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By extending micropayment channel technology and building a transaction
network, the Lightning Network solves inefficient bitcoin transactions. Currently,
more than 1,000 Bitcoins have been deposited in the Lightning Network. In
designing the Lightning Network routing protocol, simulating its transactions, and
evaluating the network robustness, researchers have almost always used the
Barabasi Albert Model as a substrate network. In particular, as the
network grows in size, it becomes particularly important to automatically
establish links for the network of joined nodes—the autopilot function—and it
becomes a crucial question whether the Barabasi Albert Model as the underlying
network for the autopilot function conforms to the real topology of the Lightning
Network. In this paper, we construct the temporal network of Lightning Network and
compare the topological properties of Lightning Network with those of
Barabasi Albert Model of the same scale in detail. Lightning Network has a large
gap with Barabasi Albert Model in terms of assortativity and network diameter. We
found that nodes tend to connect to nodes with greater Closeness Centrality in
terms of node preference connectivity. Our findings suggest that using the Barabasi
Albert Model as the underlying network for the autopilot function is not a reasonable
choice.
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1 INTRODUCTION

Bitcoin [1], one of the representatives of blockchain technology, has been developing
rapidly since its inception, but since its release Bitcoin has been suffering from problems
such as latency, throughput, capacity [2–6]. Using payment channels [7] to enable off-
chain payments has become a promising solution to the bitcoin scalability problem. For the
bitcoin network, if there are multiple transactions between two accounts, there is no
need for both parties to synchronize their respective fund states to the bitcoin network at
the end of each transaction, The two parties can build their own transaction channel and
deposit a certain amount of money, and then synchronize the status of both parties’ funds to
the bitcoin network when the final transaction is completed. This ensures the final state of the
funds, reduces the waiting time for both parties on the inefficient bitcoin network and
increases the frequency of transactions, and also solves the storage and even privacy
problems.
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The Lightning Network [8] is developed from micropayment
channel technology, extending the one-way payment channel
into a two-way payment channel. It solves the historical contract
voiding problem in the dual-channel through RSMC.1 The
problem of cross-node transactions is solved by HTLC,2 which
finally forms a trusted distributed payment network under the
chain. As shown in Figure 1, node A and node B need to make a
transaction, and nBTC can be jointly funded between A and B in a
2-2 signature address, where A contributes n1 BTC and B
contributes n2 BTC, n1+n2 � n. When the transaction ends,
A and B use their own keys to retrieve the funds belonging to
them. Similarly, B and C can jointly fund the channel between B
and C. When A and C need to transact, since there is no directly
connected channel between A and C, A and C can transact
through B, and B can earn a certain fee. Since its launch in January
2018, the Lightning Network has grown by leaps and bounds so
far to a network of over 10,000 nodes, nearly 40,000 edges, and
over 1,000 bitcoins stored in channels.

The rapid development of the Lightning Network has
generated a great deal of interest in their topological
properties. Although the transaction data in the Lightning
Network is not publicly available, the channels between nodes
in the network are viewable and recordable in real-time.3

Therefore, collecting data from the date of release of the
Lightning Network and building the network allows us to
analyze how the Lightning Network has evolved.

The efficiency of routing [9], the simulation of transactions
[10–18], and the robustness of the Lightning Network [19–21] are
utterly dependent on the underlying topology of the network.
After the release of the Lightning Network white paper, most of
the studies simulated the Lightning Network using the Barabasi
Albert Model [22] as the underlying network, although there were
studies that used star topology as the underlying structure for
simulation [10–14]. Since the launch of the Lightning Network,
selecting appropriate connections for the newly added nodes
sparked a heated discussion in the community due to the
increase of its network size.4 The community discussion
focused on the appropriateness of using the Barabasi Albert
Model as a guiding model when setting the nodes to
autopilot mode.

In general, whether the topological properties of the Lightning
Network are similar to those of the Barabasi Albert Model is an
urgent question to be answered, which concerns the design of
routing protocols, the simulation of transactions, the robustness
of the network, and various other aspects. In Martinazzi et al’s
study [11,15,18,19], the degree distribution of the Lightning
Network conforms to the Barabasi Albert Model, and the
distribution of the edge nodes of the Barabasi Albert Model is
also a good approximation of the edge nodes in the Lightning
Network. However, our analysis shows that the edge nodes of the
Lightning Network are not similar to those of the Barabasi Albert
Model, although the distribution of degrees of the Lightning
Network fits the Barabasi Albert Model of the same size with
decreasing errors. There is a massive gap between it and the
Barabasi Albert Model in terms of diameter, assortativity, and

FIGURE 1 | Illustration of payment channel network. A and B can jointly contribute n bitcoins to establish a channel, and when they need to trade, they can do so
through the channel. And when there is no channel between A and C, the transaction can be done through B.

1[Dataset] (2021). Rsmc. [Online]. Available: https://github.com/
lightningnetwork/lightning-rfc/
2[Dataset] (2021). Htlc. [Online]. Available: https://github.com/lightningnetwork/
lightning-rfc/blob/master/02-peer-protocol.md/
3[Dataset] (2021). lnchannels. [Online]. Available: https://ln.bigsun.xyz/

4[Dataset] (2020). is the barabasi albert model a reasonable choice for the autopilot?
[Online]. Available: https://github.com/lightningnetwork/lnd/issues/677
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connectivity mechanism of the network.We explored the possible
reasons for this gap. Also, the preferential connection mechanism
[22] of the Barabasi Albert Model does not apply to the
connection mechanism of the whole Lightning Network. By
extracting the newly created connections in the Lightning
Network, we argue that the newly joined nodes prefer to
connect nodes with greater Betweenness Centrality than the
degree-first connection mechanism. We argue that using the
Barabasi Albert Model to simulate the topology of the
Lightning Network is not a perfect choice.

Our main contributions can be summarized as follows:

• We constructed the network topology of the Lightning
Network for almost 1,200 days and analyzed the
topological evolution of the network.

• We point out by comparing the Barabasi Albert Model of
the same size that although the error in fitting the
distribution of the Lightning Network degree is getting
smaller, its diameter is much enlarged due to the
crosstalk between the nodes compared to the Barabasi
Albert Model of the same size.

• We point out that the Lightning Network is the exact
opposite of the assortativity by comparing the Barabasi
Albert Model of the same size, which may come from
the connection mechanism of the merchant nodes in the
Lightning Network.

• We find that the newly joined nodes in the Lightning
Network preferentially connect the nodes with greater
Closeness Centrality than the degree-first connections.

2 RELATED WORK

Current research on the Lightning Network focuses on three aspects:
topological properties [15,19,20,23–28], security [9,14,29–35], and
routing methods [11,12,17,36–39]. Although all the above studies are
very important aspects of Lightning Network, they are strictly
dependent on the underlying topological network. In the process
of simulating Lightning Network using the underlying topology,
different teams have proposed different topologies [10,11,13–17], but
in the end, there is a preference to use the Barabasi Albert Model as
the underlying network for relevant simulations, especially in the
future development of the network, whether to use the Barabasi
Albert Model as the underlying network for autopilot function in
particular, the question of whether to use the Barabasi Albert Model
as the underlying network for the automatic driving function has also
become the focus of community discussions (isb, 2020). Therefore, it
is a very important issue to figure out whether the topology of the
Lightning network is similar to that of the Barabasi Albert Model.

In terms of the connection of nodes, Bertucci et al. [26]
investigated that the competition between nodes followed the
Bertrand model5 and pointed out that the centralized network
structure must not be the optimal network structure. Rincon et al.

[33] classified the connections between nodes in the network into
three types and evaluated the contribution of different kinds of
connections to the network structure. Avarikioti et al. [6]
analyzed the impact of different charging mechanisms of
nodes on the robustness and connectivity of the network.
Avarikioti et al.[24] then analyzed the structure and the
equilibrium of the Lightning Network from the perspective of
the network creation game [40]. They considered a node as a
decision-making individual. They analyzed the effect of the
node’s policy on the optimal structure of the network from
the perspective of the network creation game. Lange et al. [28]
analyzed how the network would evolve under different
connection strategies of nodes. This is the first article to
predict the future development of the network from a
network topology perspective. However, the article only
directly selects Betweenness Centrality, Closeness Centrality,
and degree as the connection metrics of nodes to predict the
future development of the network. It is not clear whether the
selection of metrics is consistent with the development of the
Lightning Network.

3 DATA AND BASIC DEFINITIONS

In this section, we will describe in detail how we acquire and
process the data and how we build the data of the network into
graphs.

3.1 Datasets
We collected data from the website3 for all channels of the
Lightning Network from the date of birth - January 12, 2018,
to April 20, 2021, for a total of 147,256 channels. From the birth of
the Lightning Network to April 20, 2021, the Lightning Network
has 147,256 channels, which includes channels that have been
closed and channels that are still open. The information of each
channel contains the following fields:

• short_channel_id: a set of numbers of length 16 which
represents channel identity

• satoshis: channel capacity between two nodes, 1BTC �
1,00,000,000 satoshis

• nodes: unique identification of nodes at both ends of the
channel

• open/close: contains a lot of information about the opening
and closing of the channel, where the channel opening and
closing time is the key information.

By keeping the short_channel_id, satoshis, nodes fields in the
original data above, the channel open and close times in the open
and close fields are processed as the standard time day_open_time
and day_close_time. we separate the two nodes in nodes filed,
since node id is unique in the network, and to speed up the
process, we replace the two nodes in the nodes field with unique
numbers, and denote them as node0_id and node1_id, and
day_open_time and day_close_time are the time when the
edges in the network are connected and disconnect time. Our
processed set of fields is as follows:

5[Dataset] (2021). Bertrandcompetition. [Online]. Available: https://en.wikipedia.
org/wiki/Bertrand_competition
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short_channel_id, satoshis, day_open_time day_close_time,
node0_id, node1_id.

Building the information of the channel into a network
requires using the fields

node0_id, node1_id, day_open_time, day_close_time.
At this point, we can process the raw data and obtain the data

that can analyze the Lightning Network channels and construct
the Lightning Network’s evolution.

3.2 Construction of Graphs
Our goal is to construct a temporal graph of the Lightning
Network, analyze the topological property changes since the
Lightning Network has been online, and compare it with the
same size Barabasi Albert Model. Therefore, we have processed
the channel data of the Lightning Network so that we can
reconstruct the growth of the Lightning Network and analyze it.

The Lightning Network can be represented using a
timestamped undirected graph G � (V, E, W, To, Tc), where V
represents the set of nodes in the Lightning Network, E represents
the edges between nodes, i.e., the channel in the original data, and
W represents the capacity in the channel, i.e., the satoshis of the
original data. To and Tc represent the time when the channel is
opened and closed. For example.

((7093, 12 913), 505149x622x0, 300 000, 2018/1/20/9 : 43,
2019/8/31/18 : 34).

This indicates that a channel 505149x622x0 with a capacity of
300 000 satoshis exists between nodes 7,093 and 12 913, which
was opened on 2018/1/20/9 : 43 and closed on 2019/8/31/18 : 34.

We read the data in days, and we add the node and the edge to
the network when the time of edge creation is read, and we delete
the edge when the time of its closure is read. When the degree of
the node is 0, we consider this node dead. It should be noted that
the channels in the Lightning Network are available in both

directions, i.e., as long as a channel exists between the nodes, then
whoever initiates the transaction can do so, so we use an
undirected graph for the representation. At the same time,
there is more than one connected component in the Lightning
Network, but the largest connected component occupies more
than 95% of the nodes, so the rest of the analysis in this paper is
based on the largest connected component, except for the channel
analysis, because the analysis of the channel is not required to
build a graph.

4 METHODS AND RESULTS

In this section, we will first start from the topological point of
view; after analyzing the three stages of development of the
Lightning Network, we fit the distribution of the degrees of
the Lightning Network with 100 days interval, analyze the
variation of the assortativity, diameter, etc. of the network and
compare it with the network of the same Barabasi Albert Model.
In the section of preferential connection of nodes, we analyzed the
problem of preferential connection of new nodes of the Lightning
Network by obtaining the data of newly created edges.

4.1 Topology Analysis
4.1.1 The Three Stages of Development of the
Lightning Network
The idea of the Lightning Network was proposed by [8] in 2016
and officially launched on January 12, 2018, and by April 20, 2021,
the Lightning Network already has 10,930 nodes and 39,962 edges.
The visualization of the Lightning Network is shown in Figure 2.

The development of network nodes and edges is shown in
Figure 3. Where the x-axis represents the time and the y-axis
represents the number. The blue line represents the development
of nodes, and the yellow line is the development of edges. We can
divide the development of the Lightning Network into three stages.
The first stage, from January 2018 to January 2019, we call the “start-
up period.” This phase is characterized by the slow growth of both
nodes and edges, and the network is still in a relatively preliminary
stage. The second phase is from January 2019 to June 2019, which we
call the “outbreak period.” This phase is characterized by the fact that
in addition to the accelerated growth of nodes, edges start to grow
wildly. Edges overgrew during this phase from less than 10,000 to a
peak of over 40,000. In addition to the increasing number of bitcoin
transactions, a campaign called “Lightning Torch” was launched in
January 2019 and played a huge role. The drive covered dozens of

FIGURE 2 | Lightning Network Visualization - April 20, 2021. The
presence of a large number of star structures at the edge of the network.

FIGURE 3 | Lightning network nodes and edges growing with time.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7941604

Wang et al. Lightning Network’s Underlying Topology

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


countries around the world and was attended by many vital
influencers, resulting in an almost exaggerated growth of the
network. However, after rapid growth, the Lightning Network
experienced a decline in size. We call the period from June 2019
to now a “cooling-off period.” The edges in the network continue to
drop and eventually stabilize around 35,000, and node growth begins
to slow down. Such a trend has beenmaintained until now.We believe
this is due to the irrational growth experienced in the last round. Due
to the propagation effect, Lightning Network enthusiasts started to
join the network and build more edges, but as a transaction network,
after the irrational growth, the “supply” market of the Lightning
Network became larger than the “demand” market. The edges
between nodes are “over-resourced,” and the number of edges is
decreasing. The reason why the number of edges has remained stable
around 35,000 after June 2019 is also that the network is in a state of
“supply and demand balance.” As you can see, after January 2021,
there is a new increase in the number of nodes and edges in the
network. This is because the price of Bitcoin has increased

dramatically, from under $30,000 to over $50,000 as of April 20,
2021. What we can speculate about the development of the Lightning
Network after April 20 is that it will see a new round of growth if the
price of bitcoin continues to rise.

4.1.2 Degree Distribution
The degree distribution refers to the proportion of nodes
corresponding to the degree in the network. By constructing the
Lightning Network as a simple undirected graph, we can calculate
the degree distribution of nodes as time changes. First, we tested
whether the degree distribution of the Lightning Network
conforms to the scale-free property. In a scale-free network, the
probability that a node with node degree k is selected to generate a
new connection satisfies the following equation [22,41,42]:

P k( ) � k−α (1)

The P(k) represents the probability of being selected nodes,
where k is the degree of the node and α is the parameter, usually

FIGURE 4 | Complementary cumulative distribution of degrees per 100 days of the network and parameters fitted using powerlaw.
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between 2 and 3. To verify whether the Lightning Network meets
the scale-free property, we fit it using the python package
powerlaw, which is more advanced than previous fitting tools
and is also easier to use [43]. We give the fitted parameters α and
error sigma by powerlaw.

Figure 4 gives the complementary cumulative distribution
of degrees of the Lightning Network every hundred days, where
the x-axis is the degree of the node, and the y-axis tabulates the
probability that the node is greater than the degree
corresponding to the x-axis. Invariably, the Lightning
Network shows a decline in the distribution at the tail,
which indicates the presence of hub nodes with vast degrees
connected to other nodes in the network. The red line is the
result of the fit using powerlaw, and Table 1 gives the fitted
parameters α and the corresponding error sigma. It can be seen
that except for the slightly larger error at the beginning of the
development of the Lightning Network, the error of the
Lightning Network fit after 400 days is less than 5%, which
indicates that the Lightning Network is a scale-free network.
The error at the beginning may be that the size of the network is
still relatively small.

4.1.3 Disassortativity
In a network, nodes between different degrees may be random or
inclined. Degree assortativity is mainly used to examine whether
nodes of similar degrees tend to connect. A network is said to be
assortative or positively correlated if nodes with large (small)
degrees tend to connect nodes with large (small) degrees overall.
If nodes with a large (small) degree tend to connect nodes with a
small (large) degree, then the network is said to be disassortative
or negatively correlated [44]. The equation for assortatvity is as
follows:

r � 〈kikj〉 − 〈ki〉〈kj〉��������������������������
〈k2i 〉 − 〈ki〉2( ) × 〈k2j〉 − 〈kj〉2( )√ (2)

Where ki and kj are degrees of the nodes at either end of a link and
< > represents the average overall links. It varies between -1 and
1: For r > 0 the network is assortative, for r < 0 the network is
disassortative, and for r � 0 the network is neutral. If a network’s
assortativity is positive, hub nodes tend to be connected with
other hubs and vice versa.

We calculated the assortativity coefficient for the network. The
x-axis is the time, and the y-axis is the assortativity coefficient.
Since the number of nodes in the first 2 days of the network is
small, we cannot calculate the assortativity coefficient for the
network. The assortativity coefficient from the third day is shown
in Figure 5, except for the third day and the fourth day, the value
is greater than 0. From the fifth day until the last day, the
assortativity of the network is less than 0. This indicates that

the network is disassortative, i.e., Smaller nodes tend to be
connected to larger nodes and vice versa.

Since there are some thresholds in the configuration of the
Lightning Network, nodes with payment needs that want to
access the network, these service providers offer excellent
options to easily access the Lightning Network using their
products by paying only the appropriate amount of money. As
an example, the fifth-largest node in the network, OpenNode6, is
dedicated to providing access to commercial payments.
OpenNode currently has a total of 793 channels, accounting
for 1.787% of the total number of channels in the network. Other
nodes such as CoinGate7, with 1,214 channels or 2.736% of the
total number of channels in the network, provide similar services.
There are not a few such nodes in the network. Instead, as shown
in Figure 2, many similar nodes exist at the edges of the network,
forming a local star structure, which could be the reason for the
disassortativity of the Lightning Network.

We also calculate the assortativity of the Barabasi Albert
Model of the same size, and we can observe that the
assortativity of the Barabasi Albert Model is almost the exact
opposite of that of the Lightning Network. However, it also shows
some disassortativity. It gradually stabilizes around -0.03 as the
network size increases, while the lightning network finally
stabilizes around −0.2, a difference of two orders of magnitude.

Current research [45] has shown that the assortativity affects
the efficiency of information dissemination in the network, and
the existence of larger nodes in the lightning network as hub
nodes can accelerate the process of information dissemination to
a certain extent. At the early stage of lightning network
construction, the community was committed to developing the
lightning network into a peer-to-peer structure, and as a result,

TABLE 1 | Parameters and errors of the fit.

Day 100 200 300 400 500 600 700 800 900 1,000 1,100 1,192

α 2.302 2.272 2.305 2.24 2.245 2.141 2.217 2.194 2.19 2.136 2.151 2.158
sigma 0.104 0.055 0.082 0.06 0.041 0.032 0.049 0.048 0.047 0.039 0.035 0.03

FIGURE 5 | Network assortativity changes.

6[Dataset] (2021). opennode. [Online]. Available: https://www.opennode.com/
7[Dataset] (2021). coingate. [Online]. Available: https://www.coingate.com/
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relevant routing algorithms were designed, and the topology of
the network was constructed. However, as the size of the network
increased, hub nodes still appeared. Perhaps as the network grows
in size and changes in property, the network’s routing protocols
may need to be updated to accommodate the new topology.

4.1.4 Diameter
The diameter of a network is the maximum value of the shortest
path between any two nodes in the network. Thus, it is a
fundamental criterion used to measure the level of
connectivity of a network. In general, individuals in a smaller
diameter group are connected through fewer intermediates, and
transfers between individuals may be faster than in a larger
diameter group [44].

The diameter of the Lightning Network evolves, as shown in
Figure 6. Its diameter rises rapidly, reaches 12 within the first
200 days, andmaintains 12 for the vast majority of the subsequent
time, reaching a maximum diameter of 14, but then drops back to
12. Meanwhile, we compare the diameter of the Lightning
Network with that of a BA network [46] of the same size,
where the same size means that both networks have the same
number of nodes and the similar number of edges. The results are
shown in Table 2. Surprisingly, although the size is the same, the
diameters of the two networks are vastly different. The trends are
also entirely different. The diameter of the Lightning Network is
at least twice as large as that of the BA network most of the time.
The diameter of the Lightning Network rises slightly and then
stabilizes at 12, while the diameter of the BA network is
decreasing.

Why the diameter of the Lightning Network is such a trend, we
explored the reason for its creation by finding the maximum
shortest path between nodes. Figure 7 shows the visualization of
the Lightning Network on day 100, and it is easy to see that there
are many tandem connections between nodes at the edge of the
network. Figure 8 shows the visualization of the Lightning

Network on day 200, and we can see that this crosstalk
becomes more serious. Between day 100 and day 200, the
diameter of the Lightning Network increased from 9 to 12 and
has been maintained up to now. We extracted the longest and
shortest paths at each stage and found that these longest
diameters were associated with one of the crosstalk structures
[15 307, 6,504, 2,947, 13 555, 9,610, 13 606, . . . . . . ]. We removed
this tandem structure, recalculated the diameter change of the
network every 100 days, and found that the network’s diameter
decreased, as shown inTable 2. This indicates that the presence of
this crosstalk structure has been influencing the diameter of the
network. Although the longest crosstalk structure in the network
was removed, the network’s diameter still reached 11 because
other crosstalk structures in the network affected the network’s
diameter. The crosstalk phenomenon between nodes caused the
rapid increase in node diameter at the beginning of the
development of the Lightning Network. This crosstalk has
been influencing the network’s diameter. From the [23], it is
known that there are three reasons for nodes to establish
connections in the Lightning Network: 1. Business/Financial
Interests, 2. Gratification from social connections and
promoting participation in the network, and 3. privacy,
transparency, and autonomy of the community. As the
tandem connection between nodes does not lead to increased
benefits and may cause a decrease in transaction efficiency or
even an increase in transaction costs. This tandem also does not
lead to a sense of participation in the autonomous community
because it is only one connected node and does not generate
influence. So one possible reason is that it is a social behavior. The
act of social crosstalk between nodes expands the diameter of the
network, and this phenomenon is prevalent in the Lightning
Network.

4.2 Channel and Node Preference
Connection Analysis
In this section, we will analyze the Lightning Network channels
from a channel point of view and the tendency of the connections
between the nodes.

4.2.1 Channel Analysis
Channels are the foundation of the Lightning Network
transactions, and a specific capacity exists for the nodes at
both ends of the channel to make transactions (as shown in
Figure 1). The nodes top up the capacity at both ends of the
channel after it has been established. Thanks to the robust privacy
design of the Lightning Network, only the starting node, and the
destination node can know the specific information between the

FIGURE 6 | Diameter change of the network.

TABLE 2 | Changes in network diameter before and after removing tandem nodes and comparison with BA model.

Day 100 200 300 400 500 600 700 800 900 1,000 1,100 1,192

Diameter

Before 9 12 12 11 11 12 12 12 12 12 12 12
After 9 9 9 9 9 9 9 9 10 10 10 11
BA model 7 6 6 6 5 5 5 5 6 6 6 6
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nodes of the transaction [11]. Therefore, the Lightning Network
channel analysis helps us understand more deeply the
composition of the funds of each node in the Lightning
Network and clarify the status of the channel.

Whether a channel in a Lightning Network is disconnected
after it is established depends on the nodes at both ends. There are
three modes of channel disconnection in the Lightning Network:
Cooperative close, Force close, and Fraudulent Force close. In a
cooperative close, both channel participants agree to close the
channel and settle the final state of the channel onto the
blockchain. If only one participant is online or if the
participants disagree on the state of the channel, one
participant can perform a force close of the channel without
the cooperation of the other participant. If a node in the channel

tries to broadcast a transaction that is not recognized by both
parties, this channel closure is called Fraudulent Force Close. A
penalty transaction punishes a malicious node for attempting a
fraudulent force close. The penalty transaction transfers the
malicious node’s portion of the funds in the channel to the
node that they were attempting to defraud8.

The status of channel openings and closures in the Lightning
Network is shown in Table 3, from January 12, 2018 to April
20, 2021, the Lightning Network has generated a total of
147,256 channels, of which 44,200 channels are still open
and 103,056 channels have been closed. Among the 103,056
channels that have been closed, the largest number of channels
were closed in the cooperative mode as shown in Table 4,
reaching 69,088. The number of channels closed in the force
close mode is 32,439. It is reassuring to note that only 32
channels were closed as fraudulent froce closures over this long
period of time. The remaining 1,497 channel closures are not
recorded in our data.

We calculated the lifetime of the closed channels based on
when the channels were opened and closed. As shown in
Figure 9, where the x-axis is time, and the y-axis is the
duration of channel survival, we took the logarithm of the
corresponding values. What can be derived from the figure is
that there are few channels with survival times greater than
800 days, the number of edges with survival times between 50
and 800 days is approximately linearly distributed, and the
number of edges with less than 50 days is again more. The
largest number of edges with a survival time of 1 day is 3,699,
and there are also nearly 3,000 edges with a survival time of fewer
than 24 h. This may indicate that single small transactions are
more present in the network.

In terms of the capacity of the channels, the difference
between different channels is vast, as shown in Table 3, the
largest capacity of the channels is up to 5,00,000,000 satoshis
(5BTC), and the smallest capacity is 1,050 satoshis
(0.00 000 105BTC). The average is 3,1,32 ,041 satoshis, and

FIGURE 8 | Day 200 Visualization of networks and their tandem nodes.
As the network grew in size, the same sequence of day 100 strung together
more nodes and formed a ring in the network (top left part of the figure), which
has been having a massive impact on the network’s diameter.

TABLE 3 | The number of channels opened and closed.

Status Channel_count

open_channel 44,200
close_channel 103,056
total_channel 1,47,256

TABLE 4 | The number of channels with different closing methods.

Close_type Channel_count

Cooperative 32,439
Force 69,088
Fraudulent 32
Unknown 1,497

FIGURE 7 | Day 100 Visualization of networks and their tandem nodes.
A large number of tandem structures can be seen at the edges; The solid red
line shows the network’s diameter.

8[Dataset] (2021). Types. [Online]. Available: https://github.com/
lightningnetwork/lightning-rfc
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the median is 5,97 ,920 stoshis. We can speculate that the vast
majority of channel capacities in the network are small. The
specific distribution of the capacity of the channels is shown in
Table 4. Channels with a capacity of fewer than 100,000,000
satoshis (1BTC) are in an absolute position, accounting for
more than 99.7% of the total. This is because it is more cost-
effective to use the Bitcoin network for larger transactions, and
the Lightning Network itself is designed for small amounts of
transactions. Therefore, channels with capacities greater than
1BTC are in the minority, and these channels with huge
capacities almost always come from the merchant nodes in
the network. For example, for nodes larger than 4BTC, the
relationship between these nodes is derived by comparing them
with the data on 1 ml.com9. Unsurprisingly, these channels with
huge capacity are connections between merchant nodes in the
Lightning Network. For example, the channel with
short_channel_id 649417x2162x1 connects the fourth largest
node in the Lightning Network, Bitrefill10, and the second-
largest node, bfx_lnd111. Among them, bfx_lnd1 has a total
capacity of 106 BTC, accounting for 8.431% of the entire
network capacity, and 339 connections exist, accounting for
about 0.7% of the number of channels in the entire network.
And the three channels 660987x443x0, 656429x1122x0,
678588x1581x0 are all associated with the largest node in the
Lightning Network, ACINQ12, which has a total capacity of 148
BTC, accounting for 11.728% of the entire network capacity.

4.2.2 Preferential Connection Mechanism for Nodes
Looking for an answer to this question, we can think in
several ways.

First, inspired by the scale-free property of the Lightning
Network, we check whether the directionality of the newly
connected tilts of nodes conforms to the degree-preferential
attachment model. In the degree-preferential attachment
model proposed by Barabasi and Albert [22], new nodes tend
to be connected to existing nodes with higher degree rather than
existing nodes with a lower degree. Mathematically, the
probability of connecting a new node is shown in Eq. 1.

Then, starting from Closeness Centrality [47] and
Betweenness Centrality [48]. Closeness Centrality describes the
distance from a network node to other nodes. The Betweenness
Centrality represents the number of shortest paths through
a node.

Closeness Centrality of a node v is given by the expression

CC u( ) � N

∑u≠vd u, v( ) (3)

where N is the number of nodes in the graph and d (u, v) is the
distance between node u and v. Closeness Centrality measures
how close a node is to all other nodes.

Betweenness Centrality of a node v is given by the expression

BC v( ) � ∑
s≠v≠t

σst v( )
σst

(4)

where σst, where σst is total number of shortest paths between
node s and t, while σst(v) is the number of those paths, that pass
through v.

Under the assumption that the Lightning Network uses the
shortest path for transactions, Betweenness Centrality and
Closeness Centrality have practical implications. When the
nodes in the network have high Betweenness Centrality, the
nodes can earn more fees. On the other hand, when the nodes
in the network have high Closeness Centrality, the nodes
theoretically spend less when making their transactions [24].

To determine whether nodes in the Lightning Network
establish new connections, we first need to obtain the newly
established connections in the Lightning Network and know
who initiated the connections. Still, our data do not provide the
relevant information. We first extracted the dates when all
nodes in the Lightning Network first appeared to solve this
problem. The purpose of this is based on a straightforward fact:
a node that wants to enter the network must have established a
connection with another node by itself, because if no
connection exists by itself, then this node cannot be
discovered by other nodes so that it cannot be selected by
other nodes to create any new connection. So when this node
appears for the first time, it means that this node has actively
established connections with other nodes in the network. This
way, we get the data for the new connection.

To be able to explore the tendency of the nodes to be
connected, we calculated the degree of the nodes in the
network, Closeness Centrality, Betweenness Centrality. and to
make the data uniform, we filtered the data between day 500 and
day 1,000 because the network is almost in a stable state during
this time, the edges almost remained constant and the nodes grew
very little.

If the nodes in the network use the degree-preferential
attachment model [22], then nodes with larger degrees are
more likely to acquire more connections. However, as shown
in Figure 10A, where the x-axis is the degree and the y-axis is the
number of new connections in the response interval. It can be
concluded that there is no degree-preferential attachment for new
connections in the network, but rather a situation where the
number of connections gets smaller as the degree increases. Most
of the nodes in the network are connected to nodes with degree
less than 200, which indicates that nodes do not have a strong
tendency to connect to nodes with greater degree.

The same result appears for Betweenness Centrality.
Figure 10B shows where the x-axis is the Betweenness
Centrality of the nodes, and the y-axis is the number of
connections that respond. The larger the value of the
Betweenness Centrality of the nodes in the network, the fewer
connections they attract. Most of the nodes are connected to
nodes with smaller Betweenness Centrality. This indicates that
the tendency to connect nodes with more significant Betweenness
Centrality is also not strong.

9[Dataset] (2021). 1ml.com. [Online]. Available: https://www.1ml.com/
10[Dataset] (2021). bitrefill. [Online]. Available: https://www.bitrefill.com/
11[Dataset] (2021). bfxlnd1. [Online]. Available: https://www.bitfinex.com/
12[Dataset] (2021). Acinq. [Online]. Available: https://acinq.co/
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Figure 10C shows the relationship between newly created edges
andCloseness Centrality, where the x-axis is the Closeness Centrality
of the node and the y-axis is the number of responsive connections.
This is quite different from the distribution of degree and closeness,
where the attraction to the node rises as the Closeness Centrality of
the node increases, reaching a maximum around 0.35, followed by a
decline. This indicates that nodes in the network with greater
Closeness Centrality are more likely to be connected to newly
entering nodes if they have greater Closeness Centrality than
degree and Betweenness Centrality. Nodes tend to connect to
nodes with greater Closeness Centrality.

It has been shown that among the attacks against degree and
centrality, the attacks against degree can cause more damage with
a significant decrease in the average degree and average
connectivity while being split into multiple connected
components [20]. If the Barabasi Albert Model is used as the
underlying network, its degree prioritization will connect with
more severe security risks as the network size increases. They are
using Betweenness Centrality as the connectivity goal is more in
line with the development of the network and the security of the
network.

5 CONCLUSION

In this paper, we investigate the differences between Lightning
Network and Barabasi Albert Model in terms of assortativity,

diameter, and node-preferred connectivity, starting from
whether the Lightning Network is similar to the Barabasi
Albert Model, and discuss the reasons behind the special
properties generated by the Lightning Network.

Our analysis shows that as the size of the Lightning Network
continues to expand, its assortativity shows an entirely
different trend from that of the Barabasi Albert Model,
although the error in its fitting coefficients becomes smaller.
We think this may be related to the death of the merchant
nodes and edges in the Lightning Network. Currently, there is
still a threshold for ordinary people to use Lightning Network,
and when the merchant nodes provide simple access, there will
be many endpoints that establish connections with the
merchant nodes, while the death of edges may cause the
creation of assortativity. The Lightning Network diameter is
larger than the Barabasi Albert Model of the same size, and we
found that it is related to the crosstalk between nodes in the
network by extracting the diameter connections in it.

In terms of the tendency of nodes to connect, we first analyzed
the channel closure, the distribution of the capacity. We found
that only a few channels in the network are closed in a penalty
way, indicating that the Lightning Network’s security mechanism
is excellent. Also, we found that the high-capacity channels in the
network are established between massive nodes in the network,
while most of the channels have shallow capacity. This is ideally
in line with the original design of the Lightning Network. In terms
of the connection propensity of nodes, we extracted the edge-

FIGURE 10 | (A). Distribution of the degrees of the nodes connected by the newly added nodes (B). Distribution of the closeness centrality of the nodes connected
by the newly added nodes. (C). Distribution of Betweenness Centrality of the nodes connected by the newly added nodes.

FIGURE 9 | Channel life time distribution.
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building information of newly joined nodes in the network and
performed the propensity analysis of node connections. We
found that nodes in the network are more inclined to connect
with nodes closer to greater Closeness Centrality than degree and
Betweenness Centrality.

Our findings suggest that although the Lightning Network is
similar to the Barabasi Albert Model in the degree distribution,
there is a significant gap in assortativity and diameter again. The
assortativity and diameter are vital parameters for the network to
face cascade failures and improve network efficiency. therefore,
Our findings can provide insights into the simulation and
autopilot function of lightning networks.
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