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Diverse approaches such as oscillating gradients, tensor-valued encoding, and diffusion-
relaxation correlation have been used to study microstructure and heterogeneity in healthy
and pathological biological tissues. Recently, acquisition schemes with free gradient
waveforms exploring both the frequency-dependent and tensorial aspects of the
encoding spectrum b(ω) have enabled estimation of nonparametric distributions of
frequency-dependent diffusion tensors. These “D(ω)-distributions” allow investigation of
restricted diffusion for each distinct component resolved in the diffusion tensor trace,
anisotropy, and orientation dimensions. Likewise, multidimensional methods combining
longitudinal and transverse relaxation rates, R1 and R2, with (ω-independent)
D-distributions capitalize on the component resolution offered by the diffusion
dimensions to investigate subtle differences in relaxation properties of sub-voxel water
populations in the living human brain, for instance nerve fiber bundles with different
orientations. By measurements on an ex vivo rat brain, we here demonstrate a “massively
multidimensional” diffusion-relaxation correlation protocol joining all the approaches
mentioned above. Images acquired as a function of the magnitude, normalized
anisotropy, orientation, and frequency content of b(ω), as well as the repetition time
and echo time, yield nonparametric D(ω)-R1-R2-distributions via a Monte Carlo data
inversion algorithm. The obtained per-voxel distributions are converted to parameter
maps commonly associated with conventional lower-dimensional methods as well as
unique statistical descriptors reporting on the correlations between restriction, anisotropy,
and relaxation.
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INTRODUCTION

Magnetic resonance imaging (MRI) allows non-invasive
characterization of microstructure and local chemical
composition in healthy and pathological biological tissues by
monitoring the self-diffusion and nuclear magnetic relaxation
properties of water molecules [1–4]. While the apparent
diffusion coefficient D reports on cell density and membrane
permeability [5], longitudinal and transverse relaxation rates, R1
and R2

(*), are sensitive to chemical exchange of protons between
water and hydroxyl and amine groups on metabolites and
macromolecules [6, 7], molecular exchange between
compartments [8], magnetization transfer/cross relaxation
between exchangeable and non-exchangeable protons [9], and
paramagnetic relaxation from iron or added contrast agents [8,
10]. Especially for studies of the nervous system, the diffusion is
often expressed in terms of a diffusion tensor D related to cell
shapes and orientations [11]. White matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF) all have characteristic
diffusion [12] and relaxation [13, 14] properties that determine
how the MRI signal varies as a function of acquisition variables
such as b-value [15, 16], repetition time τR, and echo time τE.

A major challenge of studying brain tissue microstructure lies
in the prevalence of intra-voxel heterogeneity in terms of not only
the proportions ofWM, GM, and CSF, but also the distribution of
cell types, sizes, densities, orientations, membrane permeabilities,
and chemical compositions. This heterogeneity gives rise to
corresponding distributions of water populations with varying
diffusion and relaxation properties that contribute to the total
signal response from a given voxel. Comprehensive exploration of
the multidimensional space defined by the acquisition variables in
the MRI measurements is essential for disentangling the
contributions from the distinct water populations [17]. Along
these lines, methods such as diffusion-relaxation correlation [18]
and tensor-valued encoding [19] have been used to address intra-
voxel heterogeneity, whereas oscillating gradients [20] have
enabled studies of microstructural length-scales via the
frequency-dependence of the diffusion properties. A brief
overview of these approaches is presented below to highlight
their relevance and benefits that each provide to study the tissue
microstructure.

Diffusion-relaxation correlation nuclear magnetic resonance
(NMR) has for decades been widely applied to heterogeneous
porousmedia [21–23] and has more recently been integrated with
MRI [24, 25], giving spatially resolved nonparametric
distributions [26] of various combinations of D, R1, and R2

(*).
Recent MRI examples include 2D D-R2 of ex vivo mouse spinal
cord [27], 2DD-R2* of in vivo human placenta [28], 2DD-R2 of ex
vivo human prostate [29], and combined 2D D-R1, 2D D-R2, and
2D R1-R2 of ex vivo ferret spinal cord [30] and ex vivo human
brain [31]. All these studies were limited to analysis in terms of
scalar D, merging diverse properties such as short-time
diffusivity, restriction, anisotropy, orientation, and flow into a
single metric which is appropriate for quantifying diffusion in
isotropic liquids but lacks specificity for anisotropic biological
tissues with structural features on the micrometer length-
scale [32].

Multidimensional diffusion MRI [33] builds on selective
signal encoding strategies from multidimensional solid-state
NMR spectroscopy [34] to separate and correlate the diverse
aspects of translational motion. In particular, diffusion
versions of the classical solid-state NMR techniques magic-
angle spinning [35], magic-angle hopping [36], and variable-
angle spinning [37] yield separation [38, 39] and correlation
[40] of the isotropic and anisotropic contributions to the
observed diffusivities. Independently of the exact details of
the diffusion-encoding gradients, the relevant acquisition
variables are summarized in the well-known b-matrix [11]
or b-tensor [41] b, often assumed to be axisymmetric and
parameterized with its trace b, normalized anisotropy bΔ, and
orientation (Θ,Φ) [39]. When combined with the likewise well-
known concept of D-distributions [42, 43], tensor-valued
encoding enables model-free characterization of the voxel
content in terms of nonparametric 4D D-distributions with
the dimensions of isotropic diffusivity Diso, squared
normalized anisotropy DΔ

2, and orientation (θ,ϕ) [44]. The
distribution means E[Diso] and E[DΔ

2] carry similar
microstructural information as conventional mean
diffusivity [11] and microscopic anisotropy measures
[45–49]. For in vivo mouse brain, the distinct (Diso,DΔ

2)-
coordinates of components assigned to WM, GM, and CSF
can be utilized to define “bins” in the 2D Diso-DΔ

2 projection
for calculating nominally tissue-specific signal fractions and
diffusion metrics [50] analogously to earlier binning of 1D R2-
distributions to estimate myelin water fractions [39] and 2D
“spectral regions of interest” capturing diverse tissue types in
various 2D correlation experiments [27–31]. Augmenting
conventional diffusion-relaxation correlation with tensor-
valued encoding gives signal in a 6D acquisition space b-τR-
τE which upon inversion yields nonparametric 6D D-R1-R2

distributions [51]. Recent examples of the approach include
5D D-R1 [52], 5D D-R2 [53, 54], and 6D D-R1-R2 [55] of in
vivo human brain where subtle differences in R1 or R2 can be
detected provided the components are resolved in the 2D Diso-
DΔ

2 or θ-ϕ projections, the latter being utilized for model-free
estimation of bundle-specific R1 or R2 in areas with crossing
fibers [52, 54].

Advanced diffusion encoding schemes such as oscillating
gradients give access to the diffusion spectrum D(ω) [56, 57]
for investigating diffusion at the length-scales of subcellular
structures [20]. The time/frequency-dependence has been
studied in porous media with NMR [57–59] as well as in
rodent [60–62] and in vivo human brain [63, 64] with MRI.
Particularly, oscillating gradients measurements provide a
distinctive increased image contrast in mouse brain in the
cerebellum, dentate gyrus, and hippocampus, which
correlates with the nuclear volume fractions in regions
containing densely packed cells [61]. Studies of WM and
GM in in vivo mouse and human brain have shown the
potential of using the frequency-dependence to characterize
biological tissues at cellular to sub-cellular scales [62–64].
Recently, modulated gradient waveforms combining elements
of both oscillating gradients and variable-angle spinning [65]
have enabled convenient exploration of both the frequency-
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dependent and tensorial aspect of the tensor-valued encoding
spectrum b(ω) [66], making it possible to study the frequency-
dependence of each distinct component resolved in a
nonparametric D(ω)-distribution [67].

Here we merge all approaches mentioned above into
“massively multidimensional” diffusion-relaxation correlation
MRI with signal acquired in an effectively 7D space b(ω)-τR-
τE and data inversion into nonparametric D(ω)-R1-R2
distributions giving the benefits of the lower-dimensional
methods in a joint acquisition and analysis framework.
Measurements on ex vivo rat brain are used to illustrate the
vast amount of per-voxel information available for detailed
description of brain tissue microstructure and heterogeneity.

THEORY

Combining our recent nonparametric D(ω)-distributions [67]
with previous (ω-independent) D-R1-R2-distributions [51], we
here approximate the b(ω)-τR-τE encoded signal S as a sum of
contributions from components i characterized by their statistical
weightwi, tensor-valued diffusion spectraDi(ω), and longitudinal
and transverse relaxation rates R1,i and R2,i according to

S[b(ω), τR, τE] � ∑
i

wiexp⎛⎜⎜⎝ − ∫∞
−∞

b(ω): Di(ω)dω⎞⎟⎟⎠
[1 − exp( − τRR1,i)]exp( − τER2,i), (1)

where the colon denotes a generalized scalar product [68] and the
sum of wi yields the non-weighted signal S0, nominally
proportional to the proton density, via

S0 � ∑
i

wi. (2)

As described in detail in Ref. [67], inversion of Eq. 1 is
rendered tractable by approximating Di(ω) as axisymmetric
Lorentzians parameterized by the zero-frequency axial and
radial diffusivities DA,i and DR,i, orientation (θi,ϕi), high-
frequency isotropic diffusivity D0,i, and axial and radial
transition frequencies ΓA,i and ΓR,i, giving

Di(ω) � R(θi, ϕi)⎛⎜⎝DR,i(ω) 0 0
0 DR,i(ω) 0
0 0 DA,i(ω)

⎞⎟⎠R−1(θi, ϕi),
(3)

where R(θi,ϕi) is a rotation matrix, and

DA,i/R,i(ω) � D0,i − D0,i −DA,i/R,i

1 + ω2/Γ2A,i/R,i
. (4)

Although the data inversion yields a set of components
described with the parameter set
[DA,i,DR,i,θi,ϕi,D0,i,ΓA,i,ΓR,i,R1,i,R2,i], it is convenient to express
the diffusion dimensions in terms of the ω-dependent
isotropic diffusivity Diso,i(ω) and normalized diffusion
anisotropy [69] DΔ,i(ω) via

Diso,i(ω) � DA,i(ω) + 2DR,i(ω)
3

(5)

and

DΔ,i(ω) � DA,i(ω) −DR,i(ω)
3Diso,i(ω) , (6)

where DA,i(ω) and DR,i(ω) are given by Eq. 4.
The diffusion-encoding magnetic field gradient g(t) with

duration τ gives b(ω) via

q(ω) � c∫τ
0

∫t
0

g(t′)dt′ exp(iωt)dt, (7)

where c is the gyromagnetic ratio, and

b(ω) � 1
2π q(ω)q(−ω)

T. (8)

While the full tensorial and ω-dependent form of b(ω) is used
in our data processing based on Eq. 1, it is instructive to extract
some more familiar metrics to characterize the properties of the
diffusion encoding. The conventional b-matrix [70] b and
dephasing power spectrum [56] b(ω) are obtained from b(ω)
through

b � ∫∞
−∞

b(ω)dω (9)

and

b(ω) � trace{b(ω)}. (10)

These give the b-value via

b � trace{b} (11)

or

b � ∫∞
−∞

b(ω)dω. (12)

The average spectral content of the diffusion encoding is
captured by the centroid frequency [71] ωcent written as

ωcent �
∫∞

−∞ |ω|b(ω)dω
∫∞

−∞ b(ω)dω . (13)

The “shape” of the b-matrix may be reported in terms of the
normalized anisotropy bΔ given by [39]

bΔ � 1
b
(bZZ − bYY + bXX

2
), (14)

where bXX, bYY, and bZZ are the eigenvalues of b ordered according to
the convention |bZZ–b/3| > |bXX–b/3| > |bYY–b/3|. The polar and
azimuthal angles Θ and Φ give the lab-frame orientation of the
eigenvector corresponding to the bZZ eigenvalue. The key properties
of the diffusion encoding spectrum b(ω) may thus be summarized
with the parameters b, Θ, and Φ, which are identical to the b-value
and b-vector in conventional DTI, as well as the centroid frequency
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ωcent and normalized anisotropy bΔ from oscillating gradient [20]
and tensor-valued [19] encoding.

MATERIALS AND METHODS

Tissue Preparation and Light Microscopy
A healthy adult rat Sprague-Dawley (Harlan Netherlands B.V.)
was intracardially perfused with 0.9% saline followed by 4%
paraformaldehyde (PFA). The brain was carefully extracted
from the skull and stored in 4% PFA solution at 4°C. The
procedure was approved by the Animal Committee of the
Provincial Government of Southern Finland in accordance
with the guidelines established by the European Union
Directives 2010/63/EU. Before imaging, the brain was sagittally
sectioned by the midline in left and right hemispheres and placed
in 0.1 M phosphate buffer saline (PBS) solution containing 50 µl/
10 ml of gadoteric acid (Dotarem 0.5 M; Guerbet, and France)
24 h before scanning. MRI was performed on the right
hemisphere immersed in perfluoropolyether (Galden; TMC
Industries, United States) in a 10 mm NMR tube at 20°C room
temperature.

For comparison between histology and MRI data,
representative sections from a healthy adult rat were stained
with gold chloride and Nissl [72]. High resolution
photomicrographs were taken using a light microscope (Zeiss
Axio Imager2) equipped with a motorized stage and a digital
camera (Zeiss Axiocam color 506).

MRI Acquisition and Reconstruction
The multidimensional diffusion-relaxation data set was acquired on
a Bruker Avance-III HD 11.7 T spectrometer equipped with a MIC-
5 probe giving 3 T/m maximum gradient amplitude on-axis. The
images have an in-plane spatial resolution of 80 × 80 μm2 and
250 µm slice thickness with a 119 × 119 × 1 matrix size localized
approximately at −3.3 mm from bregma. The data set was obtained
using Bruker’s multi-slice multi-echo (MSME) sequence customized
for diffusion encoding with general gradient waveforms. The
diffusion gradients are derived from the variable-angle
modification of magic-angle spinning of the q-vector [73] using
two symmetric self-refocusing gradient waveforms with 8 ms
duration on each side of the refocusing radiofrequency pulse.
Images were acquired at varying b-value (0.037–5.4.109 sm−2),
centroid frequency ωcent/2π (50–150 Hz), normalized anisotropy
bΔ (−0.5–1), orientation (Θ,Φ), repetition time τR (80–600ms),
and echo time τE (9–38ms) according to the scheme in Figure 1.
The calculation of b(ω) with Eqs 7 and 8 included the dedicated
diffusion gradients as well as the read and slice gradients from the
center of the excitation pulse to the time point of the spin echo. The
shortest values of τE were reached by omitting the diffusion
gradients. The values of b, ωcent, bΔ, Θ, and Φ shown in
Figure 1 were obtained from the calculated b(ω) via Eqs 9–14.
Acquisition of 809 images, each of which requiring 119 separate
excitations to traverse k-space, resulted in a total measurement time
of 20 h. After image reconstruction in Bruker’s ParaVision 6.0.1, the
data was preprocessed with MRtrix3 [74] software for denoising
based on random matrix theory [75] and Matlab (Natick,

Massachusetts: The MathWorks Inc.) was used for further
analysis with the md-dmri Matlab toolbox [76]. Blender 2.92
(Amsterdam, Netherlands: Blender Foundation) was used for the
ODF visualization.

Estimation and Visualization of
Nonparametric D(ω)-R1-R2-Distributions
The D(ω)-R1-R2 distributions, expressed in the space of
[DA,DR,θ,ϕ,D0,ΓA,ΓR,R1,R2], were obtained by Monte Carlo
inversion [77] as described in detail in Ref. [51]. The
inversion algorithm has previously been applied to various
diffusion and relaxation correlation measurements including
[DA,DR] [40], [DA,DR,θ,ϕ] [44, 50], [DA,DR,θ,ϕ,R1] [52],
[DA,DR,θ,ϕ,R2] [53, 54], [DA,DR,θ,ϕ,R1,R2] [51], and
[DA,DR,θ,ϕ,D0,ΓA,ΓR] [67]. Here, the inversion was performed
with the limits 5·10−12 m2s−1 < D0/A/R < 5·10−9 m2s−1, 0.1 s−1 <
ΓA/R < 105 s−1, 0.2 s−1 < R1 < 20 s−1, and 2 s−1 < R2 < 200 s−1, as
well as 20 steps of proliferation, 20 steps of mutation/extinction,
200 input components per step of proliferation and mutation/
extinction, 10 output components, and bootstrapping by 100
repetitions using random sampling with replacement. The
ranges of D0/A/R, R1, and R2 were selected to be consistent
with the values of b, τR, and τE in the acquisition protocol, while
the range of ΓA/R was deliberately chosen to extend far beyond

FIGURE 1 | Example acquisition scheme for massively multidimensional
diffusion-relaxation correlation MRI. Free gradient waveforms combining
elements of conventional DTI with oscillating gradient and tensor-valued
encoding are used to explore the effectively 5D acquisition space
spanned by the trace b, orientation (Θ,Φ), centroid frequency ωcent, and
normalized anisotropy bΔ of the tensor-valued encoding spectrum b(ω).
Variation of the repetition time τR and echo time τE gives access to two
additional dimensions, resulting in a 7D acquisition. The acquisition point index
nacq is sorted according to decreasing τR, increasing τE, and increasing b.
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the range of ωcent in order to allow for components without
ω-dependence within the investigated frequency window. For
every voxel, the Monte Carlo inversion outputs an ensemble of
100 independent solutions, each of which comprising weights w
and coordinates [DA,DR,θ,ϕ,D0,ΓA,ΓR,R1,R2] for 10 components
within the pseudo-randomly sampled analysis space. As
opposed to most nonparametric inversion methods in
diffusion and relaxation MRI, the coordinates are only
constrained by the outer boundaries of the analysis space,
but not to a pre-defined multidimensional grid within this
space. Likewise, the Monte Carlo inversion algorithm does
not include penalty terms aiming to promote smoothness in
the analysis or image spaces. Data inversion for 100 repetitions
of 8,000 voxels required in total 25 h of processing time on a
3.6 GHz 8-core CPU, corresponding to on average 0.9 s per
voxel, repetition, and core. All metrics described below were
calculated for each of the 100 solutions per voxel, and the values
displayed in maps, projections, and ODFs were obtained as
medians over the individual solutions.

With inspiration from the recent concept of “dynamics
detectors” to extract model-independent information about
rotational diffusion from NMR relaxation dispersion data [78],
the diffusion dimensions of the D(ω)-R1-R2 distributions in the
primary analysis space [DA,DR,θ,ϕ,D0,ΓA,ΓR,R1,R2] were
evaluated with Eq. 4 at selected values of ω within the narrow
50–150 Hz window actually probed by the gradient waveforms,
giving a set of ω-dependent distribution in the
[DA(ω),DR(ω),θ,ϕ,R1,R2] space. For each value of ω, these
results can be visualized as previous ω-independent
distributions [44, 50, 52–54] by projecting DA(ω) and DR(ω)
to the dimensions of isotropic diffusivity Diso(ω) and squared
normalized anisotropy DΔ

2(ω), via Eqs 5 and 6, as well as the lab-
frame diagonal elements Dxx(ω), Dyy(ω), and Dzz(ω), and
subsequently converting to means E[x], variances V[x], and
covariances C[x,y] over relevant dimensions and sub-divisions
(“bins”) of the distribution space. The diagonal elements and the
maximum eigenvalueD33 were used to generate the directionally-
encoded color map. Following conventions often used to display
results from oscillating gradient encoding [20, 61, 71, 79–81], the
effects of restricted diffusion were quantified by a finite difference
approximation of the rate of change of the diffusivity metrics with
frequency within the investigated window, for instance

Δω/2πE[Diso] � E[Diso(ωmax)] − E[Diso(ωmin)]
(ωmax − ωmin)/2π . (15)

As in previous in vivo studies [50], results for voxels known from
anatomy to contain pureWM,GM, or PBS were used to define three
bins in the 2DDiso-DΔ

2 plane. Here we used the following bin limits:
bin1, Diso < 1·10−9 m2s−1 and DΔ

2 > 0.25; bin2, Diso < 1·10−9 m2s−1

and DΔ
2 < 0.25; and bin3, Diso > 1·10−9 m2s−1 as illustrated in

Figure 2D. On account of the effects of low temperature and tissue
fixation, the Diso border between bin1/bin2 and bin3 was set to
1·10−9 m2s−1 rather than the value 2.5 10−9 m2s−1 often used in vivo
[50]. While the selected bins are mainly related to WM, GM, and
CSF/PBS for healthy brain, the binning is less straightforward in the
presence of various pathologies such as tumors or edema [82] andwe
prefer to use the noncommittal labels bin1, bin2, and bin3 rather

than potentially misleading anatomical terms. The per-bin signal
fractions (fbin1,fbin2,fbin3) were calculated and visualized with RGB
color coding (Figure 2D).

Single-voxel D(ω)-R1-R2 distributions were visualized by
projecting and mapping the weights of the discrete components
onto 64 × 64meshes in the 2D Diso-DΔ

2, Diso-R1, and Diso-R2
planes using 3 × 3 grid points Gaussian kernel for five linearly
spaced values of ω/2π in the 50–150 Hz range. Correspondingly,
orientation distribution functions (ODFs) were generated by
projecting the weights and metrics of the bin1 components onto
a 1,000 points spherical mesh with a 10° spherical Gaussian kernel
[83, 84]. 3Dmodels of the ODF projections were exported in “.wrl”
format and processed in Blender (Figure 6C).

RESULTS

Figure 2 displays signal responses S[b(ω)-τR-τE] and the
corresponding nonparametric D(ω)-R1-R2 distributions for
representative voxels containing WM (fimbria), GM (cortex),
and PBS (ventricle), as well as a voxel in the granule cell layer of
the dentate gyrus, which structurally is a region with compact cell
bodies [62]. The S0 map in Figure 2A is obtained from the
component weights wi by Eq. 2 and corresponds to the signal S
extrapolated to b � 0, τR � ∞, and τE � 0, and thus shows lower
anatomical contrast than conventional S0 maps from DTI which
also includes R1- and R2-weighting. The quality of the fits can be
discerned from the plots in Figure 2B of the measured signals
(circles) and the corresponding signals (black dots) back-
calculated from the distributions, giving standard deviations of
the fit error (Smeasured–Sfit)/S0 between 0.5 and 1% for the four
voxels. These numbers can be translated to the rather modest
signal-to-noise ratios of approximately 20 forWM and 40 for PBS
for the maximum measured signals at finite τR and τE.

The per-voxel D(ω)-R1-R2 distributions are visualized in
Figure 2C as projections onto the 2D Diso-DΔ

2, Diso-R1, and
Diso-R2 planes for five frequencies ω/2π between 50 and 150 Hz.
The well-known differences in tissue microstructure are most
clearly manifested in the 2D Diso-DΔ

2 projections, showing low
Diso and highDΔ

2 inWM; low values of bothDiso andDΔ
2 in GM;

intermediate Diso and low DΔ
2 in the granule cell layer; and high

Diso and low DΔ
2 in PBS. Additionally, the granule cell layer

features the most pronounced ω-dependence. The values of R1
increase slightly in the sequence WM < GM < PBS, presumably
reflecting the accessibility to the added contrast agent rather than
any intrinsic tissue property. Conversely, the values of R2 increase
markedly in the order PBS < GM <WMmore in line with in vivo
observations. The addition of contrast agents in ex vivo diffusion
MRI studies is a common practice to enable reduction of τR, and
thus increase the number of acquisitions while minimizing the
total scanning time and experimental costs. Particularly, the
contrast agent used in this study is not expected to penetrate
intact cell membranes [85].

Although the WM, GM, and PBS give distinct signatures in
both the 2D Diso-DΔ

2 and Diso-R2 projections, we here for
convenience choose the former representation to define three
bins for tissue segmentation as illustrated in Figure 2D. The per-
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bin signal fractions, fbin1, fbin2, and fbin3, evaluated atω/2π � 50 Hz
effectively distinguishes between WM (red), GM (green), and PBS
(blue). The color scale of the bin fractions is continuous; hence voxels
with contributions of multiple tissue types or PBS are displayed as
mixed colors, e.g., WM + GM (yellow), WM + PBS (purple), and
GM + PBS (turquoise).

Figure 3 shows a collection of parameter maps derived from
the per-voxel D(ω)-R1-R2 distributions. While each parameter
has been explained in detail in previous lower-dimensional
studies [52, 53, 67], we here summarize them briefly to
illustrate the vast amount of information that can be extracted
for each voxel and provide an intuitive and simple interpretation

FIGURE 2 | Experimental results for representative voxels in an ex vivo rat brain and tissue segmentation by binning. (A) S0 map with crosses indicating single
voxels representative for white matter (WM) in the fimbria (red), gray matter (GM) in the cortex (green), the granule cell layer of the dentate gyrus (orange), and phosphate
buffer saline (PBS) in the ventricle (blue). (B) Single-voxel signals S as a function of acquisition index nacq according to the 7D b(ω)-τR-τE scheme in Figure 1 (colored
circles: experimental; black dots: back-calculated from the distributions). The values of S0 correspond to the signals extrapolated to b � 0, τR �∞, and τE � 0. (C)
D(ω)-R1-R2 distributions for each of the selected voxels projected onto the 2DDiso-DΔ

2,Diso-R1, andDiso-R2 planes for five frequencies in the range ω/2π � 50–150 Hz as
indicated with the linear gray scale of the contour lines. (D) Tissue segmentation by binning in the 2D Diso-DΔ

2 projection at the frequency ω/2π � 50 Hz, resulting in per-
bin signal fractions fbin1 (red), fbin2 (green), and fbin3 (blue) aiming to capture the spatial distributions of WM, GM, and PBS.
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of the maps. For completeness, Figure 3A repeats the S0 and
fractions maps from Figure 2. The maps in Figure 3B display
the per-voxel means E[x], variances V[x], and covariances C[x,y] for
Diso, DΔ

2, R1, and R2 evaluated at ω/2π � 50 Hz. The means E
[Diso], E[R1], and E[R2] correspond to conventional mean
diffusivity [11] and quantitative R1 � 1/T1 and R2 � 1/T2

[4], while E[DΔ
2] is analogous to earlier metrics quantifying

microscopic diffusion anisotropy [45–49]. The E[Diso] map
highlights regions with free water, such as PBS in the ventricle,
while providing limited contrast between WM and GM.
Conversely, the E[DΔ

2] map reveals WM while just barely
distinguishing between the low values of GM and PBS. In the E
[R1] and E[R2] maps of this specimen with high concentration
of added contrast agent, GM and PBS show higher E[R1] and

lower E[R2] than WM in agreement with the single-voxel
distributions in Figure 2C.

The variance V[x] and covariance C[x,y] maps in Figure 3B
report on various aspects of intravoxel heterogeneity and highlight
voxels comprising multiple water populations with different
diffusion and/or relaxation properties. In previous studies, the V
[Diso] parameter has shown elevated values for voxels containing
intra- and extracellular water populations separated by the
unusually impermeable cell membranes found in the commercial
strain of baker’s yeast [47], and has been correlated with cell density
heterogeneity in brain tumors [86]. In healthy human brain, the
values are high primarily in voxels containing both CSF (high Diso)
and WM or GM (both having low Diso) [52, 53]. The V[DΔ

2]
parameter yields high values in voxels with multiple water

FIGURE 3 | Parameter maps derived from the per-voxel D(ω)-R1-R2 distributions. (A) S0 map displayed in gray scale, diagram with the division of the 2D Diso-DΔ
2

projection into three bins (bin1,bin2,bin3), and the resulting signal fractions (fbin1,fbin2,fbin3) coded into RGB color. (B) Per-voxel means E[x], variances V[x], and
covariances C[x,y] for the Diso, DΔ

2, R1, and R2 dimensions at a selected encoding frequency ω/2π � 50 Hz. (C) Parameter maps of the rate of change with frequency
Δω/2π of the per-voxel means, variances, and covariance of Diso and DΔ

2. (D) Bin-resolved maps of E[x] and Δω/2πE[x]. The brightness and color scales represent,
respectively, the signal fractions and the values of each parameter. Directionally-encoded color (DEC) maps are obtained from the lab-frame diagonal values [Dxx,Dyy,Dzz]
normalized by the maximum eigenvalue D33. Labeled lines indicate selected anatomical structures mentioned in the text. Abbreviations: cc, corpus callosum; cg,
cingulum; Cx, cortex; ec, external capsule; Ent, entorhinal cortex; fi, fimbria; gcl, granule cell layer; hipp, hippocampus; ic, internal capsule; py, pyramidal cell layer; st, stria
terminalis; tha, thalamus; and v, ventricle.
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populations having distinctly different anisotropy, for instance free
water and liquid crystal [44] or CSF andWM[52, 53]. Similarly to V
[Diso], in healthy human brain V[R1] and V[R2] are highest in
voxels with both CSF (low R1 and R2) andWMor GM (high R1 and
R2) [52, 53]. In Figure 3B non-zero values of V[Diso] are found in
particular for voxels comprising both PBS andWMor GM, but also
in the thalamus and ventricle. The V[DΔ

2] values were high in
regions with contributions of multiple tissue types, such as in the
thalamus or entorhinal cortex and voxels with equal amounts of
WM and PBS or GM, while themainWM tracts, such as the corpus
callosum, fimbria, and internal capsule, display values close to zero.
The WM, thalamus, and ventricle exhibit high values of V[R1]
compared to cortex and hippocampus, while high V[R2] is mainly
found for WM. Non-zero covariance C[x,y] requires that both
variances V[x] and V[y] are non-zero and the values of x and y are
correlated, for instance in voxels containing partial volumes of both
WM (lowDiso and highDΔ

2) and CSF (highDiso and lowDΔ
2) [53].

In Figure 3B, positive C[Diso,R2] and negative C[R1,R2] are
observed for WM.

The frequency-dependence is reported in Figure 3C in terms
of the rate of change with frequency within the investigated
window 50–150 Hz for the per-voxel means, variances, and
covariance of Diso and DΔ

2. In the Δω/2πE[Diso] map, the
highest positive values are found as a distinct band following
the granule cell layer of the dentate gyrus, while smaller positive
values are mainly distributed along GM, and values close to zero
are observed for WM. These findings are consistent with the
qualitative observations in the selected representative voxels of
the ω-dependent distributions in Figure 2C. Conversely, Δω/2πE
[DΔ

2] shows negative values throughout the GM. Similarly to
Δω/2πE[Diso], the values of Δω/2πV[Diso] are positive along the GM
and the highest values are found in the granule cell layer. The
values of Δω/2πC[Diso,DΔ

2] are negative in the GM and the lowest
values occur in the granule cell layer.

Figure 3D shows bin-resolved maps with the means of the
relevant properties. Each map combines two orthogonal scales: the
brightness intensity shows the relative signal fraction and the color
scale represents the value of the property of interest. In the bin-
resolved E[Diso] maps, we observe that in bin1 (WM) and bin2
(GM) the values are characteristically low. Conversely, bin3 that
corresponds to PBS shows high E[Diso] due to free diffusion.
Regarding the bin1 E[DΔ

2] map, the main WM tracts, such as
the corpus callosum, fimbria, or external capsule, display values
approaching the theoretical maximum of 1. Besides major WM
tracts, other brain regions, such as the thalamus, hippocampus, or
entorhinal cortex, present values between ∼0.25 and ∼0.5. These
intermediate values may correspond to the existence of myelinated
axons and bundles that contribute to the anisotropy. For bin2 and
bin3, showing the contributions of GM in regions such as the
cortex or hippocampus and PBS inside the ventricle, the E[DΔ

2]
values are close to zero corresponding to isotropic diffusion. In the
per-bin relaxation rates, we observe higher values of E[R1] in GM
and PBS, ∼7 s−1, than in WM with values of ∼6 s−1; however, in E
[R2], we find that the mainWM tracts show higher values thanGM
and PBS. As discussed above in relation to Figure 2C, the values of
E[R1] in this study are probably dominated by the paramagnetic
relaxation from the added contrast agent. With the information

about orientation (θ,ϕ) expressed in terms of E[Dxx,Dyy,Dzz]/E
[D33], we calculated the per-voxel principal orientation of the
tensors and displayed as directionally-encoded color (DEC)
maps for each of the bins. For bin1, the corpus callosum shows
a medio-lateral main orientation while the external capsule fibers
follow the characteristic dorso-ventral orientation. The last two
columns of Figure 3D shows the bin-resolved values of Δω/2πE
[Diso] and Δω/2πE[DΔ

2], which provide a more precise assignment
of the tissue type contributing to the per-voxel values. For bin1, the
majorWM tracts displayΔω/2πE[Diso] andΔω/2πE[DΔ

2] values near
zero with slightly elevated Δω/2πE[Diso] and negative Δω/2πE[DΔ

2]
in the stria terminalis and cingulum. For bin2, the granule cell layer
of the dentate gyrus shows the highest values of Δω/2πE[Diso]. Also
for the pyramidal cell layer the values are slightly elevated
compared to the ones for the cortex.

The histograms in Figure 4 summarize the numerical
values of selected parameters from the maps in Figure 3
and highlight representative values for WM, GM, PBS, and
some additional anatomical structures. In general, the peaks of
the bin-resolved histograms coincide with the dominant values
for WM, GM, and PBS as obtained by direct inspection of the
maps. However, for both bin1 and bin3 secondary features
appear, in particular for E[R1] and E[R2], as a result of low but
non-zero values of fbin1 and fbin3 in large volumes of GM.
Conversely, the granule cell layer and stria terminalis have
unique values of Δω/2πE[Diso] and Δω/2πE[DΔ

2] that are readily

FIGURE 4 | Histograms of quantitative parameters across all voxels in
the image. The histograms are obtained from the per-voxel (gray) and bin-
resolved (red, green, and blue) maps of E[Diso], E[DΔ

2], E[R1], E[R2], Δω/2πE
[Diso], and Δω/2πE[DΔ

2] in Figure 3 and include weighting by S0, fbin1, fbin2,
and fbin3. The abscissas cover the same ranges as the scale bars in Figure 3.
Labeled points highlight representative values for WM in the corpus callosum,
external capsule, and fimbria, GM in the cortex, and PBS in the ventricle, as
well as the granule cell layer (gcl), and stria terminalis (st).
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visible in the maps but occur only in a few voxels and thus do
not show up in the histograms.

In Figure 5A, bin1-resolved E[R2], E[DΔ
2], and

E[Dxx,Dyy,Dzz]/E[D33] maps are compared with a histological
section stained with gold chloride for myelin. As observed in
the closer view of the histological section, the fimbria, external
capsule, and internal capsule have the highest staining due the high
density of myelinated axons, while the cortex gives low staining.
With the histological comparison, we demonstrate that fbin1
adequately corresponds with the major contrast in the myelin-
stained section. As mentioned in Figure 3D the highest values of E
[DΔ

2] and E[R2] are found in the main WM tracts. In the closer
view of the myelin staining (Figure 5A), most of the fibers in the
external capsule follow a dorso-ventral orientation and other fibers
continue towards the external capsule. These orientations are
observed in the E[Dxx,Dyy,Dzz]/E[D33] map, where in green are
the external capsule dorso-ventral fibers and in yellow/red the
dorso-ventral/medio-lateral fibers towards the internal capsule.

The bin2-resolved maps are compared with a Nissl-stained
section to assess the cytoarchitecture of the brain tissue in
Figure 5B. The closer view of the hippocampal proper reveal

the high cell density in the granule and pyramidal cell layers. The
restriction map Δω/2πE[Diso] follows the same contrast as the
histological section where the highest values are in the granule
and pyramidal cell layers. The Nissl-stained section displays the
presence of cells along the whole brain and correlates with fbin2 as
can be observed with the example maps E[Diso] and E[R1].

Considering the relevance of extracting per-bundle
information within a voxel in WM, we generated
nonparametric ODFs from the bin1 components. The
resulting ODF lobes correspond to orientation histograms
as in Ref. [87]. Figure 6A displays ODFs color-coded for
the E[DΔ

2] parameter overlaid on a synthetized R2-weighted
image at τE � 20 ms for anatomical reference. The largest lobes
correspond to the major WM tracts and a closer look in the
joint of the external capsule with the internal capsule shows a
crossing fibers region. ODFs color-coded for the E[Diso], E[R1],
E[R2], E[Dxx,Dyy,Dzz]/E[D33], Δω/2πE[Diso], and Δω/2πE[DΔ

2]
parameters were also calculated and are displayed in
Figure 6B. In the conventional DEC ODFs, the fiber
population that follow a dorso-ventral orientation (external
capsule) can be observed in green and a second population that

FIGURE 5 | Comparison between histology and selected parameter maps. (A) Myelin-stained section and bin1-resolved E[R2], E[DΔ
2], and E[Dxx,Dyy,Dzz]/ E[D33]

maps with brightness and color-coding as in Figure 3D. The darker intensities in the myelin staining correspond to the main white matter tracts and the lighter regions
have lower density of myelin. A closer view to the myelin staining and E[R2] is displayed showing the fimbria (fim), cortex (Cx), external capsule (ec), and internal capsule
(ic). (B) Nissl-stained section and bin2-resolved Δω/2πE[Diso], E[Diso], and E[R1] maps. A closer view of the hippocampus and dentate gyrus in the Nissl staining and
the Δω/2πE[Diso] map displays the granule cell layer (gcl) and pyramidal cell layer (py).
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contains rostro-caudal fibers with mixed trajectory of the
medio-lateral orientations (towards internal capsule) is
displayed in a mixture of red and blue colors. The
magnifications of the crossing fibers ODFs reveal that in
this case the parameter values are nearly identical for the
two fiber populations. Corresponding in vivo human brain
measurements with lower-dimensional methods have shown
that for crossing fibers with distinctly different properties, the
rich information in the nonparametric distributions allows
quantification of not only per-bin, but also per-bundle values
of E[R1] [52] and E[R2] [54].

DISCUSSION

The projections, parameter maps, and ODFs presented from
Figure 2 to Figure 6 illustrate the abundance of information
contained within the nonparametric D(ω)-R1-R2-distributions
estimated via Monte Carlo inversion of the signal acquired in
the b(ω)-τR-τE space. In this study, the distributions were
obtained from 809 images which is comparable to a recent 6D
D-R1-R2 in vivo human brain study with acquisition of 633 image
volumes in 25 min measurement time [55], thus indicating
potential for translation of our method to clinical research. In
previous lower-dimensional studies, each of the obtained

parameters have been related to some underlying
microstructural properties, local chemical composition, or
heterogeneity of the tissue of interest. While most of our
parameters have already been introduced in the literature
under different names, we here choose to consistently use the
means E[x], variances V[x], and covariances C[x,y] convention
[44] to emphasize that the parameters all report on some specific
aspect of the sameD(ω)-R1-R2-distribution. The most prominent
examples are the equivalences between E[Diso], apparent
diffusion coefficient (ADC) [16], and mean diffusivity (MD)
[11]; E[DΔ

2] and microscopic fractional anisotropy (µFA) [47,
49]; E[R1] and E[R2] and quantitative R1 � 1/T1 and R2 � 1/T2 [4];
V[Diso], isotropic variance (μiso2 ) [47], and isotropic mean kurtosis
(MKI) [86]; and Δω/2πE[Diso] and rate of change of the apparent
diffusion coefficient with frequency (ΔfADC) [61]. Consequently,
the insights from the extensive literature on the relations between,
for instance, MD and cell density [5], µFA and cell shape [88], T1
and myelination or iron concentration [14], MKI and cell density
heterogeneity [86], and ΔfADC and axon diameter [81], can be
directly translated to our equivalent metrics.

Unlike lower-dimensional studies where the given metrics are
averaged over all the components within a voxel, our
multidimensional correlation method allows resolving, for
instance, E[R1], E[R2], and Δω/2πE[Diso] for each bin defined in
the 2D Diso-DΔ

2 plane and, for anisotropic components, each

FIGURE 6 | Per-voxel ODFs of the bin1 fraction. The ODFs are obtained from the per-voxel D(ω)-R1-R2 distributions by mapping the bin1-component weights w,
orientations (θ,ϕ), and parameters Diso, DΔ

2, R1, R2, Dxx, Dyy, and Dzz onto a spherical mesh using a 10° spherical Gaussian convolution kernel for two frequencies ω/2π �
50 and 150 Hz. ODF radii are given by the orientation-resolvedmeanweights while the colors derive from the orientation-resolvedmean parameters using the same color
scheme as in the Figure 3D. (A) E[DΔ

2]-colored ODFs displayed over a synthetized R2-weighted image calculated from the per-voxelD(ω)-R1-R2 distributions with
Eq. 1 using b � 0, τR � ∞, and τE � 20 ms. A closer view on one voxel reveals two distinct fiber populations with similar values of E[DΔ

2]. (B) ODFs colored by E[Diso],
E[R1], E[R2], E[Dxx,Dyy,Dzz]/[D33], Δω/2πE[Diso], and Δω/2πE[DΔ

2] from the same region as the closer view of (A).
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direction in the 2D θ-ϕ projection. Our version of directionally-
encoded color (DEC) based on bin1-resolved E[Dxx,Dyy,Dzz]/E[D33]
gives similar results as the more conventional DEC fractional
anisotropy (FA) typically used to visualize the main directions of
the WM tracts as estimated with DTI. The increase in level of detail
when going from DEC-FA to DEC-ODF obtained by constrained
spherical deconvolution of HARDI data [89] is mirrored in our step
from bin- to orientation-resolved metrics [52, 54]—with the major
difference that color-coding of maps and ODFs is not limited to
orientation but can be based on any of the obtained parameters. The
2D Diso-DΔ

2 binning corresponds to the 2D MD-FA binning to
separate WM, GM, and CSF voxels introduced by Pierpaoli et al.
already in 1996 [12], and does here not take advantage of the
additional dimensions that could be utilized to tease apart distinct
water populations or tissue types. As examples, binning in the 3D
Diso-DΔ

2-R2 volume has been shown to also differentiate between
deep and cortical GM [53] and binning in the 4DDiso-DΔ

2-θ-ϕ space
allows estimation of specific E [R1] or E [R2] for a few distinct fiber
bundles within the same voxel [52, 54]. Speculating based on the
maps in Figure 3, binning in a dimension related to ω-dependence
could be utilized to isolate components similar to the granule cell
layer or the stria terminalis. Manual binning becomes increasingly
challenging in even higher-dimensional spaces and should
preferably be implemented as some automatic data-driven
approach incorporating information from multiple voxels, for
instance building on the recent works in Refs. [90–92].

Even without binning, the spread and correlations between the
dimensions are captured with the per-voxel (co)variance metrics
V[x] and C[x,y] which may be more generally applicable than the
bin-resolved ones for pathologies where the distinction between
clusters of components is less clear-cut than in the current
example with WM, GM, and PBS. The single-tissue voxels in
Figure 2C give low but finite (co)variances that may be
challenging to distinguish from the distribution widths
originating from the measurement noise and inversion
uncertainty [44]. Although comparison between independently
processed neighboring voxels and uncertainty estimation by
bootstrapping give an indication of the precision of the
estimated parameters, they may still suffer from bias that is
difficult to correct for [93]. In particular for the larger voxel
sizes used for in vivo human measurements, partial volume effects
give rise to larger (co)variances, themagnitudes and signs of which
may be predicted from single-tissue results. As examples, the
representative values of Diso, R1, and R2 of WM and GM reported
in Figure 4 would give negative C[Diso,R1], positive C[Diso,R2],
and negative C[R1,R2] for a voxel comprising comparable fractions
of the two tissue types.

Parameter maps such as E[Diso] and E[DΔ
2] show similar

trends as in previous in vivomouse and human brain studies [50,
52, 53]. A direct quantitative comparison of conventional ADC
and E[Diso] must consider that the results of our method is in
effect extrapolated to the limit b � 0, τR � ∞, and τE � 0 unlike
conventional ADC, which is obtained at the finite values of τR and
τE given by the pulse sequence timings. Our E[Diso] results
showing locally higher values in the granule and pyramidal
cell layers, which according to histology have higher cell
densities than the neighboring tissues, and seemingly

contradicts the simplified interpretation of low ADC or E[Diso]
corresponding to high cellularity. Additional factors contributing
to the ADC values are cell membrane permeability, allowing
molecular exchange between the intra- and extracellular spaces,
and between adjacent cells [94], the relative fraction of the
extracellular space [5], and tissue architecture. In the rodent
brain, the granule and pyramidal cell layers are mostly tightly
packed cells with a regular geometry [62] in contrast with other
brain areas (e.g., cortex, thalamus) where the cells are more
scattered and share space with an array of neuropil in multiple
orientations. Hence, the observation of elevated E[Diso] in the
granule cell layer results from the combined effects of the cell
density, nuclear volume fractions, geometry, and molecular
exchange [5, 95–98].

For in vivo human brain,WM showed higher values of both E[R1]
and E[R2] than GM [52, 53, 55], which is consistent with our E[R2]
results. Conversely, we found that E[R1] inWM is slightly lower than
in GM, which on the other hand agrees with in vivo rat model-based
diffusion-relaxation correlation [99]. However, besides the obvious
futility of trying to compare quantitative relaxation measures from
previous in vivo studieswith our data on an ex vivo specimen at rather
extreme levels of added contrast agent to reduce the scanning time,
there are some more fundamental issues with attempting to
compare quantitative R1 from different studies or different
pulse sequences as recently elucidated in detail by Manning
et al. [8]. The value of R1 observed by varying some relaxation
delay in the pulse sequence does not report on just the
properties of the water molecules giving rise to signal
intensity in the actually detected images, but instead results
from a complex interplay between partial excitation by the
radiofrequency pulses, relaxation, and exchange of molecules,
protons, or magnetization between numerous proton pools,
for instance intra/extracellular water, myelin water, non-
aqueous myelin, and non-aqueous non-myelin protons, all
having have their distinct NMR properties in terms of R1, R2,
and linewidth. This latter property determines how the proton
pool is affected by radiofrequency pulses with limited
bandwidth as invariably used on clinical MRI hardware
and also on pre-clinical scanners for slice selection. Taken
together, quantitative R1 will in general not be the same if
measured with different pulse sequences and may even
depend on the detailed acquisition settings such as slice
thickness or the bandwidth of the radiofrequency pulses.
Consequently, our values of E[R1] and E[R2] should not be
compared in too much detail with other results obtained
under different conditions.

In the per-voxel and bin-resolved frequency-dependence maps in
Figure 3, Δω/2πE[Diso] is equivalent to ΔfADC measured with
oscillating gradients in earlier studies [61, 62, 96, 100]. Applying
a model of spherical confinement [101] to a liquid with bulk
diffusivity 1.6·10−9 m2s−1 (corresponding to PBS in Figure 4) and
a frequency range of 50–150 Hz yields elevated values ofΔω/2πE[Diso]
in the approximate diameter range of 4–12 μm with a maximum at
7 μm. In Figure 5, the highest values of Δω/2πE[Diso] are observed in
the granule cell layer of the dentate gyrus which according to
histology comprises densely packed granule cells of approximately
15–18 μm length and 10 μmwidth [102, 103], the latter being within
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the window giving elevated Δω/2πE[Diso]. The other highlighted
region in Δω/2πE[Diso] is the pyramidal cell layer of the
hippocampus, which comprises just two rows of cells unlike the
granule cells in dentate gyrus with eight rows. Compared to previous
studies with oscillating gradients, our values were less elevated in the
pyramidal cell layer. The difference could be related to the
50–150 Hz frequency range in our study which was somewhat
lower and narrower than the 60–180 Hz range in previous rat
brain studies. Thus, it is desirable to optimize the gradient
waveforms to cover a wider frequency range [100]. Another
reason for inconsistent values of ΔfADC across studies could be
relaxation bias resulting from the specific values τR and τE
determined by the hardware and imaging parameters. The
Δω/2πE[DΔ

2] map showed negative values in the stria terminalis
which in histology corresponds to an area of less myelinated axons
than major white matter tracts. The time/frequency-dependence of
μFA, similar to our Δω/2πE[DΔ

2] map, has been less studied;
however, it has been seen that it could provide complementary
information in regions of heterogenous microstructure [104]. The
frequency-dependence of FA has been inconsistent across studies
unlike the diffusivity, which has been constantly observed to
increase with frequency [63, 96, 104].

CONCLUSION AND OUTLOOK

Massively multidimensional diffusion-relaxation correlation
MRI joins diffusion-relaxation correlation, time/frequency-
dependent (“restricted”) diffusion, and tensor-valued
encoding into a common data acquisition and analysis
framework, giving per-voxel nonparametric D(ω)-R1-R2-
distributions which can be projected to the parameter spaces
of all the constituent lower-dimensional methods. The
unprecedented level of detail opens new opportunities to
provide a more specific description of the contribution of
cell types, local chemical composition, axonal density,
restriction, and orientations within a voxel by a single set of
measurements. This method adds the possibility of
disentangling bundle-specific metrics within a WM voxel
with multiple fiber orientations. As diffusion-relaxation
correlation [52], oscillating gradients [105, 106], and tensor-
valued encoding [107] with spin echo-prepared EPI read-out
are all increasingly used for in vivo human studies on high-end
conventional clinical scanners, our massively multidimensional
acquisition and analysis approach has potential for translation

to clinical research studies using only moderately longer
scanning times than each of the individual lower-
dimensional methods. Further studies are needed where all
the quantitative information from the obtained distributions
and maps is integrated with phantoms validation [108], as well
as with advanced histological validation [109] of healthy and
pathological tissues.
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