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Papers in the literature dealing with the Ethernet network characterize packet delay
variation (PDV) as a long-range dependence (LRD) process. Fractional Gaussian noise
(fGn) or generalized fraction Gaussian noise (gfGn) belong to the LRD process. This paper
proposes a novel clock skew estimator for the IEEE1588v2 applicable for the white-
Gaussian, fGn, or gfGn environment. The clock skew estimator does not depend on the
unknown asymmetry between the fixed delays in the forward and reverse paths nor on the
clock offset between the Master and Slave. In addition, we supply a closed-form-
approximated expression for the mean square error (MSE) related to our new
proposed clock skew estimator. This expression is a function of the Hurst exponent H,
as a function of the parameter a for the gfGn case, as a function of the total sent Sync
messages, as a function of the Sync period, and as a function of the PDV variances of the
forward and reverse paths. Simulation results confirm that our closed-form-approximated
expression for the MSE indeed supplies the performance of our new proposed clock skew
estimator efficiently for various values of the Hurst exponent, for the parameter a in gfGn
case, for different Sync periods, for various values for the number of Sync periods and for
various values for the PDV variances of the forward and reverse paths. Simulation results
also show the advantage in the performance of our new proposed clock skew estimator
compared to the literature known ML-like estimator (MLLE) that maximizes the likelihood
function obtained based on a reduced subset of observations (the first and last timing
stamps). This paper also presents designing graphs for the system designer that show the
number of the Sync periods needed to get the required clock skew performance (MSE �
10–12). Thus, the system designer can approximately know in advance the total delay or the
time the system has to wait until getting the required system’s performance from the MSE
point of view.
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1 INTRODUCTION

Clock synchronization is an essential process in computer
networks. This process has to achieve frequency (clock skew)
and time (offset or phase) synchronization to ensure that all the
components function accurately. There are three significant
protocols for time and frequency distribution over the
Network: global positioning system (GPS), network time
protocol (NTP), and Precision Time Protocol (PTP) Pinchas
[1]; Levy and Pinchas [2]; Karthik and Blum [3]. GPS offers
frequency and time synchronization accuracy in the sub-
microsecond range Levy and Pinchas [2]. However, it requires
expensive equipment and routine maintenance Guruswamy et al.
[4]. Furthermore, we have a limitation in placing the equipment
that communicates with the satellites in certain places Shan et al.
[5]; Karthik and Blum [3]. According to Vyas et al. [6]; Peng et al.
[7] the GPS also suffers from a weak indoor GPS signal. The NTP
is not designed for local area networks (LANs) and has slow
response and software clock implementations Levy and Pinchas
[2]. Therefore, it can not achieve accurate results compared to the
PTP protocol Pinchas [1]. The PTP is defined by the standard
IEEE 1588v2 Arnold [8]. It requires minimal Network,
computing, and hardware resources Fubin et al. [9]. According
to Arnold [8], the PTP is based on a two-way message exchange
scheme between the Master and the Slave. By using the two-way
message exchange, frequency and time synchronization can be
approximately estimated by applying some assumptions. The
synchronous Ethernet (SyncE) is a protocol defined by the
ITU ITU-T Recommendation [10,11]. It distributes a reference
timing signal, where this signal can be extracted, processed, and
frequency can be recovered from this signal by the Ethernet
equipment clock (EEC) ITU-T Recommendation [10,11]. It
should be pointed out that according to Levy and Pinchas [2],
the EEC is not available in every system. Generally, the GPS or the
SyncE are applied for frequency synchronization, where the PTP
protocol and the GPS can be also applied for time or frequency
synchronization as well unlike SyncE. The use of PTP for time
synchronization is an important step for operations such as
managing, securing, planning, and debugging when it is
needed to determine the time that events happen Pinchas [1].
The use of PTP for time and frequency synchronization is
required in electrical grid networks, cellular base station
synchronization, industrial control, communication in
financial markets Guruswamy et al. [4]; Karthik and Blum
[12] and in Industrial Internet of things (IIoT) Puttnies et al.
[13]. The PTP has three different synchronization issues: a.)
phase synchronization only, where the PTP protocol is applied
for estimating the constant offset. In this scenario, frequency
synchronization already exists between the Master and the Slave.
b.) Frequency synchronization only, where the PTP is applied for
this purpose, while the time (offset) synchronization is not
needed here. c.) Time and frequency synchronization is
carried out with the PTP protocol. Please note that the offset
between the Master and the Slave increases when no frequency
synchronization exists between the Master and the Slave.

The PTP uses hardware timestamps traveling between the
Master and the Slave nodes Arnold [8], where the path is through

several switches and routers. The traveling time in those
components determines the duration of the delay in this path.
According to Karthik and Blum [12,14,15]; Guruswamy et al. [16]
there are two types of delay: a.) the fixed delay, a deterministic
propagation delay along the network path, and b.) the random
delay, also named as PDV. The PDV is defined as a random
variable due to the routers, or the switches behavior ITU-T
Recommendation [11]. As mentioned in Karthik and Blum
[12] the primary source of the PDV is the output queuing
delay, caused when a message arrives at a switch or router and
has to wait in a queue due to other traffic that blocked the exit
port. The PDV has a major impact on the accuracy obtained with
the PTP Sathis Kumar and Kemparaj [17]. Theoretically, PTP can
achieve precision of the order of nanoseconds, but, in practice, the
PDV causes lower accuracy Puttnies et al. [13]. The queuing delay
depends on the load in the network Levy and Pinchas [2]. As the
load in the network increases, the PDVmay increase accordingly,
meaning a higher load may lead to a lower synchronization (time
and frequency) accuracy Pinchas [1]. In order to estimate the
offset or the clock skew in that scenario, the PTP usually needs
more message exchanges between the Master and the Slave, as
will be also seen in the simulation results.

The presence of the fixed delay and the PDV cause a problem
in estimating the clock skew (frequency) and the offset (time).
Due to the behavior of the random delay (PDV), this problem is
modeled as a statistical estimation problem Guruswamy et al. [4].
This estimation task is an open issue because we have more
unknown variables than number of equations. In order to
overcome this problem, the symmetric path between the
Master and the Slave is assumed in some algorithms (please
refer to Table 1). However, the assumption of a symmetric path
may lead to an inaccuracy in the clock skew and offset estimation
task, since in practice, this assumption is not valid.

According to Mizrahi [18]; Mizrahi and Moses [19], a
correlation exsits between network latency measurements
taken at adjacent times. Therefore, the network latency can
not be characterized as white noise. In Li and Limb [20]; Peng
et al. [21]; Jusak and Harris [22] the PDV is characterized as a
Long-Range Dependence (LRD) process. This process can be
modeled as a fractional Gaussian noise (fGn) Li and Zhao [23];
Pinchas [1]; Levy and Pinchas [2]; Paxson [24]; Ledesma and Liu
[25] or as a generalized fractional Gaussian noise (gfGn) Li [26]
(where fGn is a special case of gfGn). Those models (fGn, gfGn)
are with Hurst exponent in the range of 0.5 ≤H < 1, where forH �
0.5 we have the white Gaussian noise. It should be pointed out
that we have also the modified multifractional Gaussian noise
(mmfGn) Li [27] and the multi-fractional generalized Cauchy
process Li [28] for representing a LRD process. But, in this paper
we focus on the fGn/gfGn case. The traffic model has a significant
impact on the estimation accuracy. Therefore, network traffic
models such as the Gaussian or Exponential models may not
accurately describe a real network traffic.

On one hand, the PTP is applied for the offset synchronization
task only as is done in Pinchas [1], Mizrahi [18,29], Karthik and
Blum [14]; Guruswamy et al. [4]; Anand Guruswamy et al. [30].
On the other hand, we may find other algorithms estimating the
clock skew and the offset as is done in Levy and Pinchas [2]; Chin
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and Chen [31], Puttnies et al. [13], Chaudhari et al. [32]; Li and
Jeske [33], Noh et al. [34], Guruswamy et al. [4]; Karthik and
Blum [12,14,15], Giorgi and Narduzzi [35]. In addition, we may
find in the literature algorithms that estimate only the clock skew
as is done in Shan et al. [5]; Chaloupka et al. [36]. In this paper, we
focus on the clock skew algorithms. In the literature, we can find
several approaches estimating the clock skew: 1) The Maximum
Likelihood (ML) estimator Levy and Pinchas [2], Karthik and
Blum [12]; Guruswamy et al. [4], Chaudhari et al. [32]; Li and
Jeske [33]; Noh et al. [34]; Karthik and Blum [11,14]. 2) The
Linear Programming estimator Puttnies et al. [13]. 3) The
Kalman Filter (KF) estimator Chaloupka et al. [36]; Shan et al.
[5]; Giorgi and Narduzzi [35]. Please note that each algorithm
used different assumptions, which may also lead to inaccuracy of
the clock skew estimator. The authors in Puttnies et al. [13]
presented a linear programming estimator that can decrease the
influence of the PDV on the synchronization accuracy. However,
they assumed that the PDV is Gaussian and that the fixed delay is
symmetric between the forward (Master to Slave) and the reverse
(Slave to Master) paths. In Chaudhari et al. [32]; Li and Jeske [33]
the authors presented an ML estimator where an Exponential
model was applied describing the PDV. In addition, they assumed
the symmetric path assumption between the forward and reverse
paths. In Noh et al. [34] the author suggested first an ML
estimator for estimating the clock skew by using the Gaussian
and Exponential model for the PDV case. The fixed delay was
assumed to be known in this algorithm, which is often an
unknown parameter. Therefore, the author presented another
algorithm that does not depend on the knowledge of the fixed
delay. Still, these algorithms presented in Noh et al. [34] are
suitable only for the Gaussian or for the Exponential case. In Levy
and Pinchas [2] the authors proposed an ML estimator for
estimating the clock skew and the offset in the presence of
asymmetric paths and where the PDV was modeled as fGn.
This method Levy and Pinchas [2] is based on the dual slave
clocks in a slave presented by Chin and Chen [31]. However, Kim
[37] demonstrated that the algorithm in Chin and Chen [31] is
unusable in practical cases. In Giorgi and Narduzzi [35] the
authors presented KF equations with symmetrical paths
assumption. The measurement uncertainty in Kalman’s

equations gives the solution to the asymmetric forward and
the reverse paths. According to Giorgi and Narduzzi [35], the
uncertainty was taken in a range of 0.1–100 micro seconds.
However, in practice, the asymmetry between the paths can be
greater than the given range, so that the clock skew simulation
results may be less accurate for that scenario. In addition, this
algorithm Giorgi and Narduzzi [35] applies the Gaussian model
for the PDV. In Chaloupka et al. [36] the authors used the One
Way Mode (OWM) to avoid the asymmetric path problem.
Based on simulation results demonstrated in Chaloupka et al.
[36], the clock skew estimator achieves relative accurate results
only after we wait for a relative long time which in practical
cases we can not always afford. The authors in Shan et al. [5]
applied KF combined with Sliding Mode Controller (SMC) in
order to get better accuracy. Also here, the algorithm assumes
symmetrical paths and a Gaussian model for describing the
PDV. In Karthik and Blum [12,15]; Guruswamy et al. [4] the
authors presented an innovative estimator for the clock skew
and for the offset between the Master and the Slave. In
Guruswamy et al. [4] the authors presented first their joint
estimator, the MINIMAX algorithm, that minimizes the
maximum mean squared error of all the unknown
parameters. This algorithm assumes that the fixed delays
from the Master to Slave and Slave to Master are known, or
at least, the difference between them is known. In Karthik and
Blum [15] the authors assumed complete knowledge of the
statistical information describing the PDV. Recently Karthik
and Blum [12], an algorithm was proposed for estimating both
the offset and the clock skew in the presence of unknown
asymmetric paths, named as the Space Alternating
Generalized Expectation-Maximization (SAGE) algorithm.
This algorithm assumed a Gaussian Mixture Model (GMM)
for the PDV. In estimating the clock skew and the offset
according to Karthik and Blum [12], the assumption of
having more than only one Master-Slave path was applied
(assumption of having multiple Masters). In addition, half of
the paths have to be symmetric. Please note that this method
Karthik and Blum [12] may be overqualified for applications
requiring only clock skew estimation, since Karthik and Blum
[12] needs the calculation of the offset estimator for carrying

TABLE 1 | Clock skew estimators.

The algorithm References Forward/Reverse paths PDF models
(of the PDV)

Closed form of
the clock skew

variance

Linear programming Puttnies et al. [13] Symmetric Gaussian No
ML estimator Chaudhari et al. [32] Symmetric Exponential No
ML estimator Li and Jeske [33] Symmetric Exponential No
ML estimator Noh et al. [34] known Gaussian/Exponential Yes
ML estimator Noh et al. [34] Asymmetric Gaussian/Exponential No
ML estimator Levy and Pinchas [2] Asymmetric fgn Yes
KF estimator Giorgi and Narduzzi [35] Asymmetric Gaussian —

KF estimator Chaloupka et al. [36] OWD (forward) — —

KF and SMC estimator Shan et al. [5] Symmetric Gaussian —

SAGE estimator Karthik and Blum [12] Asymmetric GMM No
Our new proposed method Asymmetric fGn, gfGn Yes
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out the clock skew estimator. Thus, the offset estimator can not
be shut down when calculating the clock skew estimator. The
authors in Karthik and Blum [12] also presented an expression
for the Cramer-Rao lower bound (CRLB). This expression
(CRLB) is based on the knowledge of which of the multiple
masters to the slave paths are considered as asymmetric (where
the fixed delays in the Master-Slave and Slave-Master are
asymmetric) and on the knowledge of the probability
density function (PDF) of the random queuing delays of
those paths. Please refer to Table 1 that summarizes the
different clock skew algorithms (described earlier in this
section), with their assumptions.

In this paper, we propose a novel clock skew estimator based
on PTP in an fGn/gfGn environment with Hurst exponent in
the range of 0.5 ≤ H < 1 that does not depend on the unknown
asymmetry between the fixed path delays in the forward and
reverse directions nor on the clock offset between the Master
and Slave. We supply a closed-form-approximated expression
for the performance (MSE) related to our new proposed clock
skew estimator. This closed-form-approximated expression is
a function of the Hurst exponent H, as a function of the
parameter a for gfGn, as a function of the number of total
PTP messages exchanges used in the system for
synchronization, as a function of the period between the
messages and as a function of the PDV variances in the
forward and reverse directions. In addition, we supply
designing graphs for the system designer that show the
number of PTP messages exchanges needed in the network
to get the required clock skew performance as a function of the
network parameters (Hurst exponent, parameter a in gfGn and
variances of the forward and reverse directions PDV), for the
rates of PTP messages exchanges of 64 packets/sec, 16 packets/
sec and 8 packets/sec. Simulation results confirm that our
closed-form-approximated expression for the MSE related to
our new proposed clock skew estimator indeed supplies
efficiently the performance of our new proposed estimator
for various values of the Hurst exponent, for the parameter a in
gfGn, for different periods between the messages, for various
values for the number of PTP messages exchanges and for
various values for the variances of the PDV in the forward and
reverse directions. Simulation results also show the advantage
in performance of our new proposed clock skew estimator for
various values of the Hurst exponent compared to the
literature known ML-like estimator (MLLE) Noh et al. [34]
that maximizes the likelihood function obtained based on a
reduced subset of observations (the first and last timing
stamps). In addition, simulation results will also show the
advantage in performance of our new proposed clock skew
estimator compared to the maximum likelihood clock skew
estimator proposed by Levy and Pinchas [2] and compared to
the Kalman clock skew estimator given by Chaloupka
et al. [36].

The paper is organized as follows. In Section 2, we briefly
introduce the system under consideration and the assumptions
we applied for our algorithm. Section 3 proposes the new clock
skew estimator and the closed-form approximated expression for
theMSE related to our new clock skew estimator. In Section 4, we

propose some designing graphs while in Section 5, we present
simulation results. Section 6, is our conclusion.

2 SYSTEM DESCRIPTION

The IEEE 1588v2 is based on the Master-Slave architecture. This
protocol distributes information from a Master to its Slave by
exchanging messages with timestamps (please refer to Figure 1).
The following sequence of steps are performed by the two-way
message exchange:

1) TheMaster initiates the exchange by sending a SYNCmessage
to the Slave at timestamp t1.

2) The Slave receives the SYNC message and keeps the arrival
time at timestamp t2.

3) The Master sends the FOLLOWUPmessage to the Slave with
the timestamp t1.

4) The Slave sends back to the Master DELAY REQ message at
timestamp t3.

5) The Master receives the DELAY REQ message and keeps the
arrival time at timestamp t4.

6) The Master sends the timestamp t4 to the Slave with the
DELAY RESP message.

Based on Karthik and Blum [12,14,15] we may write:

t1 j[ ] + dms + ω1 j[ ] � t2 j[ ] 1 + α( ) + Q (1)

t4 j[ ] − dsm − ω2 j[ ] � t3 j[ ] 1 + α( ) + Q (2)

where Q is the time difference between the Master and the Slave
clocks (offset) and α is the clock skew. The forward and the
reverse fixed delays are denoted as dms, dsm respectively and the
forward and the reverse PDV are denoted as ω1 [j], ω2 [j]
respectively. The total number of the Sync messages periods is
denoted as J, where j � 1, 2, 3, . . . , J.

We consider three different models for the PDV:

1) The PDV is modeled as a white-Gaussian noise with zero
mean and the variance E[ωn[j],ωn[m]] is σ2ωn

when j �m and
zero when j ≠ m
where E [.] denotes the expectation operator on (.) and n �
1, 2.

2) The PDV is modeled as an fGn process with zero mean. Based
on Li and Zhao [23]; Peng et al. [21] we have:
a. When j � m: E[ωn[j],ωn[m]] � σ2ωn

.
b. When j ≠ m: E[ωn[j],ωn[m]] � σ2ωn

2 [‖j −m| − 1|2H −
2(|j −m|)2H + (|j −m| + 1)2H].

3) The PDV is modeled as an gfGn process with zero mean.
Based on Li [26] we have:
a. When j � m: E[ωn[j],ωn[m]] � σ2ωn

.

b. When j≠m:E[ωn[j],ωn[m]] � σ2ωn
2 [‖(j −m)a| − 1|2H

−2|(j −m)a|2H + (|(j −m)a| + 1)2H]
In this paper we assume that the forward and reverse PDVs are

independent. This assumption is consistent with real systems.
Thus, we can write: E[ω1[j],ω2[m]] � 0 ∀ j, m.
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3 THE CLOCK SKEW ESTIMATOR AND ITS
PERFORMANCE

In this section we present our new clock skew estimator
and the closed-form-approximated expression for the MSE
related to our new clock skew estimator for three PDV cases:
1. The PDV is a white-Gaussian process, 2. The PDV is an fGn
process, 3. The PDV is an gfGn process. At first, we
present our new proposed clock skew estimator in
Theorem 1. Theorem 2 presents a general closed-form
approximated expression for the MSE related to our
new clock skew estimator involving the
expectation operator on the PDVs. Since the PDV can be
one of three cases (a white-Gaussian process, an fGn
process and an gfGn process), the MSE from Theorem 2 is
further developed for each case. Namely, Theorem 3,
Theorem 4 and Theorem 5 are the closed-form
approximated expressions for the MSE related to our new
clock skew estimator for the white-Gaussian case, fGn case
and gfGn case respectively.

3.1 Theorem 1
For the case of t3 [j] − t2 [j] � X, where X is a constant. The clock
skew estimator can be defined as:

α̂ � 1
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( ) + T4,j i( )
T2,j i( )( ) − 1 (3)

where

T1,j i( ) � t1 j + i[ ] − t1 j[ ], T2,j i( ) � t2 j + i[ ] − t2 j[ ],
T4,j i( ) � t4 j + i[ ] − t4 j[ ] (4)

3.1.1 Proof of Theorem 1
In order to avoid the fixed delay, we can subtract between two
timestamps from different Sync periods. Based on Eqs 1, 2 we have:

T1,j i( ) +Ω1,j i( ) � 1 + αj,i( )T2,j i( ) (5)

T4,j i( ) −Ω2,j i( ) � 1 + αj,i( )T3,j i( ) (6)

where

T3,j i( ) � t3 j + i[ ] − t3 j[ ], Ω1,j i( ) � ω1 j + i[ ] − ω1 j[ ],
Ω2,j i( ) � ω2 j + i[ ] − ω2 j[ ] (7)

and αj,i is the clock skew between the (j + i)-th and ith Sync
period.

Based on the summation of Eqs. 5, 6, we can define:

T1,j i( ) + Ω1,j i( )
T2,j i( ) + T4,j i( ) −Ω2,j i( )

T3,j i( ) � 2(1 + α
j,i
) (8)

Please note that T3,j(i) � t3 (j + i) − t3(j) is also T3,j(i) � t2
(j + i) + X − (t2(j) + X), meaning that T3,j(i) � T2,j(i).
Therefore, αj,i is:

α
i,j

� 1
2

T1,j i( ) + T4,j i( )
T2,j i( )( ) + Ω1,j i( ) − Ω2,j i( )

T2,j i( )( )( ) − 1 (9)

Thus the clock skew can be defined as:

α � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

αj,i (10)

By putting Eq. 9 into Eq. 10 we have:

α � 1
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( ) + T4,j i( )
T2,j i( )( ) + Ω1,j i( ) −Ω2,j i( )

T2,j i( )( )( ) − 1 (11)

FIGURE 1 | PTP messaging timing diagram.
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Now, we can write Eq. 11 as:

α � 1
J J − 1( ) ∑J−1

i�1
∑J−i
j�1

T1,j i( ) + T4,j i( )
T2,j i( )( ) − 1 +∑J−1

i�1
∑J−i
j�1

Ω1,j i( ) −Ω2,j i( )
T2,j i( )( )⎛⎝ ⎞⎠

� α̂ + 1
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

Ω1,j i( ) −Ω2,j i( )
T2,j i( )( )

(12)

Based on Eq. 12 the clock skew estimator is as defined in Eq. 3
and this completes our proof.

3.2 Theorem 2
For the case where |Ωn,j(i)

T1,j(i)|≪ 1 [n � 1,2 and where |.| is the
absolute value of (.)], the general expression for the
approximated MSE related to our new clock skew
estimator is:

E e2[ ] ≈
1 + α

J J − 1( )( )Tsyn
( )2 ∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ E Ω2,j i( )Ω2,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦
(13)

3.2.1 Proof of Theorem 2
Based on Eq. 12 the error is defined as:

e � α − α̂ � 1
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

Ω1,j i( ) −Ω2,j i( )
T2,j i( )( ) (14)

According to Eq. 5 we have:

T2,j i( ) � T1,j i( ) +Ω1,j i( )
1 + α( ) (15)

Based on Eq. 15 we may write the expectation of Eq. 14 as:

E e[ ] � 1 + α( )
J J − 1( )( ) ∑

J−1

i�1
∑J−i
j�1

E
aj,i

1 + aj,i( ) − bj,i

1 + aj,i( )⎡⎢⎣ ⎤⎥⎦ (16)

where aj,i and bj,i are defined as:

aj,i � Ω1,j i( )
T1,j i( ); bj,i � Ω2,j i( )

T1,j i( ) (17)

For |Ωn,j(i)
T1,j(i)|≪ 1 and based on Spiegel et al. [38] we can rewrite

Eq. 16:

E e[ ] ≈ 1 + α( )
J J − 1( )( ) ∑

J−1

i�1
∑J−i
j�1

E aj,i 1 − aj,i( )[ ] − E bj,i 1 − aj,i( )[ ][ ]
(18)

Based on the assumption made in Section 2, we may write Eq.
18 as:

E e[ ] ≈ 1 + α( )
J J − 1( )( ) ∑

J−1

i�1
∑J−i
j�1

E aj,i − a2j,i[ ] − E bj,i[ ][ ] (19)

Now, based on Eq. 19 the approximated MSE related to our
new proposed clock skew estimator can be written as:

E e2[ ] ≈ 1 + α( )2
J J − 1( )( )2 ∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
j�m

E aj,iam,k[ ] − E a2j,iam,k[ ] − E aj,ia
2
m,k[ ] + E a2j,ia

2
m,k[ ] + E bj,ibm,k[ ][ ] (20)

Next, by recalling the definitions of T1,j(i) and T1,m(k), we can
write:

T1,j i( ) � t1 j + i[ ] − t1 j[ ] � iTsyn

T1,m k( ) � t1 m + k[ ] − t1 m[ ] � kTsyn
(21)

where Tsyn is denoted as the Sync message period.
Based on Eq. 21 we can simplify the expressions in

Eq. 20:

E aj,iam,k[ ] � E
Ω1,j i( )
T1,j i( )

Ω1,m k( )
T1,m k( )[ ] � E Ω1,j i( )Ω1,m k( )[ ]

ikT2
syn

(22)

E a2j,iam,k[ ] � E
Ω2

1,j i( )
T2
1,j i( )

Ω1,m k( )
T1,m k( )⎡⎣ ⎤⎦ � E Ω2

1,j i( )Ω1,m k( )[ ]
i2kT3

syn

(23)

E aj,ia
2
m,k[ ] � E

Ω1,j i( )
T1,j i( )

Ω2
1,m k( )

T2
1,m k( )[ ] � E Ω1,j i( )Ω2

1,m k( )[ ]
ik2T3

syn

(24)

E a2j,ia
2
m,k[ ] � E

Ω2
1,j i( )

T2
1,j i( )

Ω2
1,m k( )

T2
1,m k( )

⎡⎣ ⎤⎦ � E Ω2
1,j i( )Ω2

1,m k( )[ ]
i2k2T4

syn

(25)

E bj,ibm,k[ ] � E
Ω2,j i( )
T1,j i( )

Ω2,m k( )
T1,m k( )[ ] � E Ω2,j i( )Ω2,m k( )[ ]

ikT2
syn

(26)

Since the PDV has zero mean (please refer to Section 2), Eqs
23, 24 can be set to zero.

Now, by putting Eqs 22, 25, 26 into Eq. 20 we obtain the
expression in Eq. 13 and this completes our proof.

In the following, we will calculate the approximated expression
for the MSE related to our new proposed clock skew estimator for
three different cases:

1) The white-Gaussian case, 2) The fGn case, 3) The gfGn case.

3.3 Theorem 3
The approximate MSE for the white-Gaussian case is:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2ω1

+ σ2
ω2

T2
syn

A⎛⎝ ⎞⎠ 1 + 1
P

( ) (27)

where P is defined as:

P � A

B

σ2
ω1
+ σ2ω2

σ4ω1

( )T2
syn (28)

and A and B are given by:
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A � 2∑J−1
i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)

B � 12∑J−1
i�1

J − i

i4
+ 6∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k
m�j+i
m�j−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

1

ik( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(30)

3.3.1 Proof of Theorem 3
In the following, we calculate separately the three different parts
in Eq. 13. We start with the first part in Eq. 13. Based on Eq. 7 we
can write:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω1 j + i[ ]ω1 m + k[ ] − ω1 j + i[ ]ω1 m[ ] − ω1 j[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

(31)

For calculating Eq. 31 we have to consider only five non-
zero cases.

The first case is when i � k and m � j. For this case Eq. 31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E ω1 j + i[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

E ω1 j + i[ ]ω1 j + i[ ] + ω1 j[ ]ω1 j[ ][ ]
i2

� 2σ2ω1
∑J−1
i�1

J − i

i2

(32)

The second case is when i ≠ k andm � j. For this case Eq. 31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E ω1 j[ ]ω1 m[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E ω1 j[ ]ω1 j[ ][ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

1
ik

(33)

The third case is when m � j + i. For this case Eq. 31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

−E ω1 j + i[ ]ω1 m[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

−E ω1 j + i[ ]ω1 j + i[ ][ ]
ik

� −σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

1
ik

(34)

The fourth case is when m � j − k. For this case Eq. 31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

−E ω1 j[ ]ω1 m + k[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

−E ω1 j[ ]ω1 j[ ][ ]
ik

� −σ2
ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

1
ik

(35)

The fifth case is when i ≠ k and m � j + i − k. For this case Eq.
31 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E ω1 j + i[ ]ω1 m + k[ ][ ]
ik

�

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E ω1 j + i[ ]ω1 j + i[ ][ ]
ik

� σ2
ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

1
ik

(36)

Based on Eqs 32–36, we may write Eq. 31 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
2∑J−1

i�1

J − i

i2
⎛⎝

+∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik
⎞⎠ (37)

Based on Eq. 7 the second part in Eq. 13 can be given as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω2 j + i[ ]ω2 m + k[ ] − ω2 j + i[ ]ω2 m[ ] − ω2 j[ ]ω2 m + k[ ] + ω2 j[ ]ω2 m[ ][ ]
ik

(38)

The only change in Eq. 38 concerning Eq. 31 is the PDV.
Therefore, we can use the calculations we made for the first part.
Based on Eq. 37, we can write Eq. 38 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

� σ2ω2
⎛⎝2∑J−1

i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik
⎞⎠

(39)

The third part in Eq. 13 is:
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1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2 � 1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω2
1 j + i[ ]ω2

1 m + k[ ] + ω2
1 j + i[ ]ω2

1 m[ ] + ω2
1 j[ ]ω2

1 m + k[ ] + ω2
1 j[ ]ω2

1 m[ ][ ]
ik( )2(

− 2
E ω2

1 j + i[ ]ω1 m + k[ ]ω1 m[ ] + ω2
1 j[ ]ω1 m + k[ ]ω1 m[ ][ ]

ik( )2
− 2

E ω1 j + i[ ]ω1 j[ ]ω2
1 m + k[ ] + ω1 j + i[ ]ω1 j[ ]ω2

1 m[ ][ ]
ik( )2

+ 4
E ω1 j + i[ ]ω1 j[ ]ω1 m + k[ ]ω1 m[ ][ ]

ik( )2 )
(40)

In order to calculate Eq. 40 we have to consider only six non-
zero cases.

The first case is when i � k and m � j. For this case Eq.
40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E ω2
1 j + i[ ]ω2

1 j + i[ ] + ω2
1 j + i[ ]ω2

1 j[ ] + ω2
1 j[ ]ω2

1 j + i[ ] + ω2
1 j[ ]ω2

1 j[ ][ ]
i4

(
+ 4E ω1 j + i[ ]ω1 j[ ]ω1 j + i[ ]ω1 j[ ][ ]

i4
) � 2 3σ4

ω1
( ) + 6 σ2

ω1
σ2
ω1

( )
T2
syn

∑J−1
i�1

J − i

i4

(41)

The second case is when i ≠ k and m � j. For this case Eq.
40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E ω2
1 j + i[ ]ω2

1 j + k[ ] + ω2
1 j + i[ ]ω2

1 j[ ] + ω2
1 j[ ]ω2

1 j + k[ ] + ω2
1 j[ ]ω2

1 j[ ][ ]
ik( )2

� 3σ4ω1
( ) + 3 σ2

ω1
σ2ω1

( )
T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

1

ik( )2

(42)

The third case is when m � j + i. For this case Eq. 40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E ω2
1 j + i[ ]ω2

1 j + i + k[ ] + ω2
1 j + i[ ]ω2

1 j + i[ ] + ω2
1 j[ ]ω2

1 j + i + k[ ] + ω2
1 j[ ]ω2

1 j + i[ ][ ]
ik( )2

� 3σ4ω1
( ) + 3 σ2ω1

σ2ω1
( )

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

1

ik( )2

(43)

The fourth case is when m � j − k. For this case Eq. 40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E ω2
1 j + i[ ]ω2

1 j[ ] + ω2
1 j + i[ ]ω2

1 j − k[ ] + ω2
1 j[ ]ω2

1 j[ ] + ω2
1 j[ ]ω2

1 j − k[ ][ ]
ik( )2

� 3σ4ω1
( ) + 3 σ2

ω1
σ2ω1

( )
T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

1

ik( )2

(44)

The fifth case is when i ≠ k and m � j + i − k. For this case Eq.
40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E ω2
1 j + i[ ]ω2

1 j + i[ ] + ω2
1 j + i[ ]ω2

1 j + i − k[ ] + ω2
1 j[ ]ω2

1 j + i[ ] + ω2
1 j[ ]ω2

1 j + i − k[ ][ ]
ik( )2

� 3σ4ω1
( ) + 3 σ2ω1

σ2
ω1

( )
T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

1

ik( )2

(45)

The sixth case is when m ≠ j and m ≠ j + i and m ≠ j − k and
m + k ≠ j + i. For this case Eq. 40 is:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

E ω2
1 j + i[ ]ω2

1 m + k[ ] + ω2
1 j + i[ ]ω2

1 m[ ][ ]]
ik( )2

+ E ω2
1 j[ ]ω2

1 m + k[ ] + ω2
1 j[ ]ω2

1 m[ ][ ]
ik( )2 � 4 σ2ω1

σ2
ω1

( )
T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

1

ik( )2

(46)

Based on Eqs 41–46, we can write Eq. 40 as:

1

T2
syn

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2 � σ4

ω1

T2
syn

12∑J−1
i�1

J − i

i4
⎛⎝

+ 6∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j
m�j+i
m�j−k
m�j+i−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

1

ik( )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(47)

Now, based on Eqs 37, 39, 47 we may write the approximated
MSE related to our new proposed clock skew estimator for the
white-Gaussian case as:

E e2[ ] ≈ 1 + α

J J − 1( )( )( )2 σ2
ω1
+ σ2ω2

( )
T2
syn

2∑J−1
i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + σ4
ω1

T4
syn

12∑J−1
i�1

J − i

i4
⎛⎝

+ 6∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k
m�j+i
m�j−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j+i

1

ik( )2
⎞⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)
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In order to calculate the approximatedMSE related to our new
proposed clock skew estimator, it can be assumed that (1 + α) ≈ 1,
because in practical systems, the two clocks (Master and Slave)
operate at almost the same frequency. Therefore, Eq. 48 can be
rewritten as:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2

ω1
+ σ2ω2

( )
T2
syn

A + σ4ω1

T4
syn

B⎡⎣ ⎤⎦ (49)

where A and B are defined in Eqs 29, 30 respectively.
Next, we define the correction factor P. This correction factor

helps us to calculate the expression for the approximated MSE
related to our new proposed clock skew estimator in the fGn and
gfGn cases, as will be shown later on.

In the following, we define P as:

σ2ω1
+ σ2ω2

T2
syn

A � σ4
ω1

T4
syn

B⎛⎝ ⎞⎠P → P � A

B

σ2ω1
+ σ2ω2

σ4ω1

( )T2
syn (50)

We can write Eq. 49 as:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2ω1

+ σ2ω2
( )

T2
syn

A 1 + B

A

σ4ω1

σ2
ω1
+ σ2ω2

( ) 1

T2
syn

⎡⎣ ⎤⎦
(51)

Now, by putting Eq. 50 into Eq. 51 we can write
the closed-form approximated expression for the
approximated MSE related to our new proposed clock
skew estimator as is defined in Eq. 27 and this completes
our proof.

3.4 Theorem 4
For the case where the PDV is defined as an fGn process with 0.5
≤ H < 1, the closed-form approximated expression for the
approximated MSE related to our new proposed clock skew
estimator is approximately given by:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2

ω1
+ σ2ω2

T2
syn

⎛⎝ ⎞⎠ 1 + 1
P

( )C +D( ) (52)

where C and D are given by:

C � ∑J−1
i�1

J − i

i2
2 − fGH i,H( )( )

+∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik

1 + 1
2

fG
H

i − k,H( ) − fGH i,H( ) − fGH k,H( )( )( )

−∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

1 − 1
2

fGH i,H( ) − fGH k,H( ) + fGH i + k,H( )( )( )

(53)

D � ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
2ik

fGH j −m,H( ) − fGH j + i −m,H( )(

−fGH j −m − k,H( ) + fGH j + i −m − k,H( ))
(54)

and the function fGH (.) is:

fGH x,H( ) � ‖x| − 1|2H − 2 |x|( )2H + |x| + 1( )2H[ ] (55)

3.4.1 Proof of Theorem 4
Based on Eq. 7 the two first parts in Eq. 13 can be written as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( ) + Ω2,j i( )Ω2,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω1 j + i[ ]ω1 m + k[ ] − ω1 j + i[ ]ω1 m[ ] − ω1 j[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

(
+ E ω2 j + i[ ]ω2 m + k[ ] − ω2 j + i[ ]ω2 m[ ] − ω2 j[ ]ω2 m + k[ ] + ω2 j[ ]ω2 m[ ][ ]

ik
)

(56)

For calculating Eq. 56 we have to consider only six non-
zero cases.

The two parts in Eq. 56 have the same calculations. Therefore,
we present our calculations for the first part that is given by:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E ω1 j + i[ ]ω1 m + k[ ] − ω1 j + i[ ]ω1 m[ ] − ω1 j[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

( )
(57)

The first case is when i � k and m � j. For this case Eq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E ω1 j + i[ ]ω1 j + i[ ] − ω1 j + i[ ]ω1 j[ ] − ω1 j[ ]ω1 j + i[ ] + ω1 j[ ]ω1 j[ ][ ]
i2

( )
(58)

which can be written also as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� 2σ2
ω1
∑J−1
i�1

J − i

i2
− 2

σ2
w1

2
( )∑J−1

i�1
∑J−i
j�1

1

i2

j − j + i( )| − 1
���� ∣∣∣∣2H − 2 |j − j + i( )|( )2H + |j − j + i( )| + 1( )2H( )

(59)

after rearranging Eq. 59:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k�i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

�

σ2
w1

∑J−1
i�1

J − i

i2
2 − |i − 1|2H − 2 i( )2H + i + 1( )2H( )( )⎛⎝ ⎞⎠

(60)

The second case is when i ≠ k and m � j. For this case Eq.
57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E ω1 j + i[ ]ω1 j + k[ ] − ω1 j + i[ ]ω1 j[ ] − ω1 j[ ]ω1 j + k[ ] + ω1 j[ ]ω1 j[ ][ ]
ik

( )
(61)

which can be written also as:
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∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

1
ik

1 + 1
2

− j + i − j| − 1
���� ∣∣∣∣2H − 2 |j + i − j|( )2H + |j + i − j| + 1( )2H[ ]((

− j − j − k| − 1
���� ∣∣∣∣2H − 2 |j − j − k|( )2H + |j − j − k| + 1( )2H[ ]+

j + i − j − k| − 1
���� ∣∣∣∣2H − 2 |j + i − j − k|( )2H + |j + i − j − k| + 1( )2H[ ]))

(62)

after rearranging Eq. 62:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

1
ik

1 + 1
2

|i − k| − 1( )2H − 2|i − k|2H + |i − k| + 1( )2H[ ]((
− |i − 1|2H − 2 i( )2H + i + 1( )2H[ ] − |k − 1|2H − 2 k( )2H + k + 1( )2H[ ]))

(63)

The third case is when m � j + i. For this case Eq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E ω1 j + i[ ]ω1 j + i + k[ ] − ω1 j + i[ ]ω1 j + i[ ] − ω1 j[ ]ω1 j + i + k[ ] + ω1 j[ ]ω1 j + i[ ][ ]
ik

( )
(64)

which can be written also as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

1
ik

−1 + 1
2

j − j − i| − 1
���� ∣∣∣∣2H − 2 |j − j − i|( )2H + |j − j − i| + 1( )2H[ ]((

− j − j − i − k| − 1
���� ∣∣∣∣2H − 2 |j − j − i − k|( )2H + |j − j − i − k| + 1( )2H[ ]

+ j + i − j − i − k| − 1
���� ∣∣∣∣2H − 2 |j + i − j − i − k( )|[ )2H + |j + i − j − i − k| + 1( )2H]))

(65)

after rearranging Eq. 65:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i

1
ik

−1 + 1
2

|k − 1|2H − 2 k( )2H + k + 1( )2H[ ] + |i − 1|2H − 2 i( )2H + i + 1( )2H[ ]((
− |i + k − 1|2H − 2 i + k( )2H + i + k + 1( )2H[ ]))

(66)

The fourth case is when m � j − k. For this case Eq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E ω1 j + i[ ]ω1 j[ ] − ω1 j + i[ ]ω1 j − k[ ] − ω1 j[ ]ω1 j[ ] + ω1 j[ ]ω1 j − k[ ][ ]
ik

( )
(67)

which can be written also as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

1
ik

−1 + 1
2

j + i − j| − 1
���� ∣∣∣∣2H − 2 |j + i − j|( )2H + |j + i − j| + 1( )2H[ ]((

− j + i − j + k| − 1
���� ∣∣∣∣2H − 2 |j + i − j + k|( )2H + |j + i − j + k| + 1( )2H[ ]

+ j − j + k| − 1
���� ∣∣∣∣2H − 2 |j − j + k|( )2H + |j − j + k| + 1( )2H[ ])) (68)

after rearranging Eq. 68:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

m�j−k

1
ik

−1 + 1
2

− |i + k − 1|2H − 2 i + k( )2H + i + k + 1( )2H[ ]((
+ |i − 1|2H − 2 i( )2H + i + 1( )2H[ ] + |k − 1|2H − 2 k( )2H + k + 1( )2H[ ]))

(69)

The fifth case is when i≠ k andm� j+ i− k. For this caseEq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E ω1 j + i[ ]ω1 j + i[ ] − ω1 j + i[ ]ω1 j + i − k[ ] − ω1 j[ ]ω1 j + i[ ] + ω1 j[ ]ω1 j + i − k[ ][ ]
ik

( )
(70)

which can be written also as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

1
ik

1 + 1
2

j − j − i + k| − 1
���� ∣∣∣∣2H − 2 |j − j − i + k|( )2H + |j + i − i + k| + 1( )2H[ ]((

− j + i − j − i + k| − 1
���� ∣∣∣∣2H − 2 |j + i − j − i + k|( )2H + |j + i − j − i + k| + 1( )2H[ ]

− j − j − i| − 1
���� ∣∣∣∣2H − 2 |j − j − i|( )2H + |j − j − i| + 1( )2H[ ]))

(71)

after rearranging Eq. 71:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2
ω1
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1

m�j+i−k

1
ik

1 + 1
2

i − k| − 1‖ |2H − 2|i − k|2H + |i − k| + 1( )2H[ ]((
− |k − 1|2H − 2 k( )2H + k + 1( )2H[ ] − |i − 1|2H − 2 i( )2H + i + 1( )2H[ ]))

(72)

The sixth case is when m ≠ j and m ≠ j + i and m ≠ j − k and
m + k ≠ j + i. For this case Eq. 57 is:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

E ω1 j + i[ ]ω1 m + k[ ] − ω1 j + i[ ]ω1 m[ ] − ω1 j[ ]ω1 m + k[ ] + ω1 j[ ]ω1 m[ ][ ]
ik

( )
(73)

which can be written also as:
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∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1

2
∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
ik

j + i −m − k| − 1
���� ∣∣∣∣2H − 2 |j + i −m − k|( )2H + |j + i −m − k| + 1( )2H[ ](

− j + i −m| − 1
���� ∣∣∣∣2H − 2 |j + i −m|( )2H + |j + i −m| + 1( )2H[ ]

− j −m − k| − 1
���� ∣∣∣∣2H − 2 |j −m − k|( )2H + |j −m − k| + 1( )2H[ ]

+ j −m| − 1
���� ∣∣∣∣2H − 2 |j −m|( )2H + |j −m| + 1( )2H[ ])

(74)

Please note that the summation of Eqs 60, 63, 66, 69, 72 can be
written as (σ2ω1

C), where C is defined in Eq. 53. The expression in
Eq. 74 can be written as (σ2ω1

D), where D is defined in Eq. 54.
Now, we can write Eq. 57 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2ω1
C +D( ) (75)

Based on Eq. 75 we may write Eq. 56 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ E Ω2,j i( )Ω2,m k( )[ ]
ik

⎛⎝ ⎞⎠
� σ2ω1

+ σ2
ω2

( ) C +D( ) (76)

The third part in Eq. 13 is quite difficult to carry out for the
fGn case. Now, looking at Eq. 27 we notice that Eq. 27 consists
actually on the sum of the two first parts of Eq. 13 multiplied by
the factor (1 + 1

P). Please note that P (28) is actually obtained by
dividing the sum of the first two parts of Eq. 13 by the third part
of Eq. 13 for the white-Gaussian noise.

In order to carry out the third part in Eq. 13 for the fGn case,
we approximate it based on Eq. 27. In our approximation we
simply multiply the expression of C(σ2ω1

+ σ2ω2
) with the

expression of (1 + 1
P). The expression for D is not multiplied

with the expression of (1 + 1
P), since D is zero for H � 0.5.

This completes our proof.

3.5 Theorem 5
For the case where the PDV is defined as an gfGn process with 0.5
≤ H < 1 and 0 < a ≤ 1 the closed-form approximated expression
for the MSE related to our new proposed clock skew estimator is
given by:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2ω1

+ σ2ω2

T2
syn

⎛⎝ ⎞⎠ 1 + 1
P

( )Cp +Dp( ) (77)

where C* and D* are given by:

Cp � ∑J−1
i�1

J − i

i2
2 − fGp

H i,H, a( )( )
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik

1 + 1
2

fGp

H
i − k,H, a( ) − fGp

H i,H, a( ) − fGp
H k,H, a( )( )( )

−∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

1 − 1
2

fGp
H i,H, a( ) − fGp

H k,H, a( ) + fGp
H i + k,H, a( )( )( )

(78)

Dp � ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
2ik

fGp
H j −m,H, a( ) − fGp

H j + i −m,H, a( )(

−fGp
H j −m − k,H, a( ) + fGp

H j + i −m − k,H, a( ))
(79)

and the function fGp
H(.) is:

fGp
H x,H, a( ) � ‖xa| − 1|2H − 2 |xa|( )2H + |xa| + 1( )2H[ ] (80)

3.5.1 Proof of Theorem 5
As already was shown in Section 2, we have for the fGn process Li
and Zhao [23]; Peng et al. [21]:

for j � m E ωn j[ ],ωn m[ ][ ] � σ2ωn

for j ≠ m E ωn j[ ],ωn m[ ][ ] � σ2ωn

2
j −m| − 1
���� ∣∣∣∣2H − 2 |j −m|( )2H + |j −m| + 1( )2H[ ]

(81)

where n � 1,2.
On the other hand, we have for the gfGn process Li [26]:

for j � m E ωn j[ ],ωn m[ ][ ] � σ2
ωn

for j ≠ m E ωn j[ ],ωn m[ ][ ] � σ2ωn

2
j −m( )a | − 1

���� ∣∣∣∣2H − 2| j −m( )a |2H + | j −m( )a| + 1( )2H[ ]
(82)

Please note that the difference between Eqs 81, 82 is only by
the a factor. Thus, we can use Eqs 52–55 for the gfGn case where
the function fGH (.) defined in Eq. 55 and used in Eq. 53 to Eq. 54
is substituted by the function fG*

H(.) Eq. 80 and this completes
our proof.

4 DESIGNING GRAPHS

In this section, we propose some designing graphs for the
fGn and gfGn cases. Thus, the designing graphs for the fGn
case will be based on Theorem 4 while the designing graph
for the gfGn case will be based on Theorem 5. The closed-
form approximated expression for the MSE (for the fGn
process Eq. 52 and for the gfGn process Eq. 77) is a function
of H, a function of Tsyn, a function of the total sent Sync
messages, and a function of the PDV variances. It could be
very helpful for the system designer if he could
approximately know the total sent Sync messages that the
system needs in order to receive the system’s requirement
such as MSE � 10–12.

Thus in the following, we will try to create some designing
graphs that can help the system designer to achieve the system’s
requirement of MSE � 10–12.

Based on Eqs 28, 52, 77 we can write the approximated MSE
related to our new proposed clock skew estimator as:

E e2[ ] ≈ 1

J J − 1( )( )2
σ2ω1

+ σ2
ω2

T2
syn

⎛⎝ ⎞⎠ Ct +Dt( ) + σ4
ω1

T4
syn

B

A
Ct( )⎛⎝ ⎞⎠

(83)
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where A and B are defined in Eqs 29, 30 respectively. For the fGn
case Ct � C Eq. 53 and Dt � D Eq. 54, and for the gfGn case Ct �
C* Eq. 78 and Dt � D* Eq. 79.

After arranging Eq. 83 we have:

σ2ω1
+ σ2

ω2
( ) + σ4ω1

T2
syn

B

A

Ct

Ct +Dt
( ) ≈ E e2[ ]T2

syn

J J − 1( )( )2
Ct +Dt( ) (84)

In order to simplify Eq. 84 we use the following condition:

σ2ω1
+ σ2

ω2
( )≫ σ4ω1

T2
syn

B

A

Ct

Ct +Dt
( ) (85)

Thus, for the fGn and gfGn cases, we may write based on Eqs
84, 85:

σ2
ω1
+ σ2ω2

( ) ≈ E e2[ ]T2
syn

J J − 1( )( )2
Ct +Dt( ) (86)

Based on Eq. 86 we carry out some designing graphs (Figures
2–5) that were obtained for MSE � 10–12 and for three different
Tsyn rates: 64

packet
sec , 16 packet

sec and 8 packet
sec . Please note that we have

three designing graphs for the fGn case (Figures 2–4) where each
designing graph was carried out for various values for H, and one
designing graph for the gfGn case with H � 0.95 (Figure 5).

In order to see if Eq. 85 can actually be ignored, we are going
back to the obtained designing graph in Figure 2 to check
ourselves.

In the following, we assume that σω1 � σω2 and for simplicity
we denote the expression B

A
Ct

Ct+Dt as F.
According to Figure 2, where Tsyn � 15.6ms (64 packet

sec ) and
H � 0.9:

1. σ2ω1
+ σ2ω2

� 9.65e − 13 0 J � 30
0 F � 46.88 0

σ4ω1
T2
syn

� 9.57e − 22

0 σ2
ω1

+ σ2
ω2

� 9.65e − 13≫F
σ4ω1
T2
syn

� 4.49e − 20

2. σ2ω1
+ σ2ω2

� 2.89e − 11 0 J � 140 0 F � 94.97
0

σ4ω1
T2
syn

� 8.58e − 19

0 σ2
ω1

+ σ2
ω2

� 2.89e − 11≫ F
σ4ω1
T2
syn

� 8.15e − 17

3. σ2ω1
+ σ2ω2

� 4.76e − 8 0 J � 500
0 F � 150.93 0

σ4ω1
T2
syn

� 2.33e − 16

0 σ2
ω1

+ σ2
ω2

� 4.76e − 10≫ F
σ4ω1
T2
syn

� 3.52e − 14

According to Figure 2, where Tsyn � 15.6ms (64 packet
sec ) and

H � 0.8:

1. σ2ω1
+ σ2ω2

� 8.92e − 13 0 J � 30 0 F � 56.37

0
σ4ω1
T2
syn

� 8.18e − 22
0 σ2

ω1
+ σ2

ω2
� 8.92e − 13≫ F

σ4ω1
T2
syn

� 4.61e − 20

2. σ2ω1
+ σ2ω2

� 3.63e − 11 0 J � 140 0 F � 137.77

0
σ4ω1
T2
syn

� 1.35e − 18

0 σ2
ω1

+ σ2
ω2

� 3.63e − 11≫F
σ4ω1
T2
syn

� 1.86e − 16

3. σ2ω1
+ σ2ω2

� 7.72e − 10 0 J � 500 0 F � 260.74

0
σ4ω1
T2
syn

� 6.12e − 16

0 σ2
ω1

+ σ2
ω2

� 7.72e − 10≫F
σ4ω1
T2
syn

� 1.59e − 13

According to Figure 2, where Tsyn � 15.6ms (64 packet
sec ) and

H � 0.6:

1. σ2ω1
+ σ2ω2

� 1.47e − 12 0 J � 30
0 F � 81.39 0

σ4ω1
T2
syn

� 2.22e − 21

0 σ2
ω1

+ σ2
ω2

� 1.47e − 12≫ F
σ4ω1
T2
syn

� 1.81e − 19

2. σ2ω1
+ σ2ω2

� 1.09e − 10 0 J � 140
0 F � 306.76 0

σ4ω1
T2
syn

� 1.22e − 17

0 σ2
ω1

+ σ2
ω2

� 1.09e − 10≫ F
σ4ω1
T2
syn

� 3.75e − 15

3. σ2ω1
+ σ2ω2

� 3.84e − 9 0 J � 500
0 F � 881.07 0

σ4ω1
T2
syn

� 1.52e − 14

0 σ2
ω1

+ σ2
ω2

� 3.84e − 9≫F
σ4ω1
T2
syn

� 1.34e − 11

According to the list from above, we can see that for 10 < J <
500, Eq. 86 is applicable.

5 SIMULATION RESULTS

In this section, we test our new proposed clock skew
estimator Eq. 3 and our closed-form-approximated
expression for the MSE for the white-Gaussian Eq. 27, fGn
Eq. 52 and gfGn Eq. 77 cases. At first, we show various
simulation results in order to show the efficiency of our new
proposed clock skew estimator Eq. 3 compared to the ML-
like estimator (MLLE) Noh et al. [34] that maximizes the
likelihood function obtained based on a reduced subset of
observations (the first and last timing stamps). According to
Noh et al. [34] we have:

β̂ � T2,1 J − 1( )2 + T3,1 J − 1( )2
T1,1 J − 1( )T2,1 J − 1( ) + T3,1 J − 1( )T4,1 J − 1( ) − 1 (87)

where

β̂ � 1
α̂ + 1

− 1 (88)

T2,1 (J − 1) � t2 [J] − t2 [1], T1,j(i), T2,j(i), T3,j(i) and T4,j(i) are
defined in Eqs. 4, 7.

Figure 6 shows the performance comparison between our new
proposed clock skew estimator Eq. 3 with the estimator obtained
from Noh et al. [34] for the Gaussian case. The results in Figure 6
were obtained for different values for the PDV variances. In
addition, we also show there the performance of the new
proposed closed-form-approximated expression for the MSE
Eq. 27 compared to the simulated one via Eq. 3. According to
Figure 6 our new clock skew estimator Eq. 3 achieves a lower
MSE compared to the clock skew estimator from Noh et al. [34]
for the Gaussian case. In addition, we can clearly see from
Figure 6 that our new closed-form-approximated expression
for the MSE Eq. 27 supplies results that are very close to the
simulated one.

Figure 7 shows the performance comparison between our
new proposed clock skew estimator Eq. 3 with the clock skew
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FIGURE 2 | Designing graph for the fGn case. The graph is based on Eq. 86, Tsyn � 15.6 ms (64 packet
sec ) and E [e2] � 10–12.

FIGURE 3 | Designing graph for the fGn case. The graph is based on Eq. 86, Tsyn � 62.5ms (16 packet
sec ) and E [e2] � 10–12.

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 79681113

Avraham and Pinchas Clock Skew Estimator for PTP

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 4 | Designing graph for the fGn case. The graph is based on Eq. 86, Tsyn � 125ms (8 packet
sec ) and E [e2] � 10–12.

FIGURE 5 | Designing graph for the gfGn case. The graph is based on Eq. 86, E [e2] � 10–12 and H � 0.95.
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estimator obtained from Noh et al. [34] for the fGn case with
different values for H. Figure 8 shows the performance
comparison between our new proposed clock skew
estimator Eq. 3 with the clock skew estimator obtained
from Noh et al. [34] for the fGn case with different values
for the PDV variances. In addition, we also show in Figures 7,
8 the performance of our new closed-form-approximated
expression for the MSE Eq. 52 compared to the simulated
one. According to Figures 7, 8 our new clock skew estimator
achieves a lower MSE compared to the clock skew estimator
from Noh et al. [34] for the fGn case. In addition, we can
clearly see from Figures 7, 8 that the performance of our
new closed-form-approximated expression for the MSE Eq. 52
is very close to the performance obtained by the
simulated MSE.

Figure 9 shows the MSE obtained by the new proposed clock
skew estimator Eq. 3 compared with our closed-form-
approximated expression for the MSE Eq. 52 for the fGn case.
The results in Figure 9 were obtained for different forward and
reverse PDV variances. According to Figure 9 there is a high
correlation between the performance of our closed-form-
approximated expression for the MSE Eq. 52 with the
simulated MSE.

Figure 10 shows the performance comparison between
our new proposed clock skew estimator Eq. 3 with the clock
skew estimator obtained from Noh et al. [34] for the gfGn

case. The results in Figure 10 were obtained for different
values of a (please note that we set the values of H and a
according to Li [26]). In addition, we also show in Figure 10
the performance of our closed-form-approximated
expression for the MSE Eq. 77 compared to the simulated
one. According to Figure 10, our new clock skew estimator
achieves a lower MSE compared to the clock skew estimator
from Noh et al. [34]. In addition, we can see from Figure 10
that the performance of our closed-form-approximated
expression for the MSE Eq. 77 is high correlated with the
simulated one.

It should be pointed out that the clock skew estimator
from Noh et al. [34], does not depend on the unknown fixed
delay paths nor on the clock offset between the Master and
Slave. Thus, it is a good candidate for performance
comparison with our new proposed clock skew estimator
Eq. 3. Please note that in order to carry out a fair
performance comparison, we can only take those clock
skew estimators for the simulation performance
comparison task, that do not rely on the symmetric
assumption for the forward and reverse fixed delay paths
as is the case in Puttnies et al. [13], Chaudhari et al. [32], Li
and Jeske [33] and Shan et al. [5] (please refer to Table 1). In
addition, those clock skew estimators should not rely on
multiple Masters or on multiple paths between the Master
and Slave as is the case in Karthik and Blum [12]. Thus, based

FIGURE 6 | Performance comparison between the new clock skew estimator Eq. 3 with the clock skew estimator of Noh et al. [34]denoted here as the likelihood
estimator. In addition, we have the simulated performance results for our new proposed expression for the MSE Eq. 27 for the white-Gaussian case. α � 50 ppm, Q �
5 ms, Tsyn � 15.6ms (64 packet

sec ). For: σω1 � σω2 � σ � 100 μs the delay dms � 1 ms, dsm � 0.8 ms For: σω1 � σω2 � 1000 μs, the delay dms � 3.3 ms, dsm � 3 ms. The
results were obtained for 100 Monte-Carlo trails.
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FIGURE 7 | Performance comparison between the new clock skew estimator Eq. 3 with the clock skew estimator of Noh et al. [34] denoted here as the likelihood
estimator. In addition, we have the simulated performance results for our new proposed expression for the MSE Eq. 52 for the fGn case. α � 50 ppm, Q � 5 ms.
Tsyn � 15.6ms (64 packet

sec ), σω1 � σω2 � 1000 μs, dms � 5 ms, dsm � 5.5 ms. The results were obtained for 100 Monte-Carlo trails.

FIGURE 8 | Performance comparison between the new clock skew estimator Eq. 3 with the clock skew estimator of Noh et al. [34] denoted here as the likelihood
estimator. In addition, we have the simulated performance results for our new proposed expression for the MSE Eq. 52 for the fGn case. α � 50 ppm, Q � 5 ms,
Tsyn � 15.6ms (64 packet

sec ), σω1 � σω2 � σ, dms � 5 ms, dsm � 5.5 ms, H � 0.6. The results were obtained for 100 Monte-Carlo trails.
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FIGURE 9 | Performance comparison between the new proposed expression for theMSE Eq. 52with those obtained from the simulated clock skew estimator Eq. 3
for the fGn case (denoted here as sim MSE), where the forward and reverse PDV variances are different. α � 50 ppm, Q � 5 ms, Tsyn � 15.6ms (64 packet

sec ), dms � 5 ms,
dsm � 5.5 ms, H � 0.6. case 1: σω1 � 0.8ms, σω2 � 0.5ms, case 2: σω1 � 0.8ms, σω2 � 1.2ms. The results were obtained for 100 Monte-Carlo trails.

FIGURE 10 | Performance comparison between the new clock skew estimator Eq. 3with the clock skew estimator of Noh et al. [34] denoted here as the likelihood
estimator. In addition, we have the simulated performance results for our new proposed expression for the MSE Eq. 77 for the gfGn case. α � 50ppm, Q � 5 ms, Tsyn �
15.6 ms, σω1 � σω2 � 0.1ms, d ms � 5 ms, d sm � 5.5 ms, H � 0.95. The results were obtained for 100 Monte-Carlo trails.
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FIGURE 11 | Performance comparison between the new clock skew estimator Eq. 3 for the gfGn casewith the clock skew estimator of Noh et al. [34] and Levy and
Pinchas [2]. The clock skew estimator of Noh et al. [34] is denoted here as the likelihood estimator. We also have the simulated performance results for our new proposed
expression for the MSE Eq. 77 for the gfGn case. α � 50 ppm, Q � 5 ms, Tsyn � 15.6 ms, σω1 � σω2 � 0.5ms, dms � 5 ms, dsm � 5.5 ms, H � 0.95, a � 0.08. The results
were obtained for 100 Monte-Carlo trails.

FIGURE 12 | Performance comparison between the new clock skew estimator Eq. 3 for the fGn case with the clock skew estimator of Noh et al. [34] and
Chaloupka et al. [36]. The clock skew estimator of Noh et al. [34] is denoted here as the likelihood estimator. α � 50 ppm,Q � 5 ms, Tsyn � 15.6 ms, σω1 � σω2 � 0.25ms,
dms � 5 ms, dsm � 5.5 ms, H � 0.7, L � 200, QKAL � 0, δσ � δμ � 1e − 4, μ̂[1] � 0. The results were obtained for 50 Monte-Carlo trails.
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on Table 1, we can use for the simulation performance
comparison task also the recently proposed clock skew
estimators proposed by Levy and Pinchas [2] and
Chaloupka et al. [36]. But, as already was mentioned
earlier in this paper, Levy and Pinchas [2] is based on the
dual slave clocks in a slave presented by Chin and Chen [31]
where Kim [37] demonstrated that the algorithm in Chin and
Chen [31] is unusable in practical cases. The clock skew
estimator proposed by Chaloupka et al. [36] depends on a
predefined parameter L defining the sliding window’s length
in the algorithm which has an important role for reaching a
low value for the MSE. But, this predefined parameter (L)
depends also on the total number of sync periods available
for the frequency synchronization task. In other words, the
predefined parameter (L) can not be set too large, for
example to a value of 1,000 if the available total number
of sync periods is only 500. In addition, the noise
measurement variance is estimated in Chaloupka et al.
[36] involving two smoothing factors which must also be
defined in advance.

According to Levy and Pinchas [2] we have:

ε̂ � 2∑J
i�1

∑J
j�1

∑min i,j( )−1
k�1

Amax J, i, j, k,H( ) △Ts1.i −△Ts2.i( ) △Ts1.j −△Ts2.j( )[ ]⎛⎝ ⎞⎠
∑J
i�1

∑J
j�1

∑min i,j( )−1
k�1

Amax J, i, j, k,H( ) △Tm.j △Ts1.i −△Ts2.i( )[[⎛⎝
+△Tm.i △Ts1.j −△Ts2.j( )]])−1 − 1

(89)

where Amax (J, i, j, k, H) is:

Amax J, i, j, k,H( ) � Γ J( )
Γ −H + 0.5( )Γ J −H + 0.5( )[ ]2

Γ i − k −H + 0.5( )(
Γ J −H + 0.5 − i + k( )Γ j − k −H + 0.5( )Γ J −H + 0.5 − j + k( ))

Γ J − i + k( )Γ J − j + k( )Γ i − k( )Γ j − k( )( )−1
1

i − k( )
1

j − k( ) − 1
J − i + k( )

1
J − j + k( )[ ] (90)

and ε̂ is:

ε̂ � 1
α̂ + 1

− 1 (91)

Γ(.) denotes the Gamma function, △ denotes the difference
between two consecutive timestamps. Tm.i is the timestamp in the
ith period when the Master sends the Sync message. Ts1.i is the
timestamp in the ith period when the dual-Slave receives the Sync
message. Ts2.i is the timestamp in the ith period when the Slave
receives the Sync message.

According to Chaloupka et al. [36] the Kalman’s measurement
equation is:

T1,j L( ) − T2,j L( ) � T2,j L( )α j[ ] +Ω1,j L( ) (92)

where L is the is the sliding window’s length as defined in
Chaloupka et al. [36].

The Kalman’s state equation is:

α̂ j + 1[ ] � α̂ j[ ] + u j[ ]. (93)

where the variance of u [j] is QKAL. The estimate of the noise
measurement variance is given by Chaloupka et al. [36]:

R̂ j[ ] � 1 − δσ( )R̂ j − 1[ ] + δσ x j[ ] − μ̂ j[ ]( )2 (94)

where

μ̂ j[ ] � 1 − δμ( )μ̂ j − 1[ ] + δμx j[ ]; x j[ ] � T1,j L( ) − T2,j L( )
(95)

δμ and δμ are smoothing factors which are between zero and one.
Figure 11 shows the performance comparison between

our new proposed clock skew estimator Eq. 3 with the clock
skew estimator obtained from Noh et al. [34] and Levy and
Pinchas [2] for the gfGn case. In addition, we also show in
Figure 11 the performance of our closed-form-approximated
expression for the MSE Eq. 77 compared to the simulated
one. According to Figure 11, our new proposed clock skew
estimator achieves a lower MSE compared to the clock skew
estimators proposed by Noh et al. [34] and Levy and
Pinchas [2].

Figure 12 shows the performance comparison between our
new proposed clock skew estimator Eq. 3 with the clock skew
estimator obtained from Noh et al. [34] and Chaloupka et al.
[36] for the fGn case. According to Figure 12 our new
proposed clock skew estimator achieves a lower MSE
compared to the clock skew estimators proposed by Noh
et al. [34] and Chaloupka et al. [36].

6 CONCLUSION

In this paper, we have developed a novel clock skew estimator
(applicable for the PTP case) in the presence of asymmetric in the
forward and reverse paths. This estimator does not depend on the
unknown fixed paths nor on the clock offset between the Master
and Slave. Our clock skew estimator does not need multiple
Masters nor prior knowledge about the forward and the reverse
paths. In addition, we proposed a closed-form approximated
expression for the MSE related to our new proposed clock skew
estimator. This closed-form approximated expression for the
MSE is suitable for the white-Gaussian, fGn, or gfGn
environment. Thus, the clock skew estimator and its
performance (MSE) are applicable for the long-range
dependence environment. It can be seen from the simulation
results that the performance of our closed-form approximated
expression for the MSE has a high correlation with the
performance obtained via the new proposed clock skew
estimator. This paper also supplies designing graphs for the
system designer that may help the system designer to have
approximately the total sent Sync messages to receive the
system’s requirement (MSE � 10–12). For a requirement of
MSE lower than 10–12, new designing graphs can be easily
obtained by Eq. 86. Thus, we have also a closed-form
approximated expression Eq. 86 that can help the system
designer to figure out the total sent Sync messages needed to
get the MSE of any value.

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 79681119

Avraham and Pinchas Clock Skew Estimator for PTP

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

REFERENCES

1. Pinchas M. Cooperative Multi PTP Slaves for Timing Improvement in an Fgn
Environment. IEEE Commun Lett (2018) 22:1366–9. doi:10.1109/
lcomm.2018.2830339

2. Levy C, Pinchas M. Maximum Likelihood Estimation of Clock Skew in IEEE
1588 with Fractional Gaussian Noise. Math Probl Eng (2015) 2015:1–24.
doi:10.1155/2015/174289

3. Karthik AK, Blum RS. Estimation Theory-Based Robust Phase Offset
Determination in Presence of Possible Path Asymmetries. IEEE Trans
Commun (2018) 66:1624–35. doi:10.1109/tcomm.2017.2761879

4. Guruswamy A, Blum RSR, Kishore S, Bordogna M. Minimax Optimum
Estimators for Phase Synchronization in IEEE 1588. IEEE Trans Commun
(2015) 63:3350–62. doi:10.1109/tcomm.2015.2455531

5. Shan F, Yu J, Dong J, Chang X, Yu Z. In: Research on High-accuracy Clock
Synchronization Based on IEEE 1588 Protocol; 19-20 Oct. 2019; Dalian, China
(2019).

6. Vyas A, Dwivedi S, Gunnarsson F (2018). Improved Precision Time Protocol
with Relative Clock Phase Information. In 2018 IEEE International
Symposium on Precision Clock Synchronization for Measurement, Control,
and Communication (ISPCS). doi:10.1109/ispcs.2018.8543064

7. Peng J, Zhang L, Mclernon D. On the Clock Offset Estimation in an Improved
IEEE 1588 Synchronization Scheme. In: European Wireless 2013; 19th
European Wireless Conference (2013).

8. [Dataset] Arnold D. In: 1588-2019 - IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and Control Systems.
IEEE (2019). Available at: https://standards.ieee.org/standard/1588-2019.
html.

9. Fubin P, Yubol Y, Leil G, Liangliang S. The Accuracy of IEEE 1588 Time
Synchronization Protocol and its Improvement. In: IEEE 12th International
Conference on Electronic Measurement & Instruments (2015). p. 280–4.
doi:10.1109/icemi.2015.7494173

10. [Dataset] ITU-T Recommendation. G.8262 : Timing Characteristics of
Synchronous Equipment Slave Clock (2018). Available at: https://www.itu.
int/rec/T-REC-G.8262 (Accessed October 8, 2020).

11. [Dataset] ITU-T Recommendation. G.8261 : Timing and
Synchronization Aspects in Packet Networks (2019). Available at:
https://www.itu.int/rec/T-REC-G.8261-201908-I/en (Accessed
November 26, 2020).

12. Karthik AK, Blum RS. Robust Clock Skew and Offset Estimation for
IEEE 1588 in the Presence of Unexpected Deterministic Path Delay
Asymmetries. Ieee Trans Commun (2020) 68:5102–19. doi:10.1109/
tcomm.2020.2991212

13. Puttnies H, Danielisx P, Timmermann D. PTP-LP: Using Linear
Programming to Increase the Delay Robustness of IEEE 1588 PTP. In:
IEEE Global Communications Conference (2018). doi:10.1109/
glocom.2018.8647777

14. Karthik AK, Blum RS. Robust Phase Offset Estimation for IEEE 1588 PTP in
Electrical Grid Networks. In: 2018 IEEE Power & Energy Society General
Meeting (2018). doi:10.1109/pesgm.2018.8586488

15. Karthik AK, Blum RS. Optimum Full Information, Unlimited
Complexity, Invariant, and Minimax Clock Skew and Offset Estimators
for IEEE 1588. IEEE Trans Commun (2019) 67:3264–637. doi:10.1109/
tcomm.2019.2900317

16. Guruswamy A, Blum RSR, Kishore S, Bordogna M. Performance Lower
Bounds for Phase Offset Estimation in IEEE 1588 Synchronization. IEEE
Trans Commun (2015) 63:243–53. doi:10.1109/tcomm.2014.2371028

17. Sathis Kumar S, Kemparaj P (2019). Enhanced Algorithms for Clock Selection
in a Packet Based Synchronization Method. In 2019 IEEE 9th Symposium on

Computer Applications & Industrial Electronics (ISCAIE) .doi:10.1109/
iscaie.2019.8743747

18. Mizrahi T. Slave Diversity: Using Multiple Paths to Improve the Accuracy of
Clock Synchronization Protocols. In: 2012 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication Proceedings (2012). doi:10.1109/ISPCS.2012.6336621

19. Mizrahi T, Moses Y. On the Behavior of Network Delay in the Cloud.
In: 2016 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS) (2016). doi:10.1109/
infcomw.2016.7562201

20. Li M, Lim SC. Modeling Network Traffic Using Generalized Cauchy Process.
Physica A: Stat Mech its Appl (2008) 387:2584–94. doi:10.1016/
j.physa.2008.01.026

21. Peng J, Zhang L, Mclernon D. Long-range Dependence and Heavy-Tail
Modeling for Teletraffic Data. IEEE Signal Process. Mag (2002) 19:
14–27.

22. Jusak J, Harris RJ. Study of Udp-Based Internet Traffic: Long-Range
Dependence Characteristics. In: 2011 Australasian Telecommunication
Networks and Applications Conference (ATNAC) (2011). doi:10.1109/
ATNAC.2011.6096648

23. Li M, Zhao W. On Bandlimitedness and Lag-Limitedness of Fractional
Gaussian Noise. Physica A: Stat Mech its Appl (2013) 392:1955–61.
doi:10.1016/j.physa.2012.12.035

24. Paxson V. Fast, Approximate Synthesis of Fractional Gaussian Noise for
Generating Self-Similar Network Traffic. SIGCOMM Comput Commun Rev
(1997) 27:5–18. doi:10.1145/269790.269792

25. Ledesma S, Liu D. Synthesis of Fractional Gaussian Noise Using Linear
Approximation for Generating Self-Similar Network Traffic. SIGCOMM
Comput Commun Rev (2000) 30:4–17. doi:10.1145/505680.505682

26. Li M. Generalized Fractional Gaussian Noise and its Application to Traffic
Modeling. Physica A: Stat Mech its Appl (2021) 579:126138. doi:10.1016/
j.physa.2021.126138

27. Li M. Modified Multifractional Gaussian Noise and its Application. Physica
Scripta (2021) 96:125002. doi:10.1088/1402-4896/ac1cf6

28. Li M. Multi-fractional Generalized Cauchy Process and its Application
to Teletraffic. Physica A (2020) 550:123982. doi:10.1016/
j.physa.2019.123982

29. Mizrahi T. A Game Theoretic Analysis of Delay Attacks against Time
Synchronization Protocols. In: 2012 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control and
Communication Proceedings (2012). doi:10.1109/ISPCS.2012.6336612

30. Guruswamy A, Blum RS, Kishore S, Bordogna M. Performance Lower Bounds
for Phase Offset Estimation in IEEE 1588 Synchronization. IEEE Trans
Commun (2015) 63:243–53. doi:10.1109/tcomm.2014.2371028

31. Wen-long Chin W-L, Sau-gee Chen S-G. IEEE 1588 Clock Synchronization
Using Dual Slave Clocks in a Slave. IEEE Commun Lett (2009) 13:456–8.
doi:10.1109/lcomm.2009.090308

32. Chaudhari QM, Serpedin E, Qaraqe K. OnMaximum Likelihood Estimation of
Clock Offset and Skew Network with Exponential Delays. IEEE Trans Signal
Process (2008) 56:1685–97. doi:10.1109/tsp.2007.910536

33. Li J, Jeske DR. Maximum Likelihood Estimators of Clock Offset and Skew
under Exponential Delays. Appl Stochastic Models Bus Ind (2009) 25:445–59.
doi:10.1002/asmb.777

34. Noh K-L, Chaudhari QM, Serpedin E, Suter BW. Novel Clock Phase Offset and
Skew Estimation Using Two-Way Timing Message Exchanges for Wireless
Sensor Networks. IEEE Trans Commun (2007) 55:766–77. doi:10.1109/
TCOMM.2007.894102

35. Giorgi G, Narduzzi C. Performance Analysis of Kalman-Filter-Based Clock
Synchronization in IEEE 1588 Networks. IEEE Trans Instrum Meas (2011) 60:
2902–9. doi:10.1109/tim.2011.2113120

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 79681120

Avraham and Pinchas Clock Skew Estimator for PTP

https://doi.org/10.1109/lcomm.2018.2830339
https://doi.org/10.1109/lcomm.2018.2830339
https://doi.org/10.1155/2015/174289
https://doi.org/10.1109/tcomm.2017.2761879
https://doi.org/10.1109/tcomm.2015.2455531
https://doi.org/10.1109/ispcs.2018.8543064
https://standards.ieee.org/standard/1588-2019.html
https://standards.ieee.org/standard/1588-2019.html
https://doi.org/10.1109/icemi.2015.7494173
https://www.itu.int/rec/T-REC-G.8262
https://www.itu.int/rec/T-REC-G.8262
https://www.itu.int/rec/T-REC-G.8261-201908-I/en
https://doi.org/10.1109/tcomm.2020.2991212
https://doi.org/10.1109/tcomm.2020.2991212
https://doi.org/10.1109/glocom.2018.8647777
https://doi.org/10.1109/glocom.2018.8647777
https://doi.org/10.1109/pesgm.2018.8586488
https://doi.org/10.1109/tcomm.2019.2900317
https://doi.org/10.1109/tcomm.2019.2900317
https://doi.org/10.1109/tcomm.2014.2371028
https://doi.org/10.1109/iscaie.2019.8743747
https://doi.org/10.1109/iscaie.2019.8743747
https://doi.org/10.1109/ISPCS.2012.6336621
https://doi.org/10.1109/infcomw.2016.7562201
https://doi.org/10.1109/infcomw.2016.7562201
https://doi.org/10.1016/j.physa.2008.01.026
https://doi.org/10.1016/j.physa.2008.01.026
https://doi.org/10.1109/ATNAC.2011.6096648
https://doi.org/10.1109/ATNAC.2011.6096648
https://doi.org/10.1016/j.physa.2012.12.035
https://doi.org/10.1145/269790.269792
https://doi.org/10.1145/505680.505682
https://doi.org/10.1016/j.physa.2021.126138
https://doi.org/10.1016/j.physa.2021.126138
https://doi.org/10.1088/1402-4896/ac1cf6
https://doi.org/10.1016/j.physa.2019.123982
https://doi.org/10.1016/j.physa.2019.123982
https://doi.org/10.1109/ISPCS.2012.6336612
https://doi.org/10.1109/tcomm.2014.2371028
https://doi.org/10.1109/lcomm.2009.090308
https://doi.org/10.1109/tsp.2007.910536
https://doi.org/10.1002/asmb.777
https://doi.org/10.1109/TCOMM.2007.894102
https://doi.org/10.1109/TCOMM.2007.894102
https://doi.org/10.1109/tim.2011.2113120
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


36. Chaloupka Z, Alsindi N, Aweya J. Clock Skew Estimation
Using Kalman Filter and IEEE 1588v2 PTP for Telecom Networks.
IEEE Commun Lett (2015) 19:1181–4. doi:10.1109/
lcomm.2015.2427158

37. Kim KS. Comments on “IEEE 1588 Clock Synchronization Using Dual Slave
Clocks in a Slave”. IEEE Commun Lett (2014) 18:981–2. doi:10.1109/
lcomm.2014.2317738

38. Spiegel MR, Lipschutz S, Liu J. Mathematical Handbook of Formulas and
Tables. New York: McGraw Hill Education (2009).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Avraham and Pinchas. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 79681121

Avraham and Pinchas Clock Skew Estimator for PTP

https://doi.org/10.1109/lcomm.2015.2427158
https://doi.org/10.1109/lcomm.2015.2427158
https://doi.org/10.1109/lcomm.2014.2317738
https://doi.org/10.1109/lcomm.2014.2317738
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	A Novel Clock Skew Estimator and Its Performance for the IEEE 1588v2 (PTP) Case in Fractional Gaussian Noise/Generalized Fr ...
	1 Introduction
	2 System Description
	3 The Clock Skew Estimator and Its Performance
	3.1 Theorem 1
	3.1.1 Proof of Theorem 1

	3.2 Theorem 2
	3.2.1 Proof of Theorem 2
	3.3 Theorem 3
	3.3.1 Proof of Theorem 3

	3.4 Theorem 4
	3.4.1 Proof of Theorem 4

	3.5 Theorem 5
	3.5.1 Proof of Theorem 5


	4 Designing Graphs
	5 Simulation Results
	6 Conclusion
	Data Availability Statement
	Author Contributions
	References


