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Light-matter interplay is widely used for analyzing the topology of surfaces on small scales
for use in areas such as nanotechnology, nanoelectronics, photonics, and advanced
materials. Conventional optical microscope imaging methods are limited in resolution to a
value comparable to the wavelength, the so-called Abbe limit, and cannot be used to
measure nano-sized structures. Scatterometry andMueller ellipsometry are spectroscopic
optical methods that can measure structures smaller than the wavelength. However, the
relative uncertainties of the structure dimensions measured with scatterometry increase
with decreasing structure size, and the industry is therefore replacing simple intensity
based scatterometry with Mueller ellipsometry for the most demanding measurements.
The accuracy of Mueller ellipsometry and scatterometry are closely related to the ability of
the employed regression and regularization algorithms to extract the structural dimension.
In this work, we demonstrate how the measurement accuracy on three-dimensional
periodic structures may be increased by measuring the same periodic structure with
multiple techniques and applying a χ2-regression method that finds the best solution
based on the input from all the instruments. We furthermore report on a new and improved
calibration method for Mueller ellipsometry and demonstrate how the Mueller matrix may
be used to find the geometrical anisotropy of the structure.
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1 INTRODUCTION

Nanostructures have a wide array of applications in optics, diagnostics, food science, sensing, and
process inspection monitoring. Some of these applications include enhancing waveguide coupling,
improving linear encoders, making hyperspectral cameras and printing color images [1–4]. Imaging
technologies like Optical Microscopy (OM), Atomic Force Microscopy (AFM) and Scanning
Electron Microscopy (SEM) are the dominating quality assesment technologies in low volume,
high-cost nanoscale manufacturing, whereas scatterometry and Mueller ellipsometry are the
preferred technologies for high volume manufacturing. However, the measurement accuracy for
all of the above-mentioned technologies is decreasing with the ever decreasing nanostructure sizes.
OM cannot measure the shape of objects with lateral sizes less than 1 μm; AFM cannot accurately
measure shape but canmeasure the nanostructure height if the separation width is longer than the tip
width; lateral and vertical dimensions from SEM pictures are hard to obtain if the width of the
borderline produced by the secondary electron becomes a significant part of the dimension to be
measured [5]. Scatterometry and Mueller ellipsometry can measure the shape of periodic
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nanostructures [6–8]; however, the accuracy of the shape
dimensions decrease with decreasing nanostructure sizes and
increasing complexity. We proposed to use hybrid metrology
that combines scatterometry, Mueller ellipsometry, and AFM for
shape reconstruction of nanostructures. Scatterometry can be
defined as the measurement and analysis of light diffracted by
structures using fixed polarization settings.

The scattered (or diffracted) light is a signature or
“fingerprint” which reflects the details of the structure itself.
For a periodic device, such as a series of lines and spaces
in silicon, the scattered light consists of distinct diffraction
orders at angular locations specified by the well-known grating
equation. The fraction of the incident power diffracted into any
order is sensitive to the shape and dimensional parameters of the
diffracting structure andmay therefore be used to characterize the
structure itself [9]. This is done using a mathematical model of
the structure based on a priori information and a rigorous
simulation of the light-structure interaction. Rigorous Coupled
Wave Analysis (RCWA) [10] is the common workhorse for
scatterometry modelling due to its speed, convergence and
relatively simple implementation. In RCWA, the nanostructure
is approximated by rectangular slabs, and Maxwell’s equations
are solved by coupling the boundary conditions between the slabs.
The dimensional parameters are obtained using a best-fit
procedure between experimental data and calculated values [11].

Ellipsometry measures the polarization-dependent optical
response from a sample [9]. In the conventional configuration,
an amplitude and a phase parameter, describing the change in
polarization in an isotropic sample, are measured. Mueller
ellipsometry is a more advanced method, which may be
further divided into two groups: Non-normalized Mueller
ellipsometers that measure all 16 Mueller matrix elements, and
normalized Mueller ellipsometers in which the 16 Mueller matrix
elements are normalized with the first Mueller matrix element
m11. The sensitivity of Mueller ellipsometry comes from the
measurement of both the magnitude and phase of the Fresnel
response/reflection from the sample, and as a rule of thumb, the
sensitivity increases with asymmetries and increased density of
the structure. Furthermore, it is possible to use the same
mathematical modelling method as in scatterometry. Several
strategies exist for precision Mueller ellipsometry measurement
and have been investigated by a number of authors [12–16]. A

necessary prerequisite for high precision Mueller ellipsometry
measurements is accurate calibration of the Mueller ellipsometer.
We have developed a new calibration method consisting of a fast
method for monitoring the most important experimental settings
on a daily basis and a more comprehensive method for
monitoring of the entire instrument. The method, explained in
section 2.1, makes it possible to correct for fluctuation in the
dominating experimental parameters on a much shorter
timescale and easily monitor the linearity of the instrument
response.

In this paper, we report on the progress of accurate
determination of the dimensional parameters of three-
dimensional periodic nanostructures by measuring the same
periodic structure with multiple technologies and applying a
χ2-regression method with regularization that finds the best
solution based on the input from all the instruments. We have
measured a square patterned periodic grating with truncated cone
shapes with a 200 nm period in the x and y direction, see Figure 1,
using scatterometry, Mueller ellipsometry, and AFM. The χ2-
regression method contains two parts, the first part includes the
scatterometry and Mueller ellipsometry contribution, while the
second part is a Tikhonov regularization part used for including
the AFM height measurement. We demonstrate that the hybrid
metrology approach improves the accuracy of the obtained
dimension. In particular, we observe an improvement for
strongly correlated parameters. The paper is organized in the
following way: In Section 2, we describe the experimental
scatterometry and Mueller ellipsometry setups together with
the newly developed method for calibration of the Mueller
ellipsometer. In section 3, the forward model used for
simulating the light-matter interaction is presented. In section
4, we explain the applied inverse method, showing how it is used
to find the dimensional parameters and calculate the
corresponding uncertainties. Section 5 is devoted to the
discussion of the obtained results, and section 6 summarizes
the results obtained.

2 MATERIALS AND METHODS

The experimental system is a combined goniometric and
spectroscopic setup. In this work, we use only the

FIGURE 1 | Illustration of the truncated cone model and the parameterization used to describe the physical sample. The parameters (periods, Λx and Λy, height, h,
and width, w) specified by the manufacturer are shown on the left, while the additional parameters used (sidewall angles, θ, and corner rounding radii, Rtop and Rbot) are
shown on the right. The width is defined as the full-width-half-max of the cone.
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spectroscopic scatterometry and Mueller ellipsometry
measurement modes. A sketch of the setup can be seen in
Figure 2. As radiation source, we use a Laser-Driven Light
Source (LDLS) (Energetiq, EQ-99X). The LDLS lamp covers
a wavelength range from 170 to 2,200 nm. The light is focused
onto a 150 μm pinhole using parabolic mirrors and secondly
collimated by an UV-to-NIR corrected triplet lens (Edmund
Optics, 180 mm). The collimated light passes through a
polarization state generator (PSG) made from an α - BBO
polarizer (Edmund Optics, 68–827) followed by a photo
elastics modulator (PEM, Hinds Instrument, I/FS50). At
this point the beam diameter is roughly 1.5 mm. The angle
of incidence on the sample may be varied between +/- 90° via
a rotation stage (Thorlabs, NR360S) equipped with angular
encoder (Heidenhain, ERA 4200C). The detector arm can be
scanned over nearly the complete diffraction plane, +/- 175°,
and is equipped with a polarization state analyzer (PSA),
made from a photo elastic modulator (Hinds Instrument,
I/FS60) and an α - BBO polarizer (Edmund Optics, 68–827),
followed by a spatial mirror (Thorlabs, RC08APC-P01) that
focuses the light into a fiber coupled monochromator
(Spectral products, DK242). The monochromator is
equiped with two gratings, a UV-optimized grating for
wavelengths below 400 nm and another for the
wavelengths above. The output from the monochromator
is focused on a PMT detector (Hamamatsu, R928P). The
detected signal is split into a DC and an AC signal using an
analog filter (SIM 965, Stanford Research System) with a low-
pass frequency cut at 30 Hz. The DC signal is fed into an
analog PID controller (SIM 960, Stanford Research System)
that together with a custom build PMT amplifier, controls the
high voltage power supply (PS 310, Stanford Research
System) of the PMT such that the recorded signal is
always taken at the same DC value ((1.35 ± 0.005) V in
the presented work). A digitizer (Agilent L4534A) is used for
simultaneous sampling of the recorded signal together with
the PSG and PSA waveforms. The waveforms are long-pass

filtered at 1 MHz and voltage limited to +/- 8 V in the
digitizer prior to data analysis. By rotating these PEMS to
different angles (labeled θm0 and θm1), one can probe different
elements of the Mueller Matrix. The PEM waveforms and the
signal are analyzed by fast Fourier transformation. Eq. 4 in
the Supplementary Material of ref. [17] shows that the
recorded Mueller ellipsometer signal may be written as a
Fourier expansion of frequencies in the following way:

I � IDC + If0 cos ω0t + ϕ0 −
π

2
( ) + If1 cos ω1t + ϕ1 −

π

2
( )

+I2f0 cos 2ω0t + 2ϕ0( ) + I2f1 cos 2ω1t + 2ϕ1( )
+If0+f1 cos (ω0 + ω1)t + ϕ0 + ϕ1( )
+I2f0+f1 cos (2ω0 + ω1)t + 2ϕ0 + ϕ1 −

π

2
( )

+If0+2f1 cos (ω0 + 2ω1)t + ϕ0 + 2ϕ1 −
π

2
( )

+I2f0+2f1 cos (2ω0 + 2ω1)t + 2ϕ0 + 2ϕ1( ) + . . . (1)

Where ωi � 2πfi, i � 0, 1 and ϕ0, ϕ1 are the angular frequencies and
phases of the photo elastic modulators. Ifi are the amplitudes and
IDC is the DC value that is kept constant for all measurements.
The measurands obtained from Fourier transformation of the
signal are:

IDC and Ifi, fi ∈ f0, f1, 2f0, 2f1, f0 + f1, 2f0{
+f1, f0 + 2f1, 2f0 + 2f1} (2)

It is demonstrated in [17] that the nine measurands in (2) give
a complete description of the signal, I, in Eq. 1. The normalized
intensities Afi � Ifi/IDC can be directly related to the Mueller
matrix elements as explained in section 2.1, and the 15
normalized Mueller matrix elements may be obtained by
measuring Afi for different angular positions of the PSG (θm0)
and PSA (θm1). The Muller ellipsometry data obtained are
normalized with the m11 Mueller matrix element. The Mueller
matrix element, m11, can be measured using scatterometry.
During the scatterometry measurements, the PEMs were not
oscillating and the outgoing light was connected via fiber to a UV
to NIR spectrometer (Ocean optics, FLAME-S-XR1-ES) instead
of the monochromator.

2.1 Data Acquisition and CalibrationMethod
for Mueller Ellipsometry
The details of the data acquisition are explained in the
Supplementary Material. Here we continue by showing how
precision calibration of the setup can be made prior to
measurement. The main results of this section are Eqs 4, 6.
Eq. 4 presents new expressions for improving the measured
Bessel amplitudes, and Eq. 6 is a high precision formulation
of the standard formulas in [15]. The notation used in the
derivations are similar to the one used in [15]. The prior-to-
measurement calibration is by far the most important calibration
since PEMs are very stable devices. However, regular system
calibration is needed to monitor the performance of the entire
system, and a simple method for this is described in the
Supplementary Material.

FIGURE 2 | Schematic illustration of the experimental setup. The main
components are the light source, the two photo elastic modulators (PEM0 and
PEM1), a monochromator and a detection system based on a photomultiplier
tube (PMT), a high voltage power supply (PS) and electronics measuring
the AC and DC components of the signal (AC/DC).
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The quantities measured with the Mueller ellipsometry setup
are the eight normalized intensities Afi � Ifi/IDC, see (2). In this
section we show that the normalized intensities Afi are well
defined functions of the Mueller matrix elements (mij), the Bessel
amplitudes (A0, A1) and the static strain (δ0, δ1) of the PEM phase
retardation, the two polarizer angles (θp0, θp1), the two PEM
angles (θm0, θm1) used to select the Mueller matrix elements of
interest, and the Bessel functions of the first kind Jn. With a
suitable choice of polarizer and PEM angles, a normalized
intensity Afi is dominated by a single Mueller matrix element
as indicated in Eq. 6. However, the influences of other Mueller
matrix elements are only eliminated if all the Bessel amplitudes
A0, A1 have been adjusted so that J0 (A0) � J0 (A1) � 0 (e.g. A0 � A1

� 2.404 8), if the static strains δ0, δ1 are zero, and if all polarizers
and PEM angles are perfectly set. This optimal situation can
hardly be obtained in practice, so precise calibrations are needed.
We perform a system calibration in which all of the system is
calibrated, and a prior-to-measurement calibration of the Bessel
amplitudes and the static strain. During calibration, we find the
optimal voltages for each PEM in order to make sure that the
value of A0 and A1 are within the range from 2.28 to 2.38 for all
the measured wavelengths. This range ensures that we are within
the linear range of the Bessel functions and safely away from the
point where J0 changes sign. In practice, this is done by making a
calibration function (polynomial of second degree) for each
combination of PEM and monochromator grating, resulting in
four wavelength-voltage calibration functions. The measurement
of the Bessel amplitudes is obtained from transmission calibration
measurements without sample in the Mueller ellipsometer, using
θp0 ≈ θp1 ≈ − 45° and θm0 ≈ θm1 ≈ 0° and assuming J0 (A0) ≈ J0
(A1) ≈ 0, so that we can expand the Bessel function as

J0 A0( ) ≈ C Ap − A0( )
J0 A1( ) ≈ C Ap − A1( ) (3)

where C � 0.519 6 and Ap � 2.4048. After derivation, see
Supplementary Material, we find the following very useful
expressions for A0 and A1

A0 � Ap − A2f1

2CD J2 Ap( ) + J1 Ap( ) − J3 Ap( )( ) A2f0

4CDJ2 Ap( )⎛⎝ ⎞⎠
A1 � Ap − A2f0

2CD J2 Ap( ) + J1 Ap( ) − J3 Ap( )( ) A2f1

4CDJ2 Ap( )⎛⎝ ⎞⎠
(4)

where D � cos(2(θm1 − θm0)) ≈ ± 1 is a measure of the relative
angular position of the PEMs. Eq. 4 is very important for high
precision measurements since the normalized intensities Afi are
strongly dependent on the correct values for the Bessel amplitudes.
The static strain measurement is performed in order to see if the
assumption δ0, δ1 ≈ 0 holds for all wavelengths, the measurements
are performed by setting θp0 ≈ − 45°, θp1 ≈ 0, θm0 ≈ 0, θm1 ≈ − 45°

and measuring A2f0+f1, Af0+2f1,

δ0 � A2f0+f1 1 + Cb0Cb1Cm0Cm1 + Cb0Sm0 + Cb0Cb1Sm0Sm1( )
−2J2 A0( )J1 A1( )

δ1 � A2f1+f0 1 + Cb0Cb1Cm0Cm1 + Cb0Sm0 + Cb0Cb1Sm0Sm1( )
−2J2 A1( )J1 A1( )

(5)

where Cb0 � cos(2(θm0 − θp0)), Cb0 � cos(2(θm1 − θp1)),
Cm0 � cos(2θm0), Cm1 � cos(2θm1), Sb0 � sin(2(θm0 − θp0)),
Sb0 � sin(2(θm1 − θp1)), Sm0 � sin(2θm0) and Sm1 � sin(2θm1).
Figure 3 shows typical Bessel amplitude and static strain
values for the measurement system. Assuming that δ0, δ1 ≈ 0,
Sb0 � ±1b0, Sb1 � ±1b1, Cb0 � 0 and Cb1 � 0, like in most setups, we
can write the expressions that relate the normalized intensity
Afi � Ifi

IDC
and the Mueller matrix elements, mij

FIGURE 3 | Typical Bessel amplitudes A0, A1 and static strains δ0, δ1 as a function of wavelength. We note that the Bessel amplitudes are in the desired range from
2.28 to 2.38. A jump is seen around the wavelength of 400 nm, where the monochromator grating and PEM calibration function is changed.
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Af0 ≈ 2J1(A0)m14 ±1b0( ) IDC

IDC0

Af1 ≈ 2J1(A1) −m41 ±1b1( )( ) IDC

IDC0

A2f0 ≈ 2J2(A0) −m13Cm0 ±1b0( ) +m12 ±1b0( )Sm0( ) IDC

IDC0

A2f1 ≈ 2J2(A1) −m31Cm1 ±1b1( ) +m21 ±1b1( )Sm1( ) IDC

IDC0

Af0+f1 ≈ − 2J1 A0( )J1 A1( )( −m44(±1b0)(±1b1)) IDC

IDC0

A2f0+f1 ≈ 2J1(A1)J2(A0)( −m42Sm0 ±1b0( ) ±1b1( )
+m43Cm0 ±1b0( ) ±1b1( )) IDC

IDC0

Af0+2f1 ≈ 2J1(A0)J2(A1)(m24 ±1b0( ) ±1b1( )Sm1

−m34Cm1 ±1b0( ) ±1b1( )) IDC

IDC0

A2f0+2f1 ≈ 2J2(A0)J2(A1)(−m32Cm1 ±1b0( ) ±1b1( )Sm0

+m33Cm0Cm1 ±1b0( ) ±1b1( )+
m22 ±1b0( ) ±1b1( )Sm0Sm1 −m23Cm0 ±1b0( ) ±1b1( ))Sm1

IDC

IDC0

(6)

where the ratio between the correct DC value and the measured

DC value (IDC0
IDC

) is given by,

IDC0

IDC
≈ 1−C( Ap −A0( ) −m13Cm0 ±1b0( )+m12 ±1b0( )Sm0( )+ Ap −A1( ) −m31Cm1 ±1b1( )+m21 ±1b1( )Sm1( ))

IDC

≈ 1−
C Ap −A0( ) A2f0

2J2 A0( )+ Ap −A1( ) A2f1

2J2 A1( )( )
IDC

.

(7)

Eq. 7 demonstrates that the correction term vanishes for perfect
Bessel amplitudes and that it gets less important with higher IDC
values. A high value and low variation are thus optimal. In this paper,
we have used a value of (1.350 ± 0.005) V. The calibration Mueller
matrix is the Mueller matrix of air, which is a non-depolarizing
Mueller matrix. However, the measured calibration Mueller matrix
may be influenced by small depolarization (0.98< β(λ)< 1) from
the components in the setup, for λ > 300 nm. This depolarization
may be found from the following formula [18–20]:

1

β2(λ) ∑4
i,j�1

m2
ij(λ) � 4m2

11(λ). (8)

The measured Mueller matrix, with the sample in place, is
renormalized with the instrument depolarization in order to
exclude the influence of the system components in the data
fitting. The beta values are shown in Figure 4. For the sample,
we see a large dip for wavelenghts below 300 nm. This is
attributed to our signal quality in this spectral region. We
have increased the measurement uncertainty in this region to
lower the effect on the final measurement.

2.2 Sample and Measurements
A periodic patterned silicon structure Γx � Γy � 200 nm was
purchased from Eulitha AG.

The Mueller ellipsometry measurements were performed at
70° angle of incidence, and 15 Mueller matrix elements have been

measured by performing measurements at PSG angles,
θm0 � [180, 135, 135, 180]° and PSA angles
θm1 � [135, 135, 180, 90]°. The Mueller matrix elements were
calculated from the measured intensities in (2) following the
procedure described in section 2.1 and in the Supplementary
Material. Scatterometry measurements I(λ) were also performed
at a 70° angle of incidence together with a reference measurement
Iref(λ) taken on a flat piece of Si100, and a dark measurement
Idark(λ) obtained by blocking the light source. The light was
polarized perpendicular to the incidence plane during all
measurements. The diffraction efficiencies, η (λ), are calculated
from the three scatterometry measurements in the following way:

η λ( ) � R λ( ) I λ( ) − Idark λ( )
Iref λ( ) − Idark λ( ) (9)

where R (λ) is the wavelength-dependent reflection coefficient of
the material used for the reference measurement.

For the AFMmeasurements of the heights of the gratings, we used
a metrology AFM (Park Systems, NX20, Suwon, South Korea) in
tapping mode, equipped with Point Probe Plus tips (Nanosensors),
with a specified apex radius < 10 nm. The AFM has an xy-stage
equipped with optical distance sensors and a z-flexure stage equipped
with strain gauge distance sensors. The microscope was calibrated in
the z-direction using a step height standard as described in [21]. The
area measured by the AFM was well within the area covered by the
beam spot in the optical measurements. The images were analyzed
using the step height module in Scanning Probe Image Processor
(SPIP) (ver. 6.7.3, Image Metrology) and following the ISO 5436
standard for measuring step heights. We stress that only the height is
measured by the AFM. Following this standard, we eliminate the
effect of sample-tip convolution on the measured height.

2.3 RCWA for Nanostructure
Characterization
Light scattering from the periodic patterened nanostructure is
modeled by rigorously solving Maxwell’s equations in the

FIGURE 4 | Measured values of the depolarization β with and without a
sample (Air). For wavelengths below 300 nm, we see a steep drop for the
sample measurements, which is not present in the air measurement. This
demonstrates sample depolarization for lower wavelengths. The
depolarization measured without the sample is referred to as the instrument
depolarization.
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relevant frequency domain. The rigorous coupled-wave (RCWA)
software described in [11] has been extended to handle arbitrary
repeated profiles with complex material distributions. The profile is
approximated by division into multiple slabs. Each slab consists of
Nq building blocks that all have the same height hq. Each building
block within a slab is furthermore labeled with an index i. Each
building block b(q, i) is then characterized by its widthswx(q, i),wy(q,
i) and offsets x(q, i), y(q, i) in the x- and y direction, respectively.
Furthermore, each block is characterized by its permittivity ϵ(q, i)
and permeability μ(q, i). The lateral periodicities of the slabs are
given by the periodicity of the microstructure.

The new software runs within the Matlab environment and is
used for forward calculations of the diffracted fields and
efficiencies. The model structure used in the forward
calculation is based on a priori information from the sample
manufacturer, together with scanning electron microscope
images of similar structures. These investigations showed that
the nanostructure could be represented by the truncated cone
geometry shown in Figure 1. The periodic truncated cone
geometry may be characterized by a set of geometrical

quantities a0 (e.g. period Γx, Γy height h, width w, sidewall
angle θ, an oxide layer of thickness d, and corner radii R1 and
R2). The Fresnel reflection coefficients rpp, rsp, rps, rss are
calculated using RCWA as function of wavelength λ, angle of
incidence θ, azimuth angle ϕ of the nanostructure relative to the
scattering plane, refractive index n + ik of the material, and for a
specified set of geometrical sample quantities a0. The Fresnel
coefficients from the RCWA simulations are related to the
Mueller matrix by

M �
1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ rpp rps
rsp rss

( ) ⊗
r*pp r*ps
r*sp r*ss

( )( )
1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

(10)

where ⊗ denotes the Kronecker product and * denotes complex
conjugation. The full polarization properties of a sample are
contained in the 4 × 4 Mueller matrix (M), which for oblique
incidence relates the Stokes vectors of the incident (Si) and
reflected (Sr) directions.

FIGURE 5 | Experimental Mueller ellipsometry measurements (black crosses) and fitted Mueller ellipsometry results (red lines). The upper left corner shows an AFM
picture of the structure. A strong agreement between model and fit are found within all Mueller matrix elements for wavelengths > 300 nm. All the anisotropic Mueller
matrix elements: m13, m14, m23, m24, m31, m32, m41 and m42 have been set to zero in the model.
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Sr � MSi (11)

In this work, we use normalized elements and m11 ≡ 1. The
Stokes vector has the components

Sr �
I
Q
U
V

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
Ip + Is
Ip − Is

I+45 − I−45
IR − IL

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

where Ip, Is, I+45, and I−45 are, respectively, the irradiances of
polarized light components parallel (p), perpendicular (s), at
+45° and at -45° relative to the plane of incidence; IR and IL are
the intensities of right- and left-handed circularly
polarized light.

2.4 Inverse Modelling Method
Generally speaking, the inverse problem we consider is the task of
calculating from a set of measurements the dimensional
parameters that produced those results. Several techniques can
be applied to solve inverse problems [10, 11]. The approach used
here is based on setting up a regression problem in the following
sense: Given a vector ofmeasurement data y ∈ Rn, an RCWAmodel
function, fRCWA, that maps the parameter, p ∈ Rm, describing the
truncated cone geometry that we want to determine to the
measurement space fRCWA: R

m → Rn. The mapping function
maps the parameter p into calculated scatterometry diffraction
efficiencies (ηc) and calculated Mueller ellipsometry parameters
(mc

ij), resulting in an approximation of the measurement data. If
one has additional knowledge about the measurement errors, e.g. if
one knows the variances σ2i of each of the measured values yi, one
can use this knowledge to weight the different measurements
accordingly, hence limiting the influence of observations that
are expected to have a large error. If more knowledge of the
parameters p exists from other experiments, this knowledgemay be
incorporated into the χ2-function as a penalty term. The most
common penalty terms are Bayesian and Tikhonov regularization.
Tikhonov regularization can be used to incorporate measurands of
one or more parameters included in p from other instruments in a
direct and appealing way. The χ2-regularization method used in
this work contains two parts, the scatterometry and Mueller
ellipsometry contribution and the AFM height measurement.
The latter is incorporated as a Tikhonov regularization used to
penalize the model from fitting a height, hc, different than the
height, h, measured by AFM.

χ2 p( ) � 1
2

h − hc( )2
σ2AFM

+ 1
7N

∑N
i�1

m12(λi) −mc
12(λi, p)( )2

σm12(λi)2
[⎛⎝

+ m21(λi) −mc
21(λi, p)( )2

σm21(λi)2
+ m33(λi) −mc

33(λi, p)( )2
σm33(λi)2

+ m44(λi) −mc
44(λi, p)( )2

σm44(λi)2
+ m34(λi) −mc

34(λi, p)( )2
σm34(λi)2

+ m43(λi) −mc
43(λi, p)( )2

σm43(λi)2
+ η(λi) − ηc(λi, p)( )2

ση(λi)2 ]) (13)

where the superscript c indicates calculated values, and N is the
number of wavelengths. The above equation can be minimized by
applying a combination of global and local optimization
algorithms, in our case we use differential evolution as a
global optimization method [22] and the Levenberg-
Marquardt method for local optimization. Once we have
determined the best fit, we can also estimate the uncertainties,
u(p), from the diagonal elements of the covariance matrix (Σ)
using

Σ � JTU−1J( )−1 (14)

where U is a matrix containing all the squared measurement
uncertainties in the diagonal while all other entries are zero, and J
is the Jacobian of the elements mc

ij, η
c and hc in Eq. 13 with

respect to the truncated cone parameters; height (h), width (w),
and sidewall angle (θ). J be expressed as

J �

zmc
ij(λ1)
zh

zmc
ij(λ1)
zw

zmc
ij(λ1)
zθ

« « «

zmc
ij(λN)
zh

zmc
ij(λN)
zw

zmc
ij(λN)
zθ

zηc(λ1)
zh

zηc(λ1)
zw

zηc(λ1)
zθ

« « «

zηc(λN)
zh

zηc(λN)
zw

zηc(λN)
zθ

zhc

zh

zhc(λn)
zw

zhc

zθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

3 RESULTS AND DISCUSSION

The fitting of the Mueller ellipsometer and scatterometry signal
for the silicon structures was performed as described in the
previous sections and the results are shown in Figure 5 and
Figure 6.

The nonzero values of the elements in the off-diagonal blocks of
the Mueller-matrix in Figure 5 allow for an investigation of their
interrelationships. A careful inspection provides the following
relationships for all wavelengths: m12 � m21, m13 � m31,
m14 � m41, m23 � m32, m24 � m42, m34 � − m43, m33 � m44

leading to 8 unique elements that are reduced to 7 independent
elements by Eq. 8. Of particular interest is when the sample is
illuminated with unpolarized light Si � [1,0,0,0]T (T denotes
transpose). In this case according to Eq. 11, the Stokes vector
of the reflected beam is determined from the elements in the first
column of the Mueller-matrix Sr � [1, m21, m31, m41]T, the so-
called polarizance of the sample. It can be noticed thatm31 � 0,m21

≠ 0, andm41 > 0, indicating that the incident light is reflected with
right-handed polarization, and that the most positive values ofm41

are found at low wavelengths. This conversion is possible if the
sample has periodic structural anisotropy such that TE and TM
waves experience different refractive indices (form birefringence
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[23]. The state of polarization of light can be visualized with the
polarization ellipse and explained by two parameters: the
ellipticity e and the azimuth angle ϕ. We will also use the
ellipticity angle ε � arctan(e). The parameters ε and ϕ are related
to the Stokes vector S in Eq. 11, which for the special case of
incident unpolarized light can be expressed as [24].

ε � 1
2
arcsin

m41�������������
m2

21 +m2
31 +m2

41

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
ϕ � arctan

m21

m31
( ).

(16)

Eq. 16 yields e ≈ 0.1 and ϕ ≈ π
2. We are thus lead to the

conclusion that the truncated cone in Figure 1 is not completely
symmetric, but has shape anisotropy in the y-direction. We
believe that it is this anisotropy that gives rise to the generally
observed disagreement between experimental data and fit at
lower wavelengths in Figure 5.

Figure 7 shows the results obtained using only one of the
methods (AFM, scatterometry and Mueller ellipsometry) and the
results obtained by combining more than one method. We
observe that all individual methods give a fair estimate of the
measurand(s), with Mueller ellipsometry having the lowest
uncertainties. The combination of the three technologies is
expected to improve the results obtained from Eqs 13–15
since the three technologies measure the dimensions by
probing different physical measurands. AFM measures the
physical height directly through contact forces between tip and
sample, scatterometry optically assesses part of the Mueller
matrix element m11, and normalized Mueller ellipsometry
measures the rest of the Mueller matrix elements, divided by
m11. The direct AFM height measurement constrains the height
search to a more narrow region set by the Tikhonov penalty term

FIGURE 6 | Experimental scatterometry data (black crosses) and the
corresponding optimal ηc found byminimizing the expression inEq. 13 (red line).

FIGURE 7 | Measurement results for the patterned silicon structure, Γx � Γy � 200 nm, with uncertainties. The fully drawn line corresponds to the result found by
combining all instruments, and the dashed lines denote the upper and lower boundary defined by the uncertainties. The uncertainties shown are the 2σ taken at 95%
confidence level. We use the abbreviations A for AFM, S for scatterometry, andM for Mueller ellipsometry in the figure. The corner roundings and the oxide layer has been
locked to Rtop � Rbot � 5 nm and d � 2 nm. AFM was only used for height measurement of the structures. The shown values are tabulated in Supplementary
Table S1.
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and is thus expected to influence the results if a strong correlation
between grating parameters p exist in the optical measurements.
We furthermore observe that the results obtained by the
combination of data from more than one method show a
reduced sidewall angle, whereas smaller relative variations are
observed in height and width. The results obtained from
combining all methods are assumed to give the most robust
results, and is therefore considered to be the best estimate of the
correct results. Figure 7 shows that the combination of AFM
measurement with one of the optical methods moves the sidewall
angle towards the best estimate, and that the combination of AFM
and Mueller ellipsometry nearly gives the best estimate. It is also
evident from the figure that the combination of the two optical
methods reproduces the results obtained by combining all the
methods. This shows that AFM measurement with the given
uncertainty does not improve the result of combined Mueller
ellipsometry and scatterometry, demonstrating that the
combination of the two technologies reduces the correlation
between the grating parameters p.

Precise measurement of sidewall angle has become
increasingly important in the semiconductor industry for high
precision measurement of the full width half maximum gate
linewidth [5]; with decreasing gate line-width dimension. The
most common source of sidewall angle variation is photoresist
exposure due to focus variation. The sidewall angle is not well
monitored by top-down CD-SEMs, which is typically employed
to measure the top gate line-width [6]. Inverse modeling
techniques like Mueller ellipsometry and scatterometry has an
advantage by enabling complete sample profile control that allows
simultaneous monitoring of height, width and sidewall angle. This
work suggests that non-normalized Mueller ellipsometry in the
form of combined Mueller ellipsometry and scatterometry is the
optimal solution since it gives the same results as data fusion
between AFM, Mueller ellipsometry and scatterometry. In our
case, this is fortunate since scatterometry can be performed in the
Mueller ellipsometry setup without moving the sample and at
nearly no additional time cost. This work furthermore emphasizes
the need for the development and calibration of an automated non-
normalized Mueller ellipsometer for precision metrology
inspection of nanostructures.

4 CONCLUSION

In the current work, the importance of hybrid metrology was
discussed as a method for precision measurements of two
dimensional periodic structures. We have presented and
demonstrated the use of new and improved formulas for high
precision Mueller ellipsometry. The analysis was carried out by
setting up a regression problem that minimizes a χ2 loss function.
The input to the loss function could be data from a single
instrument or data from multiple instruments. The analysis
demonstrates that data fusion from multiple instruments can
be used to reduce the correlation between the dimensional
parameters measured by the optical methods. The results for
non-normalized Mueller ellipsometry, combination of
scatterometry and normalized Mueller ellipsometry, is

particularly interesting since it gives more accurate results
than the other methods and the same accuracy as applying all
hybrid methods. This demonstrates that non-normalized Mueller
ellipsometry is a versatile method for periodic nanostructure
reconstruction. The results also demonstrated that parameters
such as sidewall angle, that were highly correlated for only one
instrument, became less correlated if data for more instruments
were analyzed together, making it possible to determine these
parameters with higher accuracy. This study also suggests that at
a certain point you do not get any improvement by adding input
from more instruments if you already have found the best
possible parameter set. The results of this work demonstrate
that the developed method is capable of meeting the demands of
height and width uncertainties less than 1 nm. This paper has also
put great emphasis on instrument calibration, since it is very
important for precision measurements. Finally, it has been
demonstrated that the polarization ellipsoid obtained from
Mueller ellipsometry can be used to determine the anisotropic
shape of the geometrical structure, giving a better understanding
of the data than if only scatterometry data is available.
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