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We propose a method of constructing analytical, closed-form expressions for
electrostatic/Newtonian potentials of non-uniform polyhedral bodies, in which the
density distributions are polynomials of coordinates. Possible applications of the
proposed method are spread from astronomy to nanotechnology. The method is
based on the use of the generating function for the potential. Explicit expressions for
the potential are derived in the case of quadratic or cubic coordinate dependence of the
density within a polyhedral body.
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1 INTRODUCTION

Many problems in various physical applications are reduced to expressions of the form

φ R( ) � ∫∫∫
V

ρ r( )
|r − R| d

3r. (1)

One of them is the determination of the Coulomb (electrostatic) potential from a given
distribution of charge. In this respect, ρ(r) is the charge density, and the integration is carried
out over the volume V of the charged body. This expression provides also the Newtonian
(gravitational) potential of a massive body with a given density distribution ρ(r). Applications of
its analytical solutions range from astronomy [1–3] and geophysics [4–7] to the physics of micro-
and nanostructures [8–10], as illustrated in Figure 1. Gravitational potentials of asteroids or gravity
anomalies have straightforwardly the form of Eq. 1. The magnetic field B(R) of a distributed
magnetic moment M(r) (such as a magnetic anomaly or a micromagnet) is proportional to

Bα R( )∝ z2

zRαzRβ
∫∫∫
V

Mβ r( )
|r − R| d

3r, (2)

Where α and β are tensor indexes. Similarly, the electric field E(R) of a distributed electric dipole
moment P(r) (for example, in a metallic nanoparticle under illumination) is proportional to

Eα R( )∝ z2

zRαzRβ
∫∫∫
V

Pβ r( )
|r − R| d

3r. (3)

The elastic displacement vector u(R) due to an inclusion that possesses an eigenstrain ε*(r), such
as a lattice misfit in an epitaxial quantum dot, also has a similar form,
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u R( )∝ z

zR
∫∫∫
V

ε* r( )
|r − R| d

3r, (4)

in the case of an elastically-isotropic medium. Therefore, all the
fields considered above can be expressed via potentials having the
form of Eq. 1.

There are two generic shapes of the three-dimensional body
that enable analytical solutions for potentials φ(R) in closed
forms: an ellipsoid [11, 12] and a polyhedron [1, 12].
Analytical solutions are possible not only for a homogeneously
charged ellipsoid or a polyhedron, but also for the case of a
polynomial dependence of the charge density ρ(x, y, z) on
coordinates [2, 8]. We focus here on potentials of polyhedra.

With regard to the charged polyhedra, until recently the
analytical solutions in closed forms were found for constant
[1, 13], linearly [3, 5, 14–16], quadratically [17–20], or
cubically [21, 22] coordinate-dependent charge density. Similar
solutions for the elastic strain were obtained in works [8, 23–26].
In a special case of a prismatic body, analytic formulas in closed
forms are available for polynomials up to fourth degree [27]. For
an arbitrary polynomial charge distribution within a polyhedron,
a method of analytical determination of the potential was
outlined in Ref. [25] and represented in an algorithmic
(recursive) form in Refs. [8, 28]. Similar results in two
dimensions can be found in Ref. [29].

In this work, we present an ultimate expression that unifies all
known analytical solutions for Newtonian (or Coulomb)
potentials of polyhedron-shaped bodies. For this reason, we
introduce a generating function

G R, k( ) � ∫∫∫
V

exp k · r − R( )[ ]
|r − R| d3r (5)

that depends on the geometry of the polyhedron, and on the
additional parameter k. One can represent potential φ(R) via the
generating function as follows:

φ R( ) � G R,
z

zR
( )ρ R( ), (6)

where differential operator z/zR acts only “to the right,” on
function ρ(R). The derivation of Eq. 6 is given in
Supplementary Section S1.

We provide a series expansion of generating function G(R, k)
in powers of k. Each term of this expansion is a closed-form
expression containing only elementary functions. Writing the
series expansion as

G R, k( ) � G 0( ) R( ) + G 1( )
α R( )kα + G 2( )

αβ R( )kαkβ +/ , (7)

where G(0)(R), etc. are expansion coefficients, one obtains from
Eq. 6 that

φ R( ) � G 0( ) R( )ρ R( ) + G 1( )
α R( ) zρ R( )

zRα
+ G 2( )

αβ R( ) z
2ρ R( )

zRαzRβ
+/

(8)

If ρ(R) is a polynomial, the r.h.s. of Eq. 6 contains only a finite
number of terms. Therefore, this equation gives an analytical,
closed-form expression for the Newtonian potential φ(R) for any
polynomial density distribution ρ(R) within a polyhedral body,
provided that coefficients G(0)(R), etc. are expressed in a
closed form.

Eq. 8, along with the results of Section 2, provides a method of
constructing analytical, closed-form expressions for Newtonian
(or electrostatic) potentials of non-uniform polyhedral bodies, in
which the density distributions are polynomials of coordinates.
The method is universal in the sense that any density distribution
can be approximated by a polynomial, as well as any shape of a
body can be approximated by a polyhedron. It is worth noting
that primitive shapes in the finite-difference method are
polyhedra, therefore the results of the present paper can be
used in connection with finite-difference schemes.

The results of the present paper provide an insight into
analytic properties of solutions of linear inhomogeneous
partial differential equations (PDEs) possessing a geometry of
a polyhedron. Potential φ(R) obeys Poisson’s equation

Δφ R( ) � −4πρ R( )χ R( ), (9)

where χ(R) is a characteristic function of the polyhedron: χ(R) � 1
for R within the polyhedron, otherwise χ(R) � 0. Since function
χ(R) is not analytic, the solution φ(R) also must be a non-analytic
function of coordinates. However, as we will see later in Eq. 30,
the solution can be represented as a sum of analytic functions
A(φ), B(φ), C(φ) multiplied by simple but non-analytic functions
Ωf(R), Le(R), |rv − R| associated with polyhedron faces, edges and
vertices. The latter functions have simple meanings: Ωf(R) is a
solid angle subtended by face f at point R, Le(R) is a potential of
uniformly charged edge e at R, and |rv − R| is a distance from
vertex v to point R. One can consider such a structure of the
solution as a useful ansatz for linear PDEs, an inhomogeneous
part of which is spread within a polyhedron.

The paper is organized as follows. In Section 2, a formula for
the generating function in the form of power series is presented.

FIGURE 1 | Possible applications of analytical solutions of Eq. 1: from
astronomy (gravitational fields of asteroids) and Earth sciences (gravity and
magnetic anomalies) to the physics of micro-and nanostructures (magnetic
fields of nanomagnets, plasmonic resonance of metallic nanoparticles,
elastic fields of inclusions such as epitaxial quantum dots).
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This is the central result of this paper. Then, in Section 3, this
formula is tested numerically and applied to calculating the
potential. We show how to construct an exact expression in a
closed form for potential φ(R) in the case of a polynomial
dependence of the charge density on coordinates. Concluding
remarks are gathered in Section 4.

2 SERIES EXPANSION OF THE
GENERATING FUNCTION

As shown in Supplementary Section S2, generating function
G(R, k) can be represented as a sum of contributions of all faces,
edges and vertices of the polyhedron. In this Section, we report on
such a representation, and then, in Section 3, we demonstrate
how to obtain exact solutions in closed forms on the basis of the
expression for the generating function.

First, we introduce some notations for geometrical entities
associated with the polyhedron. Let us use symbols f, e and v for
enumerating of polyhedron faces, edges and vertices,
correspondingly. For each face f, we introduce a unit normal
vector nf to the face directed outwards from the polyhedron, see
Figure 2. For each pair (f, e) of a face and an edge adjacent to it, we
introduce a unit vector bfe that is parallel to face f, perpendicular to
edge e, and directed outwards from face f, as shown in Figure 2. For
each pair (e, v) of a face and a vertex lying on it, we define unit vector
lev directed from the opposite vertex of edge e towards vertex v
(Figure 2). rf and re are radius-vectors of arbitrarily chosen points on
face f and on edge e, correspondingly. rv is the radius-vector of vertex
v. For a given face f, we introduce function

Ωf R( ) � ∫∫
facef

nf · R − r( )
|R − r|3 dS, (10)

where dS is the surface element of face f, and r is the radius-vector
of this element. One can easily recognize that Ωf(R) is the signed
solid angle subtended by face f at point R: its sign is positive
(negative) if the outer (inner) side of the face is seen from point R.
Similarly, for a given edge e, we define function

Le R( ) � ∫
edge e

1
|R − r| dl, (11)

where dl is a line element, and r is its radius-vector. One can
interpret Le(R) as a potential at point R of edge e considered as a
uniform massive rod with the unit linear mass density. In these
notations, generating function G(R, k) acquires the following
form derived in Supplementary Section S2:

G R, k( ) � ∑
f

A rf − R, k,nf( )Ωf R( ) + ∑
f,e( )

B re − R, k,nf,(
bfe) Le R( ) + ∑

f,e,v( )
C rv − R, k,nf, bfe, lev( ) |rv − R|, (12)

where summations are over polyhedron faces f; over pairs (f, e) of
adjacent face f and edge e; and over triples (f, e, v) of adjacent face
f, edge e and vertex v. A, B and C are universal functions that do
not depend on the choice of the polyhedron.

Expressions for functions A, B and C are (see details of their
derivation in Supplementary Section S3):

A r, k,n( ) � z2 ∑∞
s�0

∑∞
u�0

kzz( )s −k2‖z2( )u
s! 2u + 1( )! s + 2u + 2( ), (13)

where z � r ·n, kz � k ·n, k2‖ � k2 − k2z,

B r, k, n, b( ) � kyz
3 ∑∞
s�0

∑∞
u�0

kzz( )s −k2‖z2( )u
s! 2u + 2( )! s + 2u + 3( )

+yz∑∞
q�0

∑∞
s�0

∑∞
t�0

kyy( )q kzz( )s −k2xr2⊥( )t 2t − 1( )!!
q!s! 2t( )! q + 2t + 1( ) q + s + 2t + 2( ) 2t( )!!

−k2xz3 ∑∞
q�0

∑∞
s�0

∑∞
t�0

∑∞
u�0

kyy( )q kzz( )s −k2xr2⊥( )t −k2‖z2( )u q + 2t( )! 2t − 1( )!!
q!s! 2t( )! q + 2t + 2u + 3( )! 2t( )!!

y

q + s + 2t + 2u + 4
[ + kyr

2
⊥ q + 2t + 1( )

q + 2t + 2u + 4( ) q + s + 2t + 2u + 5( ) 2t + 2( )], (14)

where y � r ·b, z � r ·n, r2⊥ � y2 + z2, ky � k ·b, kz � k ·n,
k2x � k2 − k2y − k2z, k

2
‖ � k2x + k2y,

C r, k, n, b, l( ) � kxyz

∑∞
p�0

∑∞
q�0

∑∞
s�0

∑∞
t�0

kxx( )p kyy( )q kzz( )s −k2xr2⊥( )t
p + 2t + 1( )!q!s! p + q + 2t + 2( ) p + q + s + 2t + 3( )

× p + 2t( )!! p − 1( )!!
p!! p + 2t + 1( )!! − kxz

3 ∑∞
p�0

∑∞
q�0

∑∞
s�0

∑∞
t�0

∑∞
u�0

kxx( )p kyy( )q kzz( )s −k2xr2⊥( )t −k2‖z2( )u p + q + 2t( )!
p + 2t( )!q!s! p + q + 2t + 2u + 3( )! p + 2t( )!! p − 1( )!!

p!! p + 2t + 1( )!!
× [ k2xy p + q + 2t + 1( )

p + 2t + 1( ) p + q + 2t + 2u + 4( ) p + q + s + 2t + 2u + 5( )
− ky
p + q + s + 2t + 2u + 4

],
(15)

where x � r ·l, y � r ·b, z � r ·n, r2⊥ � y2 + z2, kx � k ·l, ky � k ·b, kz �
k ·n, k2‖ � k2x + k2y, and p!! � p(p − 2)(p − 4). . . denotes the double
factorial of p [by convention, ( − 1)!! � 0!! � 1!! � 1].

FIGURE 2 | Unit vectors and radius-vectors associated with faces,
edges, and vertices of the polyhedron. Vector nf is the outward normal vector
to face f. Vector bfe lies in the plane of face f and is directed out of this face
perpendicular to edge e. Vector lev is directed along edge e toward
vertex v from the opposite vertex. rf and re are radius-vectors of arbitrarily
chosen points on face f and on edge e, correspondingly. rv is the radius-vector
of vertex v, and R is the radius-vector of the observation point.
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These formulas provide power series expansions ofA, B and C
as functions of components of vector k. Simultaneously, they are
series expansions of A, B and C as functions of r. Series in Eqs
13–15 converge at any values of their parameters, that can be
easily proved by the direct comparison test (see Supplementary
Section S4). Thus,A, B and C are entire functions of k and r, that
is, they have no singularities at any finite k and r.

In contrast, generating function G(R, k) itself is non-
analytical at the surface of the polyhedron. This behavior is
related to discontinuity of the Laplacian of potential φ(R)
defined by Eq. 1: Δφ(R) � − 4πρ(R) within the polyhedron,
and Δφ(R) � 0 outside. It is evident from Eq. 12 that such a
non-analytic behavior of the generating function is due to
presence of functions Ωf(R), Le(R) and |rv − R| in the r.h.s.
Indeed, Ωf has a discontinuity on face f, Le diverges
logarithmically on edge e, and |rv − R| has a cusp-like
behavior at vertex v. Hence, representation (12) of
generating function G(R, k) allows us to detach its
calculational complexity from its non-analytic behavior.
All non-analiticity of G(R, k) is “grasped” by functions
Ωf, Le and |rv − R| that have simple mathematical
expressions in closed forms, see Eqs 16, 17. And all
calculational complexity of G(R, k) is contained in fully
analytical functions A, B and C.

Functions Ωf(R) and Le(R) can be expressed in closed
forms via elementary functions. A convenient representation
for Le(R) is [8, 13]

Le R( ) � ln
|R − re1| + |R − re2| + |re1 − re2|
|R − re1| + |R − re2| − |re1 − re2|, (16)

where re1 and re2 are radius-vectors of two ends of edge e. For a
triangular face, solid angle Ωf(R) can be represented as follows
[30, 31]:

tan
Ωf R( )

2
� a × b[ ] · c
|a‖b‖c| + a · b( )|c| + a · c( )|b| + b · c( )|a|, (17)

where a � rf1 −R, b � rf2 − R, c � rf3 − R, and rf1, rf2, rf3 are radius-
vectors of vertices of face f, counted clockwise as seeing from the
outer side of the face. Solid angleΩf(R) must fall into the range ( −
2π, 2π) and have the same sign as [a ×b] ·c. The appropriate
solution of this equation is

Ωf R( ) � 2atan2 P,Q( ), (18)

where P and Q are the numerator and the denominator of the
r.h.s. of Eq. 17, and atan2 is a function from the math library of
C language [31]. If the face is not triangular, one can either
break it into triangles, or use other formulas [13, 31] for solid
angle Ωf(R).

The representation of generating function G(R, k) in the
form of Eqs 12–15 constitutes the main result of the present
paper. In Section 3, we will demonstrate that the infinite-
series representations for functions A, B and C result in
formulas for potential φ(R) containing finite number of
terms, when density ρ(R) is a polynomial function of
coordinates.

3 NUMERICAL TESTS AND APPLICATIONS
TO EXPONENTIAL, SINUSOIDAL AND
POLYNOMIAL DENSITY DISTRIBUTIONS
The expression for generating function G(R, k) presented in
Section 2 looks rather complicated. It is necessary therefore to
verify it. As a natural numerical test, we have used the generating
function to derive potential φ(R) for a certain polyhedron and a
certain density distribution ρ(R), and have checked that this
potential obeys Poisson’s equation.

For the testing purpose, the simplest choice of the density
distribution function is

ρ R( ) � exp k · R( ). (19)

Substituting it into Eq. 1 and comparing with Eq. 5, one can
find that

φ R( ) � exp k · R( )G R, k( ). (20)

As an example of a polyhedral body, we choose a pyramid with
a square base (Figure 3A), having height h � 1 and lateral size
(length of a base edge) l � 2. Values of components of vector k are
chosen as kx � 0.5, ky � 0.4 and kz � 0.3. When calculatingG(R, k),
we have kept terms up to ∼ k13 in power series (13)–(15).
Potential φ(R) in the xz-plane passing through the pyramid
vertex is shown in Figure 3B. Then, the Laplacian Δφ(R) is
calculated numerically by the difference scheme

Δφ x, y, z( ) � δ−2 φ x + δ, y, z( ) + φ x − δ, y, z( ) + φ x, y + δ, z( )[
+φ x, y − δ, z( ) + φ x, y, z + δ( ) + φ x, y, z − δ( ) − 6φ x, y, z( )]

(21)

with δ � 10–4. One can see in Figure 3C that Δφ vanishes outside
the pyramid, and depend on coordinate exponentially within it.
We have checked that the deviation of the numerical value of Δφ
from its exact value

Δφ R( ) � −4π exp k · R( ), within the pyramid
0, outside

{ (22)

does not exceed 10–4 for 1000 randomly chosen points within the
cube −2 < x < 2, −2 < y < 2, −2 < z < 2. This deviation is due to
errors of the round-off and the difference scheme. The accuracy is
sufficient to confirm the correctness of formulas presented in
Section 2. The exponential density distribution, Eq. 19, appears
in modeling of gravity anomalies [32–34], for example.

Expression (20) holds also for complex values of k. Hence, the
potential of a polyhedral body with density distribution

ρ R( ) � cos k · R( ) (23)

is equal to

φ R( ) � Re exp ik · R( )G R, ik( )[ ]. (24)

Similarly, a polyhedral body with density distribution

ρ R( ) � sin k · R( ) (25)

produces the potential
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φ R( ) � Im exp ik · R( )G R, ik( )[ ]. (26)

Now we consider the case of a polynomial density distribution
ρ(R) in the body. For definiteness, let ρ(R) be a quadratic
function. In order to obtain an expression for potential φ in a
closed form, we keep only the terms proportional to k0, k1 and k2

in Eqs 12–15 for functions A, B and C:

A � z2
1
2
− k2‖z

2

24
+ kzz

3
+ k2zz

2

8
( ) + O k3( ), (27)

B � kyz
3 1

6
+ kzz

8
( ) + yz⎛⎝1

2
− k2xr

2
⊥

48
+ kzz

3
+ k2zz

2

8
+ kyy

6

+kyykzz
12

+ k2yy
2

24
⎞⎠ − k2xz

3 y

24
+ O k3( ), (28)

C � kxyz
1
6
+ kzz

8
+ kyy

12
+ kxx

48
( ) + kxz

3ky
24

+ O k3( ). (29)

We do not need here the higher terms ( ∼ k3, ∼ k4 and so on),
since, according to Eq. 8, they would appear in potential φ as terms
containing higher derivatives of density distribution ρ (z3ρ/
zRαzRβzRγ, etc.) that vanish in the case of quadratic function ρ(R).

In order to get the potential, as explained in Section 1,
each entry of vector k in generating function G(R, k) is

replaced with differential operator z/zR which acts on
density distribution ρ(R). The components kx, ky and kz
are thus replaced with lαz/zRα, bαz/zRα and nαz/zRα,
correspondingly. In Eq. 27, factor k2‖ � k2 − k2z is replaced
with (δαβ − nαnβ) z

2/zRαzRβ, where δαβ is the Kronecker delta.
In Eq. 28, factor k2x � k2 − k2y − k2z is replaced with (δαβ − bαbβ
− nαnβ) z

2/zRαzRβ.
As a result, we obtain an expression for potential φ(R) in the form

of a sum over polyhedron faces, edges and vertices:

φ R( ) � ∑
f

A φ( ) R, zf,nf( )Ωf R( ) + ∑
f,e( )

B φ( )

R, yfe, zf,nf, bfe( ) Le R( )
+ ∑

f,e,v( )
C φ( ) R, xev, yfe, zf,nf, bfe, lev( ) |rv − R|, (30)

where xev � lev · (rv − R), yfe � bfe · (re − R), zf � nf · (rf − R), and
functions A(φ), B(φ), C(φ) are defined as

A φ( ) R, z,n( ) � z2

2
ρ R( ) + z3nα

3
zρ R( )
zRα

+ z4
nαnβ
6

− δαβ
24

( ) z2ρ R( )
zRαzRβ

, (31)

FIGURE 3 | Examples of potentials of an inhomogeneously charged polyhedron. (A) An example of a polyhedron: a pyramid with height h � 1 and lateral size (length
of a base edge) l � 2. (B,C) Potential φ(X, Z) and its Laplacian Δφ(X, Z) in the case of an exponential density distribution ρ(R) � exp(k ·R) with kx � 0.5, ky � 0.4 and kz � 0.3.
(D,E) Potential φ(X, Z) and its Laplacian Δφ(X, Z) in the case of a quadratic density distribution ρ(X, Y, Z) � 1 + 2X + 3Y + 4Z + 5X2 + 6Y2 + 7Z2 + 8XY + 9XZ + 10YZ. Plots b,
c, d, e are presented in the section by the XZ-plane that passes through the pyramid apex (Y � 0). Green triangles depict the pyramid boundary in the same section.
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B φ( ) R, y, z,n, b( ) � yz

2
ρ R( ) + z

y2 + z2

6
bα + yz

3
nα( ) zρ R( )

zRα

+z⎛⎝y2 + z2

16
ybαbβ + y2 + z2

8
zbαnβ + y2 + 9z2

48
ynαnβ

−y
2 + 3z2

48
yδαβ⎞⎠ z2ρ R( )

zRαzRβ
, (32)

C φ( ) R, x, y, z,n, b, l( ) � yzlα
6

zρ R( )
zRα

+zlα xy

48
lβ + 2y2 + z2

24
bβ + yz

8
nβ( ) z2ρ R( )

zRαzRβ
. (33)

Equations 30–33 provide an exact expression for potential
φ(R) in a closed form. This expression is valid both within
the polyhedral body and outside it, if the density
distribution ρ(R) in the body is a quadratic function of
coordinates. In the simplified cases of constant or linear
function ρ(R), this result is reduced to previously published
formulas [1, 8].

Just as for the exponential density distribution, we have
performed a numerical test of potential φ(R) obtained by
Eqs 30–33. The polyhedron geometry is chosen according to
Figure 3A with h � 1 and l � 2. We choose a
quadratic polynomial ρ, all coefficients of which are non-
zero: ρ(X, Y, Z) � 1 + 2X + 3Y + 4Z + 5X2 + 6Y2 + 7Z2 + 8XY +
9XZ + 10YZ. Potential φ is shown in Figure 3D, and its
Laplacian Δφ calculated by difference scheme (21) with δ �
10−4—in Figure 3E. We have checked that, with
accuracy ±10–4, Δφ � 0 outside the pyramid, and Δφ � −
4πρ within it.

The same recipe can be applied to any polynomial density
distribution. For example, if density distribution ρ(X, Y, Z)
contains cubic terms (X3, X2Y and so on), then it is necessary
to take into account also terms proportional to k3 in series
expansions (12)–(15) for functions A, B and C. This, after the
replacement k → z/zR, results in new terms A(φ)

3 , B(φ)
3 , C(φ)3

that one should add to functions A(φ), B(φ), C(φ),
correspondingly:

A φ( )
3 � z5nα

nβnγ
15

− δβγ
30

( ) z3ρ R( )
zRαzRβzRγ

, (34)

B φ( )
3 � z

y2 + z2( ) 5y2 + z2( )
240

bαbβbγ + yz y2 + z2( )
20

bαbβnγ[

+ y2 + z2( ) y2 + 5z2( )
80

bαnβnγ + yz y2 + 5z2( )
60

nαnβnγ

− y2 + z2( )2
80

δαβbγ − yz y2 + 3z2( )
60

δαβnγ⎤⎦ z3ρ R( )
zRαzRβzRγ

, (35)

C φ( )
3 � zlα

y x2 − 2y2 − 5z2( )
360

lβlγ + y 3y2 + z2( )
120

bβbγ[
+yz

2

20
nβnγ + x 3y2 + z2( )

240
lβbγ + xyz

60
lβnγ

+z 2y2 + z2( )
30

bβnγ⎤⎦ z3ρ R( )
zRαzRβzRγ

. (36)

Equations 30–33 with additions 34–36 to functions A(φ),
B(φ), C(φ) constitute an exact expression for potential φ in a closed
form, provided that density distribution ρ(R) within a
polyhedron is a cubic function of coordinates.

This method, based on the results of Section 2 and on Eq.
6, allows us to construct explicit expressions for potentials of
arbitrary polyhedra, in which the density distribution
functions are polynomials of any degree. One can see that
complexity of these expressions grows rapidly (though not
exponentially) with the degree of polynomial ρ(R). Our
method overcomes this difficulty by “packing” all the
complexity into expressions (13)–(15) for functions A, B
and C.

4 CONCLUSION

We propose a method of constructing analytical, closed-
form expressions for Newtonian potentials of massive
polyhedral bodies, in which the density distributions ρ(X,
Y, Z) are polynomials of coordinates X, Y and Z. The method
is based on the power-series representation for generating
function G(R, k) presented in Section 2. Explicit expressions
for the potential in the case of quadratic or cubic polynomial
ρ(X, Y, Z) are derived in Section 3. For a quadratic
coordinate dependence of density ρ, the potential can be
found by Eqs 30–33. For a cubic coordinate dependence of
the density, the same equations with additions Eqs 34–36 to
the right-hand sides of Eqs 31–33 are valid. It is possible to
extend this scheme to polynomials of any degree, and use it
for any polyhedral shape of the body. Potential applications
of the proposed method are spread from astronomy to
nanotechnology.
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