

Consequently, the MEL-based confidence region for β of level
1 − α is

β: RM β( )≤ χ2m 1 − α( ){ }.
In the next section, we will verify the accurate coverage

probability of the confidence region under the finite sample by
simulation study for different versions of EL.

TABLE 5 | Coverage probabilities of 95% confidence regions of (θ, ϕ) in ARMA (1.1).

(θ, ϕ) EL AEL MEL AEL* EL AEL MEL AEL*

T � 20 T � 30

(0.1.0.2) 0.761 0.825 0.825 0.914 0.844 0.879 0.894 0.957
(0.1.0.7) 0.736 0.803 0.798 0.890 0.802 0.840 0.856 0.941
(0.6.0.2) 0.732 0.802 0.792 0.878 0.808 0.851 0.867 0.947
(0.5.0.7) 0.708 0.789 0.779 0.882 0.728 0.823 0.840 0.938

T � 50 T � 100

(0.1.0.2) 0.876 0.900 0.918 0.951 0.904 0.914 0.927 0.942
(0.1.0.7) 0.847 0.872 0.890 0.945 0.880 0.896 0.903 0.929
(0.6.0.2) 0.852 0.878 0.898 0.955 0.887 0.895 0.907 0.933
(0.5.0.7) 0.834 0.859 0.873 0.951 0.866 0.881 0.892 0.934

TABLE 6 | Coverage probabilities of 95% confidence regions of (d, θ) in ARFIMA (0,d,1).

(d, θ) EL AEL MEL AEL* EL AEL MEL AEL*

T � 20 T � 30

(0.1.0.3) 0.653 0.727 0.707 0.865 0.801 0.838 0.856 0.930
(0.2.0.7) 0.718 0.797 0.785 0.857 0.793 0.843 0.853 0.925
(0.3.0.4) 0.624 0.703 0.681 0.874 0.733 0.789 0.792 0.919
(0.4.0.7) 0.724 0.799 0.787 0.866 0.795 0.844 0.858 0.922
(0.4.0.1) 0.738 0.799 0.796 0.884 0.817 0.856 0.876 0.941

T � 50 T � 100

(0.1.0.3) 0.837 0.862 0.880 0.954 0.868 0.875 0.886 0.946
(0.2.0.7) 0.832 0.858 0.875 0.948 0.875 0.886 0.897 0.942
(0.3.0.4) 0.818 0.844 0.860 0.953 0.846 0.859 0.871 0.954
(0.4.0.7) 0.846 0.862 0.879 0.949 0.874 0.885 0.895 0.941
(0.4.0.1) 0.853 0.876 0.893 0.953 0.874 0.887 0.898 0.938

TABLE 7 | Coverage probabilities of 95% confidence regions of (ϕ, d) in ARFIMA (1,d,0).

(ϕ, d) EL AEL MEL AEL* EL AEL MEL AEL*

T � 20 T � 30

(0.3.0.1) 0.667 0.739 0.726 0.875 0.793 0.833 0.851 0.928
(0.7.0.2) 0.696 0.780 0.767 0.879 0.770 0.821 0.832 0.933
(0.4.0.3) 0.616 0.700 0.679 0.882 0.720 0.769 0.774 0.917
(0.6.0.4) 0.692 0.791 0.771 0.896 0.748 0.808 0.822 0.925
(0.1.0.4) 0.740 0.807 0.806 0.889 0.799 0.841 0.857 0.942

T � 50 T � 100

(0.3.0.1) 0.842 0.867 0.887 0.953 0.858 0.872 0.882 0.941
(0.7.0.2) 0.825 0.850 0.866 0.931 0.856 0.872 0.885 0.941
(0.4.0.3) 0.818 0.846 0.862 0.949 0.839 0.854 0.864 0.944
(0.6.0.4) 0.796 0.825 0.845 0.930 0.843 0.856 0.868 0.942
(0.1.0.4) 0.857 0.882 0.899 0.955 0.866 0.881 0.891 0.940
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3 SIMULATION

To investigate the finite-sample performance of our
proposed AEL*(the notation of our proposed AEL in the

following statements) and MEL, we carry out extensive
Monte Carlo simulation studies of the ARMA (p,q) and
ARFIMA (p,d,q) models in this section. To emphasize
that our proposed adjustment level is better than the

FIGURE 1 | 95% confidence regions with a sample size 1,000. (A)Confidence regions of (d,Φ)=(0.3,0.5) in ARFIMA(1,d,0); (B)Confidence regions of (d,θ)=(0.4,0.1)
in ARFIMA(0,d,1).

FIGURE 2 | 95% confidence regions with a sample size 200. (A) Confidence regions of (θ1,θ2)=(0.5,0.2) in MA(2); (B) Confidence regions of (Φ1,Φ2)=(0.2,0.6)
in AR(2).

FIGURE 3 | (A) Trajectory of the annual U.S. unemployment rate from 1948 to 2019; (B) plot of 95% confidence regions for parameters (ϕ1, ϕ2) based on EL, AEL,
AEL*, and MEL methods; the corresponding AEL* point estimate is denoted as △.
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conventional adjustment level a �max{ log(N)/2, 1} of AEL
of [15] and [16], we also studied the unadjusted EL and
their AEL. Furthermore, we studied the confidence region
graphically.

3.1. Simulation Setup
We consider several ARMA (p,q) and ARFIMA (p,d,q) processes
with different sample sizes and Gaussian noise with zero mean. In
each case, 5,000 replications are generated to compute the coverage
probability. Nominal levels are set to be 1 − α � 0.90, 0.95, 0.99,
respectively. It is notable that although the series length is T, the
sample size we use is only N � [(T − 1)/2]. In the simulations, we
use the consistent estimators â1 and â2 to replace the adjustment
factors a1 and a2, respectively. The computations â1 and â2 are
completely similar to those of Section 3.3 in [22]. When the
dimension of the parameter m � 1, we only add one pseudo
observation with the adjustment level â � â1 − â2. Specifically,

a1 � 1
2m

∑
r

αrrrr

2 αrr( )2 −
αrrr( )2

3 αrr( )3{ } + 1
2m

∑
r<s

αrrss

αrrαss −
αrss( )2

αrr αss( )2{ }
a2 � 1

2m
∑
r<s

αrss( )2
αrr αss( )2 +

1
m

∑
r<s<t

αrst( )2
αrrαssαtt

,

where αrs/t � E (YrYs . . . , Yt), Yt is the tth component of Y, Y �
Pτψ0, ψ0 � ψ(I(ω), β0), and P is the orthogonal matrix such that
Var(ψ(I(ω), β0) � Pdiag{ξ1, . . . , ξm}Pτ . {ξi, i = 1, . . . , m} are
eigenvalues ofVar(ψ(I(ω), β0).Note α̂rs/t � n−1∑i(Yr

i Y
s
i . . . ,Y

t
i ).

Then, the consistent estimators â1 and â2 are obtained by
replacing the components of a1, a2 with their corresponding
consistent estimators, which are given in the following table:

3.2 Simulation Results
Tables 1–7 report the coverage probabilities of confidence regions
based on four versions of EL. First, we find that our proposed AEL*
performs better than other ELs in terms of the coverage probability
for all cases and that the coverage probability of our proposed AEL*
is the closest to the normal level. Second, when the sample size is very
small, the coverage probability based on MEL is smaller than that
based onAELwith the adjustment level a�max (log(N)/2, 1). But,
when the sample size is moderate, the coverage probability is
comparable to that based on AEL method, which is because
the improvement only relies on the increasing sample size in
essence. So, MEL enhances the coverage probability at some
expense of computational efficiency. Third, the coverage

FIGURE 4 | (A) Trajectory of VIX series from April 25, 2019 to November 21, 2019; (B) plot of 95% confidence regions for parameters (ϕ, d) in ARFIMA (1,d, 0)
based on EL, AEL, AEL*, and MEL methods; corresponding maximum likelihood and EL point estimates are denoted as ◦ and △, respectively.

FIGURE 5 | Trajectory of the daily log-return rate of Shanghai Securities
Composite Index.

TABLE 8 | Point estimates and the length of 95% confidence interval of the
Shanghai Securities Composite Index by fitting it as an ARFIMA (0,d,0) model.

d̂ d̂E EL AEL MEL AEL*

0.0646 0.0306 5.3457 5.3822 6.0126 5.1740

Parameter Estimator

αrr nα̂rr /(n − 1)
αrst nα̂rst/(n − 3)
αrrss (nα̂rrss − 2~αrr ~αss − 4I(r � s)~αrr ~αrr)/(n − 4)
αrrαss ~αrr ~αss − ~αrrss/n
αrstαrst ~αrst ~αrst − (α̂rrsstt − ~αrst ~αrst)/n
αrrαssαtt ~αrr ~αss ~αtt
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probabilities based on AEL and AEL* are not always enhanced
with the increasing sample size. Fourth, from Table 1, when
the coverage probability increases, the corresponding average
length of the confidence interval is getting large. Fifth, Table 3
indicates that the coverage probabilities become small when
the parameter approximates the critical value tending to non-
stationarity. The confidence regions in Figures 1, 2 are
respectively depicted as the case with the series length
1,000 and 200. When the sample size is large, there is little
difference in four kinds of the confidence region in Figure 1.
In Figure 2, obviously, when the sample size is small, our
proposed AEL*-based confidence region is the smallest among the
four counterparts, and the MEL-based confidence contour
contains others. It indicates that our proposed AEL* has not
only high-coverage probabilities but also small confidence
regions, and MEL has high-coverage probabilities and relative
large confidence regions. The shape of the confidence region
matches with the data-driven property of the EL method. That
is, the shapes of confidence regions are completely determined by
the data.

4 REAL EXAMPLES

In this section, we illustrate and compare the validity of our
proposed EL methods described in previous sections by analyzing
some real examples.

4.1 Annual U.S. Unemployment Rate
First, we take annual U.S. unemployment rate series as an example to
investigate the confidence region of our proposed EL methods. The
data are collected from 1948 to 2019 and available from https://
forecast-chart.com/forecast-unemployment-rate.html. The trajectory
of these data is displayed in Figure 3A. We consider it as a
realization of a stationary process. By the sample autocovariance
function (ACF) and partial autocovariance function (PACF)
analysis, we fit the unemployment rate by an AR (2) model. The
95% confidence regions based on our proposed AEL* and MEL are
displayed in Figure 3B. The shapes coincide with EL’s data-driven
property, and the size indicates our proposedmethods aremuch better
than the previous EL and AEL methods.

4.2 S&P 500 VIX
S&P 500 VIX is a forward-looking index. If it is extended to the
price observations of the broader market level index, the investor

will get a peek into volatility of the larger market. So, it is
meaningful to fit a proper model. Here, we collect the data
from April 25, 2019 to November 21, 2019. The trajectory is
displayed in Figure 4A. We fit the data by an ARFIMA (1,d, 0)
model with maximum likelihood point estimates
(ϕ̂, d̂) � (0.170, 0.356). Then, the confidence regions are
exhibited in Figure 4B. Compared with the original EL and
the previous AEL, our proposed AEL*-based confidence region is
still the best, and the MEL-based confidence contour also
contains the others.

4.3 Shanghai Securities Composite Index
Finally, we analyze the daily log-return rate of Shanghai Securities
Composite Index. The data range from June 4, 2020 to March 26,
2021. Figure 5A displays the realization of the index. We fit it as
an ARFIMA (0,d, 0) model. The maximum likelihood and the EL
estimate are d̂ and d̂E, respectively, and the lengths of four kinds
of the EL confidence interval are displayed in Table 8. We find
that the confidence interval based on MEL is still the largest, and
the one based on our proposed AEL* is still the smallest.

5 CONCLUSION

In this article, we introduce two new versions of EL to construct
confidence regions for parameters in stationary short- and long-
memory time series. Our proposed AEL* and MEL do enhance the
approximation precision of chi-square limiting distribution, which
determines the good performance of corresponding confidence
regions. Simulations show that our proposed AEL* has the better
coverage probability than that of the previous AEL and MEL.
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APPENDIX

Proof of Theorem 2.2. For simplicity, denote gkdgk (I (ωk), β),
λdλ**β , and ρdρβ. Following [3], ‖λ‖ � Op(N

−1/2) and
1
N∑N

i�1ψi � Op(N−1/2). Hence,

1
K
∑K
k�1

gk � 1
K

∑
1≤i≤j≤N

ψi + ψj

2
⎛⎝ ⎞⎠ � 1

2K
∑N
i�1

∑N
j�1

ψi + ψj

2
+∑N

i�1
ψi

⎛⎝ ⎞⎠
� 1
N

∑N
i�1

ψi � Op N−1/2( );
1
K
∑K
k�1

gkg
τ
k �

1
K

∑
1≤i≤j≤N

ψi + ψj

2
( ) ψi + ψj

2
( )τ

� 1
2K

∑N
i�1

∑N
j�1

ψi + ψj

2
( ) ψi + ψj

2
( )τ

+∑N
i�1

ψiψ
τ
i

⎛⎝ ⎞⎠

� N + 2
4K

∑N
i�1

ψiψ
τ
i +

1
4K

∑N
i�1

ψi∑N
j�1

ψτ
j

→ 1
2N

∑N
i�1

ψiψ
τ
i + op 1( ).

The Taylor expansion of equation (5) is

0 � 1
K
∑K
k�1

gk

1 + λτgk
� 1
K
∑K
k�1

gk − 1
K
∑K
k�1

gkg
τ
kλ + op 1( ),

then λ � (1
K∑K

k�1gkgτ
k)−1(1

K∑K
k�1gk) + op(1). Substituting λ into

RM(β0), we have

RM β0( ) � 2 ∑K
k�1

ln 1 + λτgk( )/ N + 1( )

� 2 ∑K
k�1

λτgk − λτgk( )2/2( )/ N + 1( ) + op 1( )
;

� N

2
1
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1
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� N
1
N

∑N
i�1

ψi
⎛⎝ ⎞⎠τ

1
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ψiψ
τ
i

⎛⎝ ⎞⎠−1
1
N

∑N
i�1

ψi
⎛⎝ ⎞⎠ + op 1( ).

.

Combining Equations (4.4) and (4.5) of Monti (1997) with the
proof of Theorem 1 of Yau (2012), we have RM(β0)→d χ2m as n→
∞, where→d means convergence in distribution.
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