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We report on the spin Hall effect in epitaxial Pt films with well-defined crystalline (200),
(220), and (111) orientations and smooth surfaces. The magnitude of the spin Hall effect
has been determined by spin–torque ferromagnetic resonance measurements on epitaxial
Pt/Py heterostructures. We observed a 54% enhancement of the charge-to-spin
conversion efficiency of the epitaxial Pt when currents are applied along the in-plane
< 002> direction. Temperature-dependent harmonic measurements on epitaxial Pt/Co/
Ni heterostructures compared to a polycrystalline Pt/Co/Ni suggest the extrinsic
mechanism underlying spin Hall effect in epitaxial Pt. Our work contributes to the
development of energy-efficient spintronic devices by engineering the crystalline
anisotropy of non-magnetic metals.
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INTRODUCTION

Over the past decade, significant research efforts have been devoted to investigating magnetization
manipulation in the heavy metal (HM)/ferromagnetic material (FM) heterostructure via spin–orbit
torque (SOT) [1–6]. By engineering the bulk spin Hall effect (SHE) in HMs [7, 8] and interfacial
Rashba–Edelstein effect (REE) [9–11], enhanced SOT values can be achieved that have the potential
for developing novel energy-efficient magnetic memory [12], logic [13], and neuromorphic
computing devices [14]. Conventional SOT studies mainly focus on textured HMs such as Pt
[15], Au [16, 17], β-W [18, 19], and β-Ta [20], and transition metal alloys, for example, Cu-Ta [21]
and Fe-Pt [22]. More recently, epitaxial materials with tunable crystalline anisotropy and well-
defined orientations have been recognized as promising candidates for SOT studies [23–30]. Fruitful
research highlights crystalline-dependent anisotropic properties, for example, crystalline
orientation–dependent spin relaxation mechanism in Pt (111) [31] and enhanced SHE in
epitaxial metal [Ta (111) [32]], magnetic alloys [Mn3Ge (0002) [33]], and topological insulators
[BiSb (012) [34], Bi2Se3 [35]]. Particularly, the facet orientation–dependent SOT in epitaxial
antiferromagnetic IrMn3 is contributed by orientation-dependent intrinsic SHE [36]. Likewise,
crystallographic-dependent SOT could present in epitaxial HMs when spin current is generated in
different crystalline orientations.

In this letter, we detail the growth of epitaxial Pt thin films and Pt/FM heterostructures with (200),
(220), and (111) crystalline orientations. In epitaxial films, symmetries of the magnetic interactions
will reflect the underlying crystal and interface symmetries where the three orientations studied have
four-fold, two-fold, and three-fold surface symmetries, respectively. The symmetries should be
reflected in fundamental properties such as interfacial anisotropy (both in-plane and out-of-plane)
[37] and Dzyaloshinskii–Moriya interaction (DMI) [38, 39]. For low-symmetry systems such as Pt
(220) with C2v, the strength of the DMI may vary in magnitude or sign along different directions
[40–44]. Such anisotropic DMI and anisotropy can stabilize novel phases such as antiskyrmions [41].
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In this study, we focus on the SHE with the current flowing in
various symmetry directions in Pt. By quantitatively evaluating the
SOT along in-plane crystalline orientations via spin torque–FMR
(ST-FMR) measurements, isotropic and anisotropic SHE have
been observed and the role of the crystal symmetry enumerated.
Moreover, by performing temperature-dependent harmonic
measurements, we further reveal the intrinsic and extrinsic
mechanisms underlying the SHE in epitaxial and polycrystalline
Pt films. By combining directional-dependent SOT and anisotropic
magnetic properties, we anticipate energy-efficient magnetization
manipulation in novel spin structures.

SAMPLE GROWTH AND
CHARACTERIZATION

Epitaxial Pt films were grown onto single-crystalline MgO (200),
MgO (220), and Al2O3 (1120) substrates by DC magnetron
sputtering. The vacuum chamber had a base pressure of 8 × 10−8

Torr and a growth Ar pressure of 2.7mTorr. Pt (200) was grown on
Cr (200)-buffered MgO (200) substrates. The 5-nm-thick Cr (200)
seed layers were deposited at 450°C to initiate the epitaxy, followed by
Pt (200) deposition at 200°C. Pt (220) and Pt (111) films were grown
directly on MgO (220) and Al2O3 (1120) substrates, respectively, at
300°C. The growth procedures have been optimized for both epitaxy
and desirable smooth surface conditions. After the Pt growth, the
substrate was cooled, and subsequential FM layers were grown in situ
at room temperature to minimize the interfacial mixing effect and

magnetic dead layers. All samples were capped with a 2-nm-thick
amorphous Al2O3 layer to prevent surface oxidation. Following the
aforementioned procedure, we prepared a series of epitaxial Pt (10)/
Py (8) (Py, Ni81Fe19) samples for ST-FMR measurements and both
epitaxial Pt (111) (5)/Co(0.8)/Ni(1) and polycrystalline Pt (15)/
Co(0.8)/Ni(1) samples with perpendicular magnetic anisotropy for
harmonic measurements (thickness in nanometer throughout the
text unless otherwise stated). Note that the choice of Py as the FM
layer is motivated by its wide application as an efficient spin detector
[15, 45–50] and the usage of Co/Ni is due to its spontaneous
perpendicular magnetic anisotropy, a prerequisite for harmonic
measurements [51, 52].

The crystallographic properties of as-deposited Pt films were
evaluated by X-ray diffraction (XRD) measurements. The out-of-
plane symmetric θ-2 θ scans of Pt (200), Pt (220), and Pt (111)
films are presented in Figures 1A–C, demonstrating the epitaxy
growth along the substrates or the seed layers. The clear Laue
oscillations of the Pt (111) peak indicate excellent lattice
matching and a sharp Al2O3/Pt interface. Figures 1D–F show
the in-plane XRD scan, confirming the characteristic four-fold
symmetry of Pt (200) film and two-fold symmetry of Pt (220)
film. Note that the Pt (111) sample exhibits a six-fold symmetry,
which is attributed to crystal twinning. The relative orientation
between the crystalline axis of the Pt thin films and substrates has
been verified by both ϕ scans and semi-sphere pole figures, as
shown in Supplementary Figure S2–S4. Specifically, for the Pt
(200) sample, the in-plane Pt < 002> aligns with MgO < 002>
and is 45° to the in-plane Cr < 002> and Pt < 220> . For the Pt

FIGURE 1 | Out-of-plane XRD scan of epitaxial Pt films: (A) MgO (200)/Cr (200)/Pt (200). (B) MgO (220)/Pt (220). (C) Al2O3 (1120)/Pt (111). (D)–(F) In-plane ϕ

scans showing epitaxial growth and the four-fold, two-fold, and six-fold symmetry of Pt (200), Pt (220), and Pt (111), respectively.
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(220) sample, the in-plane Pt < 002> //MgO < 002> and Pt
< 220> // MgO < 220> . For the Pt (111) sample, the in-plane Pt
< 220> is perpendicular to the in-plane Al2O3 < 0001> . By
fitting the low-angle X-ray reflectivity (XRR) data, the surface
roughness of the deposited Pt (111), Pt (220), and Pt (200) films are
found to be 0.085, 0.25, and 0.37 nm (Supplementary Figure
S1A–C), respectively. The smooth surface condition of the
prepared epitaxial Pt thin films contributes to a sharp HM/FM
interface, which is the key to reduce inhomogeneous linewidth
broadening [53] and improved spin current conductance [54]. We
highlight that some previous studies of Pt (220) films observed
significant surface roughness [55] which we have ameliorated.

EXPERIMENTAL RESULTS AND
DISCUSSION

ST-FMR Measurements
We first introduce our ST-FMR measurement technique to
characterize the charge-to-spin conversion efficiency JS/JC of
the deposited epitaxial Pt films. Figure 2A illustrates the
schematic of our ST-FMR measurement setup. In the
measurements, a microwave current is applied along specific
in-plane crystalline directions in the Pt layer determined by
lithography. Due to the combination of the SHE and spin
diffusion effects, oscillating spin currents can be generated in
the Pt films, transported across the Pt/Py interface, and absorbed
by the adjacent Py layer. The out-of-plane Oersted field torque and
the in-plane SOT will drive precessional motion of the Py

magnetization around the direction of the in-plane effective
magnetic field, leading to an oscillatory change in resistance arising
from the anisotropic magnetoresistance (AMR) of Py. The largest
precession amplitude is found to occur at the ferromagnetic resonance
(FMR) frequency of the Py layer. Mixing the oscillatory resistance and
the applied RF current will give rise to a DC voltage, which can be
detected by a lock-in amplifier with a modulated RF current.

Figure 2B shows the optical image of the photolithographically
patterned microstrips with varied aspect ratios for impendence
matching and two different orientations of the current.
Coplanar wave guide (CPW) channels are patterned in
certain angles to align with the crystalline orientations in the
prepared Pt/Py films. Ti (6)/Au (200) pads are fabricated for
symmetric ground–signal–ground contact electrodes by a
standard sputtering and lift-off technique. The RF current is
applied to the CPW channels via wire bonding from
transmission lines to the ground–signal–ground electrodes.
The in-plane external magnetic field is oriented 45° relative
to the CPWs to improve the magnitude of the measured ST-
FMR signals [46]. Measurement of the induced DC voltages
takes advantage of a bias tee which separates the input RF
microwave currents and the ST-FMR signals. All the ST-FMR
measurements presented in this work were performed at room
temperature. The measured DC voltage follows a linear
dependence on the applied microwave power, as shown in
Figure 2C, suggesting the marginal role of the Joule heating
effect in our measurements.

The ST-FMR technique provides a quantitative measurement
of the JS/JC of the prepared epitaxial Pt films. The lineshape of the

FIGURE 2 | (A) Schematic diagram of ST-FMR measurement setup. (B) Optical microscope image of patterned Pt/Py CPWs with ground–signal–ground
electrodes. (C) ST-FMR spectra measured at different RF power. Insert: the ST-FMR signal Vmix with a linear dependence on the input microwave power. (D)–(F) The
measured ST-FMR spectra (open dots) with fitting curves (solid lines) on Pt (200)/Py, Pt (220)/Py, and Pt (111)/Py, respectively. The curves are offset for visual clarity.
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measured DC voltage can be expressed as a combination of
symmetric Lorentzian and antisymmetric Lorentzian [56–58]:

Vmix � S
(Δ/2)2

(B − B0)2 + (Δ/2)2 + A
(Δ/2)(B − B0)

(B − B0)2 + (Δ/2)2
+ background, (1)

where the parameter S is the amplitude of symmetric Lorentzian
arising from the spin Hall–induced anti-damping SOT exerted on
Py, A is the amplitude of antisymmetric Lorentzian resulting from
the sum of field-like SOT and Oersted field torque, B0 is the
resonance field, and Δ is the full-width-half-maximum (FWHM)
linewidth of the Py layer. The ratio between S and A is directly
proportional to JS/JC, which can be further expressed as follows [15]:

JS
JC

� S

A

eμ0MStd

ħ

���������
1 + 4πMeff

B0

√
, (2)

where μ0 is the permeability in vacuum; Z is the reduced Planck
constant, e is elementary charge;MS is the saturated magnetization
of Py, which has been characterized to be 698 kA/m via vibrating
sample magnetometry (VSM) measurements (Supplementary
Figure S5); Meff is the effective magnetization of Py which can
be obtained from fitting the frequency-dependent resonance field
by the Kittel formula [59]; and t and d represent the thickness of Py
and Pt layers, respectively.

Figures 2D–F show the experimental ST-FMR resonance
spectrum measured on Pt (200)/Py, Pt (220)/Py, and Pt (111)/
Py samples with microwave frequencies varying from 5 to
11 GHz. Due to the larger saturation field of Py,
measurements of the Pt (220)/Py sample are mainly focused in
the high-frequency regime. For Pt (220)/Py, the shift of the
resonance fields when the RF current applied along different
crystalline directions is attributed to the in-plane anisotropy of Py
induced by Pt (220) with low symmetry (C2v), while in high-
symmetry systems (C4v and C3v) of Pt (200) and Pt (111) samples,
nearly isotropic Py magnetic properties make the resonance fields
independent of the in-plane direction. The experimental results
(open dots) were well-fitted with Eq. 1 (solid lines). We note that
JS/JC follows a constant value over the whole frequency range of
our measurements. It is worth mentioning that the lineshape
method based on Eq. 2 only provides an estimation of the upper
limit of JS/JC due to the resonance-driven spin pumping effect
from Py to Pt as reported in a previous work [46, 49].

To independently verify the results obtained from the
lineshape method, we also performed linewidth modulation
measurements. By applying a DC current to the patterned Pt/
Py microstrip, a static anti-damping torque effectively modulates
the Gilbert damping of Py, resulting in a systematic current-
dependent variation of the linewidth of the obtained ST-FMR
spectra. Based on the spin-transfer torque (STT) model [56], the
injected DC spin currents effectively increase (decrease) the
damping of the Py layer when the spin polarization is parallel
(antiparallel) to the Py magnetization, leading to a broadened
(reduced) ST-FMR linewidth [15, 60]. Furthermore, reversing the
polarity of the external magnetic field that saturates Py
magnetization will also lead to the sign change of the observed

signals, as illustrated in Figure 3. Quantitatively, JS/JC can be
obtained from the slope of the DC-dependent resonance
linewidth of Py as follows [15, 23, 49]:

JS
JC

� ce(B0 + μ0Meff/2)MSt

2πfħsinφ
dΔ
dJC

, (3)

where φ is the angle between DC current and external magnetic
field, f is the FMR frequency, c is the gyromagnetic ratio, and JC is
the electric current density in the epitaxial Pt layer. Figure 3 presents
the results of modulated linewidth as a function of JC in Pt (220)/
Py(8) sample. By four-probe measurement, the longitudinal
resistivity ρxx of Pt (220) and the 8-nm-thick Py films along
individual crystalline orientations has been characterized
independently on control samples (Supplementary Figure S6).
Thus, JC can be quantitatively calculated from the portion of
current distribution based on the parallel resistor model. As
shown in Figures 3A,B, when the electric current is along
< 002> , the slope is approximately 54% larger than that when
current is along < 220> . We note that such distinct crystalline
orientation–dependent SHE is absent in higher symmetry Pt (200)/
Py and Pt (111)/Py samples.

To summarize our ST-FMR results, Table 1 shows the
obtained JS/JC of Pt along different crystalline orientations of
the prepared epitaxial Pt films. In general, a larger value of JS/JC is
observed in the sample with higher ρxx. In the high-symmetry
systems such as square Pt (200) and hexagonal Pt (111) lattice
with C4v and C3v symmetry, the difference between ρxx along
different in-plane crystalline orientations is less than 5%, within
the experimental error. Notably, the isotropic ρxx yields isotropic
JS/JC in Pt (220) and Pt (111) samples. Isotropic JS/JC has been
observed in other high-symmetry epitaxial materials, such as
SrIrO3 (0001) [25] and Fe (001)/Pt [61]. In contrast, in the low-
symmetry system (C2v) of Pt (220), ρ<002>xx is 11% larger than
ρ<220>xx . The obtained value of JS/JC along < 002> direction is
significantly larger than that along < 220> direction via both
lineshape and linewidth methods. We remark that the obtained
anisotropic JS/JC on Pt (220) agrees with the results recently
reported [30], where enhancement of JS/JC was also observed in
Pt when current was along < 002> direction.

As the thickness of the measured Pt films is greater than the
spin diffusion length λS, the measured JS/JC is mainly contributed
by bulk SHE, bulk REE, and interfacial REE [62]. The bulk SHE
consists of intrinsic and extrinsic mechanisms, in which
orientational-dependent anisotropic ρxx can be contributed by
the intrinsic SOC and intrinsic SHE. On the other hand,
different extrinsic scattering events can give rise to anisotropic
SHE; however, extrinsic impurity scattering is minor in the
undoped, highly crystalline epitaxial Pt. Therefore, we believe
that the anisotropic bulk SHE in Pt is mainly driven by the
orientation-dependent intrinsic mechanism. This is supported
by the fact that since broken space inversion symmetry is
absent in Pt crystals, the bulk REE contribution can be ruled
out [63]. Last, the interfacial REE is expected to be anisotropic in
the Pt (220)/Py interface. Simon et al. demonstrated, for reduced
symmetry surface such as Au (110), the anisotropic REE dominates
due to the mixing of the surface state with the bulk state [64].
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Conclusively, the anisotropy in both intrinsic SHE and interfacial
REE could result in anisotropic JS/JC.

Temperature-Dependent Harmonic
Measurements
To further understand the resistivity-dependent SHE of the
epitaxial Pt films, we performed temperature-dependent
harmonic measurements on patterned Pt/Co(0.8)/Ni(1) Hall

devices, as illustrated in Figure 4A. Figure 4B shows the
characteristic first and second harmonic Hall results measured
in the prepared device. For bulk SHE, when a charge current JC
flows through the Pt along the x-axis, spin current JS is generated
along the z-axis with spin polarization σ along the y-axis. A
damping-like SOT τDL ∼ m × (σ ×m) and a field-like SOT
τFL ∼ σ ×m produced by the generated spin currents are
exerted on the magnetization m of Co/Ni [1, 4]. When m
reaches an equilibrium position, the effects of these two SOTs

FIGURE 3 | Variation of FMR linewidth as a function of applied DC current at a microwave frequency f � 7 GHz for current along (A) <002> and (B) < 220> on Pt
(220)/Py, respectively. Solid lines are linear fits to the data.

TABLE 1 | Crystalline orientation–dependent longitudinal resistivities and charge-to-spin conversion efficiencies of epitaxial Pt films and Pt/FM structures.

Sample Current direction ρPtxx (μΩ.cm) JS/JC at 300 K
(Lineshape method)

JS/JC at 300 K
(Linewidth method)

Pt (200) (10)/Py(8) < 002> 17.3 0.055 —

< 220> 16.6 0.053 —

Pt (220) (10)/Py(8) < 002> 15.3 0.050 0.028

< 220> 13.8 0.039 0.018

Pt (111) (10)/Py(8) < 220> 11.7 0.034 —

⊥< 220> 11.8 0.032 —

FIGURE 4 | (A) Schematic diagram of harmonic measurements of Pt/Co(0.8)/Ni(1) samples. The aspect ratio of the Hall cross is 1:3 to minimize Joule heating
effects. Insert:M vsB curves on Pt (111)/Co(0.8)/Ni(1). Measured in-plane longitudinal field dependence of (B) first-harmonic Hall signal and second-harmonic Hall signal
in Pt/Co(0.8)/Ni(1) sample. (C) Temperature dependence of the charge-to-spin conversion efficiency measured on polycrystalline Pt and epitaxial Pt (111).
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can be described equivalently as the damping-like effective field
(ΔHDL ∼ m × σ) and field-like effective field (ΔHFL ∼ σ),
respectively [1, 4]. By applying a 5-mA AC current at a frequency
of 161 Hz, the generated ΔHDL(FL) causes an oscillation ofm around
the equilibrium position. By sweeping an in-plane external magnetic
field along the current direction, the field dependence of the first
harmonic signal Vω and the 90° out-of-phased second-harmonic
signal V2ω can be measured. The derivatives of the harmonics signal
are used to calculate the ratio coefficient Bx(y) [20, 65, 66]:

Bx(y) � ⎛⎝ zV2ω

zHx(y)
⎞⎠⎛⎝ z2Vω

zH2
x(y)

⎞⎠−1

(4)

and the ΔHDL(FL) can be extracted as follows [20, 65, 66]:

ΔHDL(FL) � −2Bx(y) ± 2ξBx(y)
1 − 4ξ2

, (5)

where ξ is the ratio of the planar Hall resistance RPHE and AHE
resistance RAHE. Note that the reported RPHE is typically much
smaller than RAHE [66], giving rise to the following approximation:
ΔHDL(FL) ≈ − 2Bx(y) [25, 66, 67]. Notably, the slope of V2ωx versus
the field along the x axis is much larger than the slope of V2ωy
versus field along the y axis, indicating a negligible contribution
from the field-like SOT. Hence, we only consider the damping-like
SOT in this work. From ΔHDL, JS/JC can be calculated based on
the following equation [68, 69]:

JS
JC

� 2eμ0MSΔHDLtCoNi
JCħ

. (6)

Figure 4C presents the obtained temperature-dependent JS/JC
of epitaxial and polycrystalline Pt films. As mentioned before, the
growth condition of Co/Ni on Pt (111) is consistent with the
growth condition of Co/Ni on polycrystalline Pt. Furthermore, the
saturatedmagnetizationMS of Pt/Co/Ni for both polycrystalline Pt
and Pt (111) sample is nearly the same (600 kA/m), suggesting
similar surface conditions. We can see that JS/JC measured on Pt
(111) at room temperature agrees well with the value obtained
from ST-FMR measurements. Also, JS/JC of polycrystalline Pt is
about 3 times larger than that of the epitaxial Pt (111), which is
comparable with the values reported in other studies [24]. In the
temperature range of our measurements, JS/JC of both
polycrystalline and epitaxial Pt films decreases monotonically
with temperature. Due to the high residual-to-resistance ratio in
epitaxial Pt (111), the shunting effect becomes significantly
pronounced in the low-temperature regime; thus, the measured
anomalous Hall signals coming from Co/Ni become negligibly
small below 150 K. In metals with spin–orbit coupling, spin Hall
conductivity is predicted to scale with ρxx linearly or quadratically
[70]. The former contribution results from the extrinsic scattering
in “clean metals,” and the latter one is driven by the intrinsic
mechanism in “dirty metals” [70]. Isasa et al. reported that the
intrinsic mechanism dominates the SHE in polycrystalline Pt [71],
while for the case of epitaxial Pt (111) with significantly reduced
resistivity, the weight of extrinsic mechanism is reasonably raised
in “cleaner” epitaxial Pt (111). Our results support the previous
picture.

CONCLUSION

In summary, we have prepared high-quality epitaxial Pt thin films
on a series of substrates. Systematic ST-FMR measurements
demonstrate the isotropic nature of SHE in the high-symmetry
Pt (200) and Pt (111) films. In contrast, the low-symmetry system
such as (220) orientated Pt exhibits the anisotropic SHE behavior
that is correlated to the anisotropic resistivity. The temperature-
dependent harmonic measurements further suggest that SOT can
be a hint for “cleaner” metals with more extrinsic contribution to
SHE. The observed crystalline orientation–dependent JS/JC of
epitaxial Pt could be readily extended to other Pt/FM
heterostructures with a broad range selection of FMs. Our work
reveals the underlying mechanism of SHE in crystalline textured
metals and broadens the material scope available for developing
energy-favorable spintronic devices for next-generation
information technologies.
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