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A synaptic structure with memristor state initialization function and a neuronal circuit with
structural variability are presented in this article. In contrast to the popular use of voltage as
a medium for containing information and realizing the computational function of a neuron in
the form of voltage–current–voltage, the proposed neuron circuit adopts current as a
carrier of information; also the computation will be realized in the form of current–voltage
instead. Since the sum of currents can be achieved by direct connection, this will greatly
reduce the hardware area of the artificial neuron. In addition, by adjusting the switches, the
initialization of thememristor can be implemented, and the process of structural changes of
neurons in biology can also be mimicked. Comparing with several popular synaptic
circuits, it is proven that the π-type synapse has more structural advantages.
Simulations show that the π-type synaptic structure can obtain the specified weight
value faster and complete the initial state setting of the memristors in 1.502ms. Even in the
worst case, where the weight needs to be changed from −1 to 1, it can be completed in
only 1.272 ms. Under the condition of achieving the same function, the area of the
proposed neuron with 100 synapses will be reduced by at least 97.42%. Moreover,
there is better performance in terms of linearity.
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INTRODUCTION

Synapses are abundant in the human brain which consists of approximately 1011 neurons with 1015

synapses [1], and they play a fundamental role in the human brain’s rapid processing. Each neuron
contains thousands to tens of thousands of synapses to receive signals from higher-level neurons, and
these signals are transmitted in complex networks comprising neurons that guide humans to
perform a series of complex actions and other advanced behaviors. As a starting point, the biological
structure of the human brain has been used to develop research on artificial neural networks [2], and
due to the indispensability of synapses, the design of synaptic analog circuits to realize the function of
artificial neural networks has always been a hot topic of research.

When information is transmitted in a neuron, the postsynaptic membrane will produce different
degrees of physiological response depending on the number of neurotransmitters, which is always
abstracted as the degree of involvement of each synapse in a practical circuit design, that is, the weight that
each synapse occupies in the neuron and the storage of such non-volatile weights is often hosted by
resistors, capacitors, or CMOS transistors. However, in the previous implemented circuits, the storage of
weights in resistors cannot change with the network due to the fixed resistance value, and those stored by
capacitors are subject to charge leakage as well. To represent a synapse through conventional CMOS
circuits, approximately 10 transistors will be required, [3] whichwill be limited by the hardware size in the
post-Moore era, making it difficult to carry out the demand for smaller size.
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Since the concept of the memristor was proposed [4], it has
attracted much attention in bio-synaptic implementation circuits
due to its unique hysteresis curve characteristics, non-volatility of
its resistive state and smaller size, and the good compatibility with
conventional CMOS processes. Take the voltage-controlled
memristor in [5] as an example; it is the first device with the
function of the memristor whose resistance value will change
accordingly by adjusting the voltage applied to both ends of the
memristor, showing its potential as a malleable small-sized
synapse. More memristor models have been proposed later,
and they can be divided into flux-controlled [6, 7] and charge-
controlled [8–10] memristors according to the factors which
determine the memristance. Recently, some new models have
been proposed, such as the discrete memristor [11]. Because of its
unique nonlinearity, it has been widely used in chaotic circuits
[12, 13]. Using the hysteresis characteristics of the memristor, it
can also be used to connect [14] and construct neurons [15–20].
As the production process of memristors becomes more and
more mature, they are now widely used in the fields of intelligent
bionics, human–computer interaction, and neural network
computing, etc. [21–25].

The application of memristors in artificial neurons has become
very general. Several common circuits [26] that used memristors
to achieve synaptic function either did not achieve the full range
of weights, such as positive, negative, and 0 for they used
memristance as weight [15, 20, 27], or the change of weight
was in a nonlinear form [15, 20, 28] or the weight symbol needed
to be set additionally [20]; even the most commonly used
memristor bridge circuit, called 4M structure [23, 29], did not
take it into account that it is not enough to simply indicate the
initial state of the memristor since memristors are generally
manufactured in a high-resistance state from the factory. The
4M circuit structure did not involve the problem of setting the
initial state value of the memristor. In addition, none of the
abovementioned existing structures have been designed for this
phenomenon, which is, in the developing process of the actual
living organism; synapses will have fresh growth and fading, and
that will result in the change of the neuronal structure. Although
the 2M structure and with dual input modes [18, 30] in recent
years are improved compared with those mentioned above, they
still do not have any advantage in the area due to the existence of
resistances.

Changes in the structure of a single neuron and in the
connection of multiple neurons can reflect the flexibility of the
design, and there are many ways to realize the plasticity. The
coupling channel between different neurons structured by
Josephson junction is proven to be able to detect the
synchronization between two neural circuits and speed up the
calculation [31, 32]. Several combinations of capacitance,
inductance, and resistance can constitute hybrid synapses
[33–36]and effectively bridge the neural circuit, which
regulates the synchronization of different neurons. Memristors
can also be used as part of the coupling channel [14]. By selecting
the composition of the coupling channel and adjusting the
parameters, the neural circuit can be induced to transition
from synchronization to non-synchronization. This process
can also be seen as the plasticity of the circuit structure.

In this article, a new basic unit π-type structure of the
synapse, and in addition to this, the artificial neuron unit
composed of this synapse has been proposed. First of all, this
structure can realize the basic functions of synapses, implying it
can represent the full range of weights, namely, positive,
negative, and zero. Second, the initial resistance states of the
memristors can be adjusted by controlling the switches of the π-
type basic unit; third, the structural plasticity of the neurons and
the degradation and regeneration process of synapses that
happen in actual neurons by controlling the working state of
each basic unit are also simulated; at last, considering the large
number of synapses on each neuron, when the π-structure
synapses are used to build a complete neuron, the
information contained in each synapse is aggregated in the
form of current and then passed through the same conversion
circuit that takes current into voltage, which has greatly reduced
the area required to simulate neurons.

In the following article,MemristorModels introduced the basic
principles of the memristor and TiO2 model that is the most
commonly used. In π-Type Memristor Synapse and Neuron, the
proposed π-structure synaptic basic unit and the neuron
comprising it were elucidated. The superiority of the π-type
synapse is demonstrated by comparing several synaptic
circuits, and it has also been explained how to regulate the
initial state of the memristors. Analysis and simulation results
are written in Weight Setting of π-Structure and Simulations and
Analysis, respectively. Conclusion summarized the full text.

MEMRISTOR MODELS

The memristor is proposed by Leon Chua as the fourth type of
electronic devices and is defined as a certain connection between
flux and charge [4]:

M(q) � dφ(t)
dq(t) �

∫t

−∞v(t)dt
∫t

−∞i(t)dt
� v(t)

i(t) . (1)

HP Labs [5] reported that the metal–oxide–metal structure can be
used as a mathematical model of the memristor and made
electronic components with memristor characteristics
successfully by using two layers of the TiO2 film. The so-

FIGURE 1 | (A) Schematic diagram of the implementation of the HP
model in physics. (B) Sandwich structure comprising TiO2−x and TiO2 layers
and Pt. (C) Symbol of the memristor in circuit.
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called sandwich structure is illustrated in Figure 1. TiO2 and
TiO2−x correspond to the undoped area and the doped area,
respectively, and owing to the lack of oxygen ions, the
conductivity of TiO2−x is much stronger than that of TiO2.
When external excitation is applied to the Pt electrodes, the
oxygen ions in TiO2−x will drift under the influence of the electric
field, which will modify the position of the boundary between
TiO2 and TiO2−x, and will affect the resistance value as a result.
When the oxides are completely covered by TiO2−x, the
corresponding resistance is the minimum value Ron, and
conversely, if the oxides are completely covered by TiO2, it
corresponds to the high-resistance state Roff. Figure 1 shows
the actual symbol of the memristor in circuit.

The resistance of the memristor can be expressed as follows:

M(q) � Ron
w(t)
D

+ Roff(1 − w(t)
D

). (2)

And the v–i characteristics can be expressed as follows:
v(t) � [Ron

w(t)
D

+ Roff(1 − w(t)
D

)]i(t), (3)

FIGURE 2 | Variation curve of window function F(x) with x for different values of p.

TABLE 1 | Influence of input direction and voltage polarity on memristance.

Terminal Voltage Width of the doped
region

Memristance

Case 1 Positive + Increase Decrease
Case 2 Positive − Decrease Increase
Case 3 Negative + Decrease Increase
Case 4 Negative − Increase Decrease

FIGURE 3 | Influence of the memristor access direction and excitation
direction to memristance. (A) Memristor is positively connected and positive
excitation is applied (B) Memristor is positively connected and negative
excitation is applied. When the memristor is connected in reverse, (C)
applying a forward excitation to the memristor will increase the resistance, and
(D) a reverse excitation will reduce the resistance.
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where w(t) is the width of the doped area and D is the
thickness of the two layers of the TiO2 memristor. In this TiO2

model, the thickness of the doped region is affected by current i;
so the relationship between the width w and the current i is
given by

dw(t)
dt

� μv
Ron

D
i(t), (4)

w(t) � μv
Ron

D
q(t) + w0, (5)

where w0 is the initial state of the memristor, q(t) is the charge
injected into the memristor during time t, and μv is the dopant
mobility. It should be noted that the amount of charge must be
limited since the value of w should be controlled within the range
of [0, D], and the total charge required to switch from a low-
resistance state to a high-resistance state is Q � D2/μvRon.

The difference from the abovementioned fact is that it is
believed that the boundary between the doped and undoped
parts moves at a uniform speed in the linear drift model, but in
fact, when w approaches 0 and D, ions always tend to exhibit
nonlinear migration, so the boundary between the two parts
will move in a non-linear manner. Joglekar [37] proposed a
window function to interpret this nonlinear drift
phenomenon:

F(x) � 1 − (2x − 1)2p. (6)

The relationship between the width of the doped region w and
the current i needs to be expressed as follows:

dw(t)
dt

� μv
Ron

D
i(t)F(x), (7)

where x is the location of the interface between TiO2 and TiO2−x,
which can be expressed as x � w/D, and P is restricted to a
positive integer.

The curve of F(x) can be represented as shown in Figure 2.
The value of F(x) also approaches 0 when x approaches the
boundary value on both sides, which means the movement of the
interface between the doped and the undoped region will be
restricted near the two ends of the memristor. The memristor
model with window function is more consistent with the actual
situation and increases authenticity.

The influence of the direction of the connected memristor on
its resistance when the memristor is input voltages in different
directions is discussed as follows. The difference in the
concentration of drifting oxygen ions at both ends of the
memristor determines that the input of positive and negative
excitations to the memristor will have different results.

It is stipulated that the doped end is the positive side of the
memristor, and the non-doped end is the negative side, and it can
be divided into the following four cases as shown in Table 1:

Case 1. When a positive voltage is connected to the positive
terminal of thememristor, the interface between the doped region
and undoped of memristor will float along the direction of the
voltage decrease, which will cause the width of the doped region
to increase and the memristance to decrease. The memristor at
this time is connected in the forward direction.

FIGURE 4 | Proposed π-structure memristor synapse. It is divided into a
basic repeatable unit and two additional memristors, where the repeatable
unit forms two currents of different sizes by dividing the voltage and passing
through memristors of different values, and the two additional
memristors convert the current signal into voltage.

FIGURE 5 | Method of initializing the memristors. (A) Positive excitation initialization signal is input and passes only through M5 and M3 due to S2 and S3 break.
Since M5 is positively connected, the resistance is reduced until it becomes state 1. (B) After the initialization is complete, M5 will be normally accessed into the circuit
for work.
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Case 2. When a negative voltage is connected to the positive
electrode of the memristor, the voltage tends to cause the
interface to float toward the positive electrode of the
memristor, and the width will decrease, which will cause the
memristance value to increase.

In the same way, from case 3 and case 4, it can be known that
when the voltage is input from the negative terminal of the
memristor, the positive and negative voltages will increase and
decrease the resistance of the memristor, respectively.

The memristance curves of the four cases are shown in
Figure 3. It should be noted that the minimum value of the
resistance of the memristor needs to be controlled and the
maximum value needs to be Roff. If the initial value of the
memristor is Ron, the memristive value under the conditions of
Figures 3A–C will no longer reduce, and the resistance value will
remain at Ron. Similarly, if the initial value is Roff, the
memristance will not increase any more under the conditions
shown in Figures 3B–D, and the resistance value will remain
at Roff.

Π-TYPE MEMRISTOR SYNAPSE AND
NEURON

π-Type Memristor Synapse
The proposed basic unit of the synaptic circuit based on the
memristor is shown in Figure 4. It consists of five flux-
controlled memristors and three switches, in which
M1, M2, M3 play the role of a voltage divider, and the two
node voltages generate different currents through M4 and M5

with different resistance values, from where the proportional
relationship between the input voltage and the difference
between two currents can be obtained. Through M01 and
M02, the currents will be expressed in the form of voltage
according to Ohm’s law. The π-structure comprising five
memristors can play the role of synapses and express the
weight of positive, negative, and zero.

Initialization State Setting
Part of the existing synaptic circuits based on memristors [19, 20]
only specified the initial status of memristors and did not explain
how to complete the initial resistance setting in their actual
circuits, without considering that memristors are often in a
high-impedance state when they are manufactured. The
method to set the initial states in our synaptic circuit based on
the memristor is proposed, as shown in Figure 5.

Vset is an initialization pulse signal for adjusting the state of
M5. S1 is responsible for controlling whether to initialize theM5

and S2 and S3 are responsible for explaining whether this
synaptic unit functions in the neuron. We stipulate that Vset

is a positive voltage greater than the threshold voltage of the
memristor. S1 is active at the high level, while S2 and S3 are
active at the low level. Figure 5 shows that when we initialize the
memristive value, S1 is closed, while S2,3 are disconnected, and
M5 is connected in the forward direction, so the boundary
between TiO2 and TiO2−x will move in the direction of the
voltage drop, which will result in the resistance of M5 being
dropped until it reaches Ron and not changing any more.
Because M3 is in the opposite connection, its resistance value
will always remain at Roff according to Figure 3, and the
disconnection of S2 and S3 can ensure that the process of
initializing M5 will not affect the states of memristors that
constitute other synapses in the neuron. The initialization will
be completed when S1 is disconnected and S2,3 are closed.

During the growth of neurons, new synapses often appear, and
a part of them is also pruned, and this variability is called
structural plasticity, whereas in the previously proposed analog
synaptic circuits, only the weights occupied by the synapses can
be changed, but not the structure because of their fixity. The
π-type basic unit can compensate for this regret by
simultaneously closing S2 and S3 so that the unit can enter the
operating state, and on the contrary, the basic unit is pruned
when S2 and S3 are simultaneously disconnected.

Weight Setting
The states of the memristors after the initial setup are set as
M1 � M2 � M3 � M4 � Roff, M5 � Ron. At this time, S1 is
disconnected, and S2 and S3 are always closed. The circuit
is shown in Figure 5B. When there is a strong pulse signal
input Vin(t), the resistance values will be changed according
to their own polarity, which will result in the change in
current.

The resistances between the node A and ground and between
node B and ground can be expressed as follows:

M’
4 � M4 +M01, (10)

M’
5 � M5 +M02, (11)

MA � (M2 +M3 ‖ M5
′) ‖ M4

′ , (12)

MB � M3 ‖ M5
′ . (13)

The total resistance of one synapse can be expressed as follows:

TABLE 2 | Comparison of the characteristics of several common memristor synapses.

Memristor synapse Synaptic composition Weight range Sign setting Linearity Initialization

[6] 1M + No Nonlinear No
[7] 1M2T + No Nonlinear No
[8] 2M + No Linear No
[9] 2M2R +,-,0 No Linear No
[10] 4M +,-,0 No Linear No
[11] 5M + or - Yes Nonlinear No
Proposed π-type 5M +,-,0 No Linear Yes

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7989715

Su et al. π-Type Memristor Synapse and Neuron

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Mtotal � M1 + (M2 +M3 ‖ M’
5) ‖ M’

4. (14)

Suppose there is an input voltage vin at time t, according to the
voltage divider formula, the two node voltages vA and vB can be
written as follows:

vA � MA

MA +M1
vin, (15)

vB � MB

M2 +MB
vA. (16)

The currents passing through the branches whereM’
4 andM

’
5

are located are follows:

i4 � vA
M’

4

� MA

(MA +M1)M’
4

vin, (17)

i5 � vB
M’

5

� MB

M2 +MB
p

MA

MA +M1
p
1
M’

5

vin, (18)

i5 − i4 � ( MAMB

(M2 +MB)(MA +M1)M’
5

− MA

(MA +M1)M’
4

)vin.
(19)

Using two transistors can convert the current signal into
voltage, and the output voltage vout is equal to the difference
between v1 and v2:

vout � v2 − v1 � M02i5 −M01i4

� ( MAMBM02

(M2 +MB)(MA +M1)M’
5

− MAM01

(MA +M1)M’
4

)vin. (20)

This formula can be interpreted as the relationship between a
synaptic input vin and a synaptic weight W, and it can be
rewritten as follows:

vout � W × vin, (21)

W � MAMBM02

(M2 +MB)(MA +M1)M’
5

− MAM01

(MA +M1)M’
4

. (22)

The abovementioned equations can be considered a weighting
operation of every π-structure synapse in a neuron. The current
flowing on both branches in [29] is the same, for that the total
resistance of each branch is fixed as Rin + Roff, which determines
that there is no way for the 4M structure [23, 29] but can only obtain
the weights of the synapses by detecting the potential at the middle
point of the two memristors and evaluating the difference between
them. However, the voltages cannot add up in a straightforward way

FIGURE 6 | Comparison of neuronal biological schematics with the proposed neuron structure. (A) Neuronal biological schematics. (B) Structural diagram of a
neuronal circuit composed of the π-type synaptic structure.

FIGURE 7 | Curve of memristance of M5 with Vset in variable width.
When S1 is on and S2,3 off, the memristance ofM5 starts to reduce until Roff or
S1 is turned off in advance.
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like the currents; so each synaptic basic unit of the 4M structure has
to include two CMOS tubes to convert the voltage signal into a
current signal, which to a large extent will take up a considerable part
of the area. Also, the differential structure can help reduce the
influence of noise and improve robustness.

The current memristor-based synapses can be classified
according to the number of memristors into 1M [15, 16], 2M
[17, 18], 4M [19], and 5M [20]. Table 2 lists the following
points: The components of the synapse, the range of weights
that can be expressed, whether it is necessary to set the weight
symbols in advance, the performance of linearity, and whether
it has the initialization function of the memristor. It
intuitively demonstrated the superiority of the π-type
synapse.

Artificial Neuron Structure Based on the
Proposed Synapse
In the actual biological nervous system, the network-like
information interactions will be completed in the form of
which neurons collect and process different information
collected by each synapse, and then they transmit the
processed signals to the neurons of the next layer. A neuron
structure based on this synaptic structure is further designed,
which can realize the transmission of information in the form of
electric current in the neuron so that it will eliminate the
traditional cumbersome steps when building a large neural
network and save a lot of area. The complete circuit of the
multi-input memristor neuron comprising the π-type synapse
circuit is shown in Figure 6.

V1 to VN are the input signals received by the synapses, and
Vout is the output signal transmitted from the neuron to the
next neuron. Each current passing through M4N is brought
together by direct connection, and all signals throughM5N are
similarly aggregated in the same way. These two signals are
converted into voltage signals by two additional memristors in
the red frame, and the subtraction function is implemented
with two pmos and three nmos in the green frame. That is,
both additional memristors and the subtractive circuit are
shared by all the basic units in operation; so whenever a
neuron needs to access an additional synapse, only five
more memristors need to be added, which means it is an
advantage that makes the proposed structure more power-
efficient and smaller in area when more messages need to be
received. Different from [31–36], the structural plasticity of
neurons is realized by controlling the state of the switches with
the clock signal and the degree of connection between different
neurons through the memristors. It is more reliable and easier
to operate by controlling the physical connection of the circuit.

WEIGHT SETTING OF Π-STRUCTURE

As the input signal for setting weight of the π-structure is a
positive pulse with a sufficiently wide pulse width, the
memristance of M2 decreases and M5 increases, which will
change the currents of the branch where M4 and M5 are
located. It can lead to the result that the branch current
difference will have three cases as follows: positive, negative,
and 0. According to (22), when a positive weight is needed, the
condition that needs to be met should be as follows:

FIGURE 8 | (A)Memristance curve ofM2 andM5 (B) Current i4, i5, and
the weight (C).
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MAMBM02

(M2 +MB)(MA +M1)M’
5

− MAM01

(MA +M1)M’
4

> 0

MAMBM02

(M2 +MB)(MA +M1)M’
5

> MAM01

(MA +M1)M’
4

MBM02

(M2 +MB)M’
5

>M01

M’
4

. (23)

Similarly, when negative and zero weights are required, the
conditions should be satisfied as follows:

Negative weight:
MBM02

(M2 +MB)M’
5

<M01

M’
4

. (24)

Zero weight:

MBM02

(M2 +MB)M’
5

� M01

M’
4

. (25)

It is essential to be note here that the pulse width of the setting
signal must be wide enough to bring about a change in the
memristor value, as opposed to the need to keep the pulse width
of the input signal within a small range when calculating with the
given weights, which can avoid the change of the memristors.

SIMULATIONS AND ANALYSIS

Simulations were all performed in the MATLAB R2020a
environment and based on the TiO2 model for the memristor.
A series of physical models have been created in Simulink with
Simscape, including the Simscape model of the memristor, and the
proposed neuron is described through the physical connection
between the models. Ron was set as 100Ω, and there are several
different chosen values for Roff:M1 � M3 � M5 � 10KΩ, M2 �
13KΩ,M4 � 16KΩ. The remaining parameters are set as follows:
D � 10nm, μv � 10−14m2V−1S−1, and p � 7.Validation for the
initialization function and weight setting is included in the
following simulations, and the feasibility of forming a neuron
from this synaptic structure was determined. The degree of
memristor nonlinearity in relation to the initialization and
weight setting was also analyzed. The amplitude of input
signals with variable width for both the initialization process
and the weight setting process was fixed at 1V. Since the
hysteresis loop of the memristor will shrink into a single-
valued function when the external excitation frequency
becomes larger [38], in order to maintain the state of the

FIGURE9 | Influence of p on linearity. (A) Time needed forM5 initialization increased as p declined. (B)M2 and (C)M5 shows that the lower p value is, the slower the
speed of memristor state transition. (D) Although the time of set weight increases, it still maintains good linearity.
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memristor during the calculation, the frequency of the input
pulse needs to be adjusted higher.

Initial State Setting of the Memristor
Considering that the freshly shipped memristors generally
present a high-resistance state, we simulated the setting of the
memristor state to the desired initial state by controlling the
switch statement. Figure 5A demonstrates that M3 forms a
separate complete circuit with M5 when switch S1 is closed
and S2,3 are disconnected.

According to Figure 7, in that M5 is forward connected to
the circuit, so its resistance will keep decreasing to Ron under
the influence of the initialization voltage Vset in a long enough
time; meanwhile the resistance of M3 will remain constant at
the same time due to its reverse connection. As soon as the
switch S1 is disconnected and S2,3 is closed, the π-type synaptic
basic unit will be accessed to the neuron normally. That S1,2,3
are all disconnected represents that the synapse has entered a
fading state; however, when S2 and S3 are re-closed, it indicates
the growth of a new synapse. The process in the synapse will
have no impact on the state of other synapse blockers in the
neuron.

Weight Setting
A pulse signal with an amplitude of 1V and a width that varies
with the time required to traverse the full range of weights was
used for setting the weight. Weight setting should be performed
after all available synapses have been initialized. After that,
when M5 resistance is Ron and the other four memristors in the
basic unit are in a high-resistance state Roff, it leads to the small
value of M5 and M3 parallel resistance which means a small
proportion in the voltage dividing process. It makes a huge
difference in the voltage at the two points A and B; so the current
flowing through M4 will be higher than the current flowing
through M5. With the input pulse signal as shown in Figure 8,
the resistance of M2 decreases and the resistance of M5

increases, the node voltage of A and B will narrow the gap,
and in the process of narrowing, the difference between i5 and i4
will have a maximum value. AsM2 decreases to Ron andM5 rises
to Roff, the two node voltage values will be closer, and the
difference of i4 and i5 will no longer change since the resistance
value of M2,5 will not change anymore. Only the minimum to
maximum value of the i4,5 difference interval was adopted here.
The simulation containing only one synapse is illustrated with
resistance of 20KΩ for R01 and R02, and the weights from -1 to 1
can be traversed after 1.272 ms. The commonly used weights are
concentrated between the central region around 0, and the
obtained weight curve exhibits a superior linearity so that the
value of the desired weight can be established by controlling the
width of the input pulse.

Analysis
Considering the boundary effect of the actual memristive
device, the nonlinear TiO2 model is used to perform all the
simulations in the article. Figure 9A shows the curve of
resistance of M5 over time according to the p value of the

window function. Under the same Vset action, the larger the p
value, the shorter the initialization time required to reduce
M5(0) from 10KΩ to 100Ω, and the higher the order of the
window function, the greater the resistance state change
curve can show good linearity. The influence of p on the
weight setting was also simulated in the same synaptic
structure. During the process of setting weight, due to the
decrease of the window function, the time required for the
resistance ofM2 to decrease becomes longer, and the time for
the increase of the resistance ofM5 also increases, as shown in
Figures 9B–C, and the resistance changes are nonlinear. The
slower state transition process of M2 and M5 will cause the
weight change to be relatively lagging; so the time required to
go through the weight from −1 to 1 increases. However,
despite the time for setting increases, the weight change
curve still shows superior linearity within the commonly
used weight range, which proves that the π- type synapse
structure is suitable for any p value. p � 7 takes the principle
of avoiding redundant calculations into account, the reaction
speed is raised, and the time for initialization and weight
preset is reduced.

In the case of achieving the same function, a neuron
comprising 100 synapses is represented by the most
commonly used memristor bridge circuit, which requires 401
memristors and 304 transistors, while that in the proposed
neuron structure with the π-type synapse only needs 502
memristors and five transistors. Assuming that the
memristors here are of the 10-nm level, even if the number
of memristors increases, the area of the neuron circuit is still
reduced by 97.42% due to the smaller individual area of the
memristor than the transistor. The energy consumption
expression of a neuron with n π-type synapses can be
approximately expressed as (5.61 + 0.1178n) μW; however,
M4 neuron under the same conditions requires (2.5 +
2.7094n) μW. So, as the number of synapses n increases, the
energy consumption will decrease more obviously. However,
some recent structures, such as the 2M2R [18, 30], due to the
large area occupied by the resistance, do not have advantages in
terms of power consumption and area.

CONCLUSION

A π-type artificial synaptic structure that utilizes the
nonvolatile nature of amnestic resistors was suggested by
this article, and further an artificial neuron structure with
structural variability is also proposed based on this synaptic
structure. Our artificial synaptic basic unit consists of five
amnestic resistors, and by applying a variable-width pulse
input signal with a forward amplitude of 1V, the
information will be located in the form of current, and the
weight setting is implemented. Simulations using the
nonlinear model of TiO2 showed that the π-type synapse
has good linearity over the full range of weight. The
information contained in each synapse is summed in the
form of currents which are transformed into voltages
through a common resistor and computed, which makes it
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have more significant advantages in terms of size and power
consumption. The π-type synaptic structure also enables the
setting of the initial state of the memristor in circuit,
compensating for the neglect of previous artificial synapses.
This neuron structure can also achieve synaptic fading and
renewal in biological neurons, providing a new way of thinking
for a more visual implementation of neuronal cell hardware.
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