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In real-world scenarios, networks do not exist in isolation but coupled together in different
ways, including dependent, multi-support, and inter-connected patterns. And, when a
coupled network suffers from structural instability or dynamic perturbations, the system
with different coupling patterns shows rich phase transition behaviors. In this review, we
present coupled network models with different coupling patterns developed from real
scenarios in recent years for studying the system robustness. For the coupled networks
with different coupling patterns, based on the network percolation theory, this paper mainly
describes the influence of coupling patterns on network robustness. Moreover, for different
coupling patterns, we here show readers the research background, research context, and
the latest research results and applications. Furthermore, different approaches to improve
system robustness with various coupling patterns and future possible research directions
for coupled networks are explained and considered.
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1 INTRODUCTION

With the significant improvement of the ability of high-performance computer clusters, the in-depth
study of cloud storage and computing, internet of things application, and pervasive mobile internet,
the amount of data about people’s livelihood is increasing and available [1, 2]. These huge amounts of
data show network features of extensive distribution, multi-source heterogeneous, such as social
network, communication network, power network, energy network, financial network,
transportation network, trade network, ecological network and climate network, etc. [3–10].
And, there exists the complex coupling relationship among these real networks, such as spatial
relevance, economic connection, strategic linkage, and coexistence relationship [11, 12]. This makes
various network systems form a co-generation unit, coupled network [13–16]. Multi-layer network
as an important coupled network describes the relevance of real systems from the perspective of
coupling between networks [17]. In a multilayered system, each layer represents a separate network
system. These coupling links between different networks (layers) may have different functions to
each layer and can change the basic characteristics of the individual network and the robustness of
the entire coupling system. Coupled patterns with dependent and interconnected features in the real
scenarios can be described as interconnected networks, networks of networks, interdependent
networks, and so on.

Interdependent networks mean that failure of dependent nodes between coupled networks will
cause cascading failures between the networks. Buldyrev et al. [18] initially developed a theoretical
framework to understand the robustness of two interdependent networks. Based on this, Gao et al.
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[19] extended two dependent networks to basic coupling
dependent networks, Network of Networks (NON), to study
the system structural robustness. The coupling structure
between networks not only includes basic coupling modes like
tree, star, and chain but also has more complex generalized
topological structure [20–23]. They found that interdependent
networks are more vulnerable than isolated networks. With the
decreases in dependent coupling strength between networks, the
percolation transition changes from the first order to the second
order at the critical coupling strength [24]. And, for star-like
partially dependent networks, number of dependent networks
has an influence on the robustness of networks, but robustness of
a loop-like system is independent of the number of coupled
networks [25, 26]. Each node within the network is not only
connected to its own network nodes but also has coupled
relationship with nodes in other networks, and this allows
seemingly harmless interference to spread like ripples through
the coupled network, and ultimately lead to catastrophic
consequences [17, 27].

In addition to interdependence between networks, there often
exists interconnected coupling relationship in the real system.
Bagrow et al. showed that interconnected networks exhibit
surprising percolation properties like the decoupling of
interconnected network due to random failures before the
network collapses [28]. And interconnected nodes play a key
role in the interconnected networks, and failures of these nodes
will have a significant impact on network integrity such as
Alzheimer’s disease has a destructive effect on the connections
between systems [29, 30]. In the case of epidemics with a high
transmission rate, vaccination of interconnected nodes is more
effective in controlling the spread of diseases than vaccination of
high-degree nodes [31]. Otherwise, the density of interconnected
links also has a significant impact on the system robustness. For
example, the level of mobility between cities has been shown to
affect the epidemiological transition at the meta-population
level [32].

The research on dynamic networks has also attracted more
and more attention. For better understanding dynamical
characteristic of real networks such as web of sexual contacts,
the nervous system, power grid, and metabolism system, Holme
et al. proposed the concept of temporal network and defined that
the links only exist intermittently to describe the dynamic
changes of network structure over time [33]. Considerable
research has found that this intermittency has a profound
impact on dynamic resilience [34]. Recently, Gao et al.
proposed an analytical framework to identify the natural
control and state parameters of a multi-dimensional complex
system, thereby helping to derive effective one-dimensional
dynamical expression and accurately predict system resilience
behaviors [35]. Furthermore, Duan et al. found that dynamical
coupled network can accelerate the cascading process [36].

This makes us ask the following questions: Is the network
system with different coupling patterns safe and stable? How do
we prevent system failure? System structural robustness and
dynamical resilience play a crucial role in reducing risk and
mitigating damage [37–39]. The network structural robustness
relies on their network connectivity and can be defined that the

ability to retain their connectivity when a portion of their nodes
or edges are removed. And, system dynamical resilience
characterizes the ability of a system to adjust its activity to
maintain its basic functionality in the face of internal
disturbances or external environmental changes. In this
review, we will focus on recent studies in robustness of
coupled network with different coupling patterns to learn
more about the subject for more readers.

2 ONE-TO-ONE DEPENDENCY COUPLED
PATTERN

Based on dependency relationship between a power network and
an Internet network were implicated in an electrical blackout that
occurred in Italy, Buldyrev et al. proposed a fully interdependent
network model, in which the coupling pattern means one-to-one
interdependence of nodes within two networks [18]. When a
node in the network is under attack or disabled, the dependent
node within the other network will also fail, and cascading failure
occurs in the network system. They studied the percolation
behaviors in this system under random attack, which triggered
a surge of coupled network robustness. Their findings highlighted
that the giant component of the system shows a first-order abrupt
transition phenomenon with the increase of attack strength that is
different from continuous second-order phenomenon of single
network. And the results also implied that the broader degree
distribution makes the system more vulnerable by using the
percolation theory. Since not all nodes in the network are
dependent on each other in the real scenario, Parshani et al.
presented a partial dependent network model, that is, only partial
nodes are interdependent between two networks, as shown in
Figure 1A [24]. Based on the same failure mechanism with a fully
dependent network model, they found the phase transition
behavior of network changes from a first-order phase
transition to a second-order phase transition with the decrease
of coupling strength q between two networks.

Some important infrastructures in the real network have high
connection strength and are often considered as attack targets in
the network system. Huang and Dong et al. studied the
robustness of fully and partial interdependent networks under
targeted attacks based on nodes degree [40, 41]. The results show
that it is difficult to maintain the robustness of interdependent
network by protecting high degree nodes. Xia et al. studied the
robustness based on the dependencies in real power and
communication networks and revealed the maximum expected
payoff for an attacker is affected by the coupling pattern [42, 43].

In fact, more than two networks dependent on each other
depend on each other to form a real system. This makes multiple
interdependent network systems attract more attention.
Furthermore, Gao et al. generalized two dependent networks
to n networks (NON) with one-to-one dependency coupling
pattern, including some coupled structures like tree, star, and
loop which are shown in Figure 1B–D [25]. By developing
mathematical frameworks, they numerically and analytically
studied the robustness of the system. And, Duan et al. studied
the robustness of dependent network by considering dynamical
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behaviors of nodes within networks triggered by marginal
perturbations [36]. They proposed a more generalized
framework based on the dynamics of dependent networks and
studied the phase transition conditions of dependent networks
under various failure mechanisms. They found the analytical
expressions for the critical conditions of the first and second
phase transitions, and the first phase transition occurred in the
weakly dependent network. About directed dependency links, Liu
et al. developed a framework to study the system robustness by
comparing undirected dependency links. They also found that
effect of in-degree and out-degree correlations within the system
[44, 45]. Further studies on the impact of different attacks on the
one-to-one dependent networks, such as localized attacks [46,
47], overload failures [48], and k-core failure mechanisms [49],
have also yielded meaningful results. And different topologies
within the network such as group [50], similarity [51, 52],
correlation [53], and clustering [54–56] have significant
implications for real systems.

For this coupling pattern, one-to-one dependency links is the
primary factor leading to network cascading failure. These results
generally revealed when connection density within networks is
strengthened, and the proportion of dependent nodes within the
network is reduced, it can resist attacks to a large extent and
reduce the scale of cascading failure. Moreover, unlike the phase
transition behavior of a single network, the phase transition

behavior exhibited in the system is the first-order jump
behavior. This mutation-like behavior further expands the
vulnerability of network system and makes it less easy to
protect. And these results also gave us on how to design more
robust and resilient real networked systems.

3 COUPLED PATTERN WITH
MULTIPLE-SUPPORT RELATIONSHIP

The studies of the above dependent networks are restricted by the
condition that a functional node in a network depends on one and
only one node in the other networks. However, in the real
networks, the dependent relationship is often multiple support,
as shown in Figure 2 from Ref. [57]. For example, multiple
directed-support links exist between power stations and
communication base stations in power and communication
networks. Shao and Dong et al. proposed a coupled network
model with multiple support-dependency relationships [58, 59].
And for this case, functional nodes have at least one functional
support link from other networks and belong to the giant
component during the cascading failure process. Then they
also provided the analytical expressions on remaining size of
the giant component and critical threshold, where the size of the
giant component approaches zero. And for the different coupling

FIGURE 1 | (A) Schematic illustration of partial one-to-one dependency relationship, where only faction qij � qji � 7
10 of nodes dependent on each other between

sub-networks i and j, and red and black links denote inter-dependency and intra-connection links respectively. (B–D) Taking five sub-networks as an example,
schematic illustration of Network of Networks (NON) with basic dependent structures, star (B), tree (C), and loop (D). And a qij (i, j � 1, . . ., 5) fraction of nodes in network i
dependent on nodes within network j.
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structures, star, tree, and loop, Dong et al. developed a framework
and extended the case of two networks to n networks with
multiple support-dependence relationship [23]. And the
findings implied that as connectivity density within network
increases, the first-order transition region becomes smaller and
the second-order transition region becomes larger. Recently,
Zhou et al. proposed a two-layer coupled network model with
multiple support-relationship and assumed that functional nodes
belonging to giant component within own network have only
dependent m support-link that can be survived during a
cascading failure process [60]. They also studied the influence
on intra-layer and inter-layer degree correlation on network
robustness behaviors. The results suggest that such
correlations have a significant effect on continuous phase
transitions and a small effect on discontinuous phase
transitions. Very recently, Dong et al. developed a theoretical
framework to study the structural robustness of the coupled
network with multiple effective dependency links [57]. It is
defined that a functional node requires at least M support-
links from the other network to function. In the model, the
authors presented exact analytical expressions for the process of
cascading failures, the fraction of functional nodes in the stable
state, and provided a calculation method of the critical threshold.
The results indicated that the system will undergo an abrupt
phase transition behavior after initial failure.

Different from the one-to-one dependent network model, the
multiple dependent network model describes more realistic
dependency relationship in the real system. It can be observed
in the real systems, such as communication and grid systems
multiple-support each other [18]; social networks (e.g., Twitter)
are multiple coupled because they share the same participants
[61], and multi-modal transport networks are composed of
different traffic systems (e.g., buses, subways) sharing the same
location [62]. Similar to one-to-one interdependent network,
above studies found that the system occurs a first order phase
transition by defining failure mechanisms. And, the system needs

more internal connection density to avoid collapse when it
requires more effective support-links. These studies revealed
the robustness of multiple effective dependent networks, which
can help to better understand the cascading failure propagation
mechanism of the real system.

4 INTERCONNECTED NETWORK

From the above analysis, one can observe that the occurrence of
cascading failures largely relies on dependency relationship
between networks, such as blackouts in power grids, financial
crisis, etc. Since the existence of dependency attributes, small
perturbations in one network are amplified throughout the
dependent network system. However, the natural networks
(systems) are often coupled together in the way of
interconnected networks like brain and cellular networks are
comparatively stable and do not crash [63]. In this kind of
coupled network, the interaction between one network and
another leads to the necessary expansion of the complex
network paradigm, including different types of networks and
different types of interactions between them. Unlike the
dependency links, the links within and between interacting
networks have the same attributes that underpin inter-network
connectivity and maintain nodes functionality of the network
system [64].

Leicht et al. developed an analytical framework from
generating functions and studied the robustness of
interconnected networks assuming the similar connectivity
links exist within and between networks [13].

They found that when considering the interaction with other
networks, the threshold to measure network connectivity
becomes very small and the system becomes more robust.
Furthermore, Dong et al. proposed a partial interacting
network model, that means only part of nodes are
interconnected with other nodes in the network and all sub-

FIGURE 2 | Schematic illustration of cascading failure of two networks with multiple support relationship [57]. The curve links denote intra connectivity links within
networks A and B, and red (blue) dash links are multiple support links from network A (B) to B (A). Here we assume that the functional nodes not only belong to the giant
component within own network but also have at least M support links from other network. After suffering initial attacks, the system undergoes different stages of
cascading failures and reaches a steady stable state. During the cascading failure, the functional nodes belonging to the giant component only haveM support links
is the case of the Ref. [60], and M � 1 is the similar to the Ref. [58].
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networks coupled together in this way, as shown in Figure 3A
from [65]. They found that increasing the interlinks and
interconnected nodes can significantly increase the robustness
of the system. Additionally, the continuous phase transition that
occurs in a single network disappears, the divergence of the
continuous phase transition response function is eliminated,
and the system becomes more stable. And, for this kind of
network model, the results imply that both analytically and
numerically that influence of interlinks on the percolation
phase transition is similar to an external field in a
ferromagnetic-paramagnetic spin system. By defining the
critical exponents δ and c, these scaling indexes govern the
external field and these exponents are consistent with
Widom’s identity [65, 66]. Moreover, in the real-world
scenarios, tons of sub-networks interconnect with others to
form a more generalized network, modular interacting
network system, and any pair of sub-networks is randomly
selected and coupled each other, as shown in Figure 3B from
[26]. Furthermore, the results implied that there exists an optimal
coupling structure, where the system shows the most resilient
behavior to withstand failures.

For this case of coupling pattern, network failure behavior was
studied by considering functional nodes in the network belong to
the giant component of whole coupled networks. As a realistic
network model, the interacting network model shows potential
applications to epidemic and information spreading, link
prediction, and recommendation algorithms. In addition, this
interconnected network can also be applied to many different real
systems. For example, in the climate network, each isobaric layer
of the atmosphere is represented as a complex network, and

different isobaric networks are connected [67], the European air
transport multi-path network, in which each airline is a sub-
network, and public airports can be modeled as coupling nodes
[68], the epidemic spreads on interconnected social networks
[69]. Due to the same attributes within and between this kind of
coupled network, its phase transition behavior often occurs in a
second-order phase transition. When the proportion of
functional nodes belonging to the largest connected group in
the network approaches zero, the critical threshold of the network
can be determined. Basically, the research results of this coupled
network show that increasing the connection density of network
can significantly improve the system robustness.

5 DISCUSSION

In addition to the above coupling patterns, there is a mixed
coupling, and dependency links together with inter-connected
links between networks. In the model, researchers investigated
the case of both interdependent and interconnected links
coexistence, where two types of coupled links are randomly
connected between two networks. And, they found an
interesting phase transition phenomenon, hybrid transition,
where the size of giant component both shows abrupt and
continuous transition as attacking strength increases [70]. This
mixed coupling pattern has not only inter-network
interdependence but also includes inter-network connectivity
to describe the coupling pattern of real-world scenario [71].
With the development and popularization of the Internet of
Things, all things will be interconnected in the near future,

A B

FIGURE 3 | Schematic illustration of interacting network with different topological structures. (A) Every sub-network is coupled to all other sub-networks from inter-
connected coupling pattern in the Ref. [50]. And, different colors denote different topological structures of sub-networks. (B) Each sub-network has connections to other
specific sub-networks not all other sub-networks from [26]. Network A follows a power-law degree distribution. Sub-networks a and b within network A follow Poisson
sub-degree distribution. The links in network A follow the Poisson inter-degree distribution, as shown in sub-networks c.
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where there exists the physical structure of interdependence, and
at the same time there exists the interconnected property.

6 CONCLUSION

Network robustness is becoming increasingly important as we enter
age of smart technologies, such as data analysis, SMART Grid, and
the Internet of Things (IOT), etc. Complex networks can realistically
reflect the coupled relationship in the real scenarios and also
permeate different disciplines at the same time, gradually
sublimates into an important research field, network science. The
research of coupled networks with various patterns is driven by the
development of current science and technology; at the same time, it
can simulate and guide the system, where we live, from amulti-high-
dimensional perspective. In this review, we briefly introduced the
advances in robustness of coupled network with various patterns.
The phase transition behaviors between networks, how to mitigate
failure, and possible future filed of coupled network are explained
and considered. In addition, coupled networks have found

important application and help us to deal with crises and hidden
dangers in the real systems.
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