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Human daily mobility plays an important role in urban research. Commuting of urban
residents is an important part of urban daily mobility, especially in working days. However,
the characteristic of the mobility network formed by the commuting of urban residents and
its impact on the internal structure of the city are still an important work that needs to be
explored further. Aiming to study the living–working interaction pattern of meta-
populations over urban divisions within cities, a fine-grained dataset of living–working
tracking of Shenzhen is curated and used to construct an urban living–working mobility
network, and the living–working interaction pattern is analyzed through the community
structures of the network. The results show that human daily mobility plays an important
role in understanding the formation of urban structure, the administrative divisions of the
city affect human daily mobility, and human daily mobility reacts on the formation of urban
structure.

Keywords: human mobility, community structures, network analysis, Shenzhen, commuting pattern

INTRODUCTION

Large-scale demographic census enables measurements of human living–working traces, which have
become popular and served as essential reasons of motivation for human mobility [1]. The
living–working interactions of meta-populations over urban divisions within cities have been
extensively studied in a recent work (e.g., urban activities [1–4] and urban balance [5–8]). To
study human living–workingmovements, especially within cities, living–working networks provide a
useful way to characterize living–working styles among people in different sites. Although urban
transportation patterns between locations change over time, many studies of humanmobility assume
they are representative [9], neglecting the limitation of transportation. For example, in Shenzhen, on
average, people travel by subway for distance longer than 27 km while by bus for 9 km [10]. This is,
arguably, due to the lack of fine-grained public datasets that could describe the living–working
dynamics within cities. There are some open-access datasets covering small geographical locations
considering the time ordering of location tracking, such as networks of mobile-phone users within a
city [11] and between cities [12], which can infer people’s living and working locations potentially.
However, fine-grained living–working datasets covering large geographical regions within a city with
large populations are still missing from the open-access datasets.

In this paper, we curate and amass a fine-grained dataset of living–working mobility to study
urban interactions. We capture living and working position tracking of millions of workers from an
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open-data program in Shenzhen. Each location in our dataset
represents a group of workers in an official administrative
division. Directed movement of each individual from a source
living location to a destination working location denotes a change
of location for the corresponding individual. The overall directed
mobility network of locations is finally compiled by sequentially
processing the directed movements for all individuals. In the
network, a node represents a location. A weighted edge represents
the total number of workers’ movements from living to working
locations.

The dataset contains movements of nearly 6 million
anonymized cellular phone users among 71 subdivisions
(henceforth locations), covering 10 geographically adjacent
districts, investigated during the year 2015. This total
geographic area, located in Shenzhen as a major city in the
Guangdong Province of China, covers more than 20 square
kilometers and, in 2017, had a population of nearly 12.9
million. This city has become one of the four largest and
wealthiest cities in China [13]. Thus, it is a fine-grained
living–working dataset covering large geographical regions
within a city with large populations. However, the
characteristic of the mobility network formed by the
commuting of urban residents and its impact on the internal
structure of the city are still an important work that needs to be
explored further. To study the living–working interaction pattern
of meta-populations over urban divisions within cities, we
process the above raw dataset to extract a dynamic and
directed mobility network of the city. Then, based on the
constructed urban living–working mobility network, the
human living–working mobility pattern and the community
structure of the city are analyzed. We found that there is an
interaction between the human daily mobility and the formation
of urban structure, the administrative divisions of the city affect
human daily mobility, and human daily mobility reacts on the
urban structure.

MATERIALS AND METHODS

Data Extraction and Processing
A largest urban living–working tracking dataset using
demographic census logs in the year 2015 in Shenzhen is used
in this study. The dataset consists of living–working location
records of 5.6 million anonymized workers, and these locations
include 71 geographically neighboring subdistricts over 10
districts. An individual worker is investigated by the Shenzhen
Municipal Human Resources and Social Security Bureau (http://
hrss.sz.gov.cn/) from the social security systems in Shenzhen used
by workers to buy the social security and health insurance for
every working individual.

The reliability of location and time information of workers’
living and working locations in the network data largely depends
on the reliability of the underlying source data. We verify the
consistency via the geographically explicit distribution of
locations. Although this dataset is fine-grained, it has several
limitations. First, even though the dataset covers a cohort of
millions of workers, it is only for 2015. Second, the individual’s

working position is the last known recorded location of this
individual in the year 2015. This recording might cause bias. The
individual might leave Shenzhen after 2015.

Construction of Living–Working Network
To simulate human mobility within Shenzhen, we construct
the living–working network (a directed mobility network)
based on the dataset by taking each place (a city or a
country) as multiple meta-populations in different
locations. Each location is represented as a node in the
network. Edges are directed, connecting nodes where users
move from origin (living locations) to the destination
(working locations) and weighted by the total number of
workers in this scenario. An individual worker–directed
movement from the living location i to the working
location j denotes that in a user’s living–working record.
We reinterpret the flow matrices F as adjacency matrices
that describe the daily living–working mobility network, the
vertices are the 71 locations, and the edge between a given
vertex pair, i and j, is weighted by the flow Nij (the number of
workers from location i to location j). As shown in Table 1, the
dataset is processed into two data tables: Network table and
Location table. In the Network table, each row represents the
total number of daily movements by workers from locations i
to j, and there are three columns ordered by the living location,
the working location, and the corresponding directional
weight. In the Location table, there are two columns
ordered by the location identifier and the corresponding
charactered name.

Mobility Analysis of Living–Working
Network
In the urban living–working mobility network, nodes are defined
as locations, and edges are weighted by the population flows from
living locations to working locations. To analyze the intensity of
human mobility, the network centrality of individual locations is
calculated, and the consistency of the network with the degree
distribution is verified. We consider the network defined by the
daily living–working mobility matrix F, and the in-degree and
out-degree of the location i are then given by Din(i) � ∑

j
Nji and

Dout(i) � ∑
j
Nij, respectively. On the contrary, to analyze the

geographical range of human mobility, the commuting distance
of workers is calculated and the distance distribution is compared
to that of a mobility network by taxi trips in Shenzhen. We defined
the commuting distance as the length of the shortest path in the
driving mode between the center of the living location and the
working location.

Structure Analysis of Living–Working
Network
Additionally, to explore the characteristic of the mobility network
formed by the commuting of urban residents and what impact
does it have on the internal structure of the city, we analyze the
community structure of the urban living–working mobility
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network using the Louvain community detection algorithm
[14–17]. It identifies disjoint subsets of locations such that
their intra-connectivity far exceeds their inter-connectivity. All
the locations in the network are divided into seven community-
groups, in which the meta-populations in locations are highly
intra-connected within the group but only loosely inter-
connected across the group [18–20]. Then, the detected
community structure is used to map the Shenzhen
administrative divisions in 2017 and 2005 to analyze whether
human daily mobility is infected by the administrative division,
and whether there is interaction between the human daily
mobility and the formation of urban structure.

RESULTS

Mobility Pattern of Living–Working Network
In the analysis of the intensity and range of human mobility,
Figure 1A shows the distribution of the directed network’s
degrees and the number of resident workers in living and
working locations. The x-axis denotes the network degree of
locations, and the y-axis denotes the number of resident workers
in those locations. The degree of a node denotes the total number

of living–working movements passing through the corresponding
node. We can see that, with the increase of network degree, the
number of resident workers decreases rapidly, that is to say,
locations with more active external relations have fewer resident
populations. Figure 1B shows the distance distribution as
compared to that of a mobility network by taxi trips in
Shenzhen [18]. We can observe that living–working pairs with
less than 80 km account for over 99.96% of the total, and the
median living–working distance is 16 km, in contrast with a
shorter median traveling distance of 3 km by taxi trips.

Community Structure of Living–Working
Network
In the analysis of the relationship between the human daily
mobility and the formation of urban structure, Figure 2 shows
the community structures for each day with colors denoting
different detected communities. After mapping communities
to the administrative divisions, we can observe locations
within a division tend to be in the same community.
Interestingly, the administrative divisions in 2005 are larger
and can group locations within the same community better,
especially in the Bao’an division.

TABLE 1 | Data description of the living–working network.

Data table Field Description

Network Living Numerical administrative division code for each living location
Working Numerical identification for each working location
Weight Total number of movements from the living location to the working location

Location Location Numerical administrative division code for each location
Name Charactered name of the corresponding location

FIGURE 1 | Distribution plots. (A) Empirical degree distribution. The x-axis denotes the network degree of locations. The y-axis denotes the number of workers
from the living to the working location. (B) Empirical distance distribution with this living–working network. The x-axis denotes the commuting distance of workers, and
the unit is kilometer. The y-axis denotes the number of associated individuals. In contrast, we show the distance distribution of a static mobility network with zones as
nodes and passenger flows as edges, aggregating 2 million taxi trips in Shenzhen from April 18, 2011, to April 26, 2011, over 1,634 zones [18]. The median
distance is 16 km for our published dataset, in contrast with 3 km for those taxi trips.
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DISCUSSION AND CONCLUSION

Urban living and working tracking can provide fine-grained traveling
data within cities on daily scales, giving us a feasible way to explore
human daily mobility, especially in working days. Although there are
different choices of transportation patterns between locations within
the city, neglecting the limitation of transportation,
origin–destination is representative in some study of human
mobility. Many urban problems are related to the commuting of
urban residents, such as traffic congestion in the morning and
evening rush hours, jobs-housing balance in the urban structure,
and the fairness of urban facilities. Moreover, human daily mobility
plays an important role in understanding the formation of urban
structure. On the one hand, there is an interaction between the
human daily mobility and the formation of urban structure, and the
daily life of urban residents is usually within a certain range, within
which there are more internal connections and less connections with
other external areas. In other words, human daily mobility shapes the
urban structure, and in each structure, intra-connectivity far exceeds
inter-connectivity. On the other hand, the administrative divisions of
the city affect human daily mobility, and human daily mobility reacts
on the urban structure. The administrative division will affect the
scope of daily activities of urban residents because some things will be
more convenient in the same administrative division. To some extent,
most of residents’ social relationships are within the region. This
study reinforces the importance of the living–working interaction
pattern of meta-populations over urban divisions within cities in
urban management. Human mobility is an important research
direction in urban research, and human living–working traces
served as essential reasons of motivation for human daily mobility.
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FIGURE 2 | Community structures of the Shenzhen living–working network. We construct the directed network via aggregating all workers’ living and working
records. The Louvain community detection algorithm serves to probe community structures based on this network. We map this community structure with colors
denoting different communities to Shenzhen administrative divisions in 2017 (A) and 2005 (B). The newly established divisions are marked by asterisks in (A), but not in
(B). The spatial map was created using the OpenStreetMap online platform (http://www.openstreetmap.org/) under the license of CC BY-SA (http://www.
openstreetmap.org/copyright). More details of the license can be found at http://creativecommons.org/licenses/by-sa/2.0/. Line graphs were drawn using Tableau
Software for Desktop version 9.2.15 (https://www.tableau.com/zh-cn/support/releases/9.2.15). The layouts were modified with Keynote version 6.6.2 (http://www.
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