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In actual engineering fields, the bearing capacity of a rock is closely related to the pore
water pressure in the rock. Studies have shown that the pore water in the rock has a great
relationship with the change in runoff. Thus, it has crucial meaning to accurately evaluate
and quantitate the property of the rainfall–runoff, and many traditional classic models are
proposed to study the characteristic of rainfall–runoff. While considering the high
uncertainty and randomness of the rainfall–runoff property, more and more artificial
neural networks (ANN) are used for the rainfall–runoff modeling as well as other fields.
Among them, the long short-term memory (LSTM), which can be trained for sequence
generation by processing real data sequences one step at a time and has good prediction
results in other engineering fields, is adopted in this study to investigate the changes of
rainfall–runoff values and make a prediction. In order to ensure the accuracy of the trained
model, the cross-validation method is used in this study. The training data set is divided
into 12 parts. Themonthly forecast results from 2014 to 2015 show that themodel can well
reflect the peaks and troughs. In a recent study, the relationship between the rainfall–runoff
and discharge are commonly based on the current measured data, while the prediction
results are adopted to analyze the relation of these parameters, and considering that the
existing methods have fuzzy relationship between runoff and discharge, which leads to a
high risk of forecasting and dispatching. A method of modeling analysis and parameter
estimation of hydrological runoff and discharge relationship based on machine learning is
designed. From the experimental results, the average risk of this method is 61.23%, which
is 15.104% and 13.397% less than that of the other two existing methods, respectively. It
proves that the method of hydrological runoff relationship modeling and parameter
estimation integrated with machine learning has better practical application effect.
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INTRODUCTION

Climate condition is the driving factor of the hydrological process and the primary determinant of
runoff. The climate factors that have important influence on hydrological simulation include
precipitation and temperature. Domestic and foreign scholars have found that precipitation,
precipitation intensity, and precipitation types in many parts of the world have changed
significantly by sorting out a large number of literatures on precipitation change. From a global
perspective, precipitation in the high latitudes of the northern hemisphere has increased significantly,
while precipitation in the middle and low latitudes has increased and decreased locally. Generally
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speaking, the humid areas have become more humid, the arid
area is becoming more arid, and the interannual fluctuation is
obviously enhanced. The change in precipitation can directly
affect runoff [1]. Watershed hydrological simulation and
prediction is the main content of the study of hydrological
runoff and also the research basis of related interdisciplinary
studies, which has important value. Under the background of
increasingly significant environmental changes, the traditional
stable watershed assumption in hydrological simulation is facing
challenges, which makes the model parameters, representing the
hydrological characteristics of the watershed in the model, no
longer hold the fixed assumption and weaken the evaluation
ability [2]. Studying the parameter characteristics of the
hydrological model of the “Unsteady” watershed and
improving the simulation effect of the model in the changing
environment can provide technical support for the current and
future flood control, drought resistance, water resources
planning, and management [3]. For example, studies by many
scholars show that since the 1970s, with the trend increase in
precipitation in the United States, runoff in most parts of the
United States has also shown an obvious increasing trend [4].
From the perspective of temperature, the warming rate in the
recent 60 years is obviously faster. The results show that the land
warming is faster than the ocean warming, and the warming
range in the high latitudes is larger than that in the middle and
low latitudes; the temperature increase in winter is more obvious
than that in summer [5]. The change in temperature mainly
affects the evapotranspiration of runoff, and the change in
temperature and precipitation also affects each other [6].
Global warming will accelerate the global hydrological cycle,
resulting in an increase jn precipitation and the frequency and
intensity of extreme hydrological events.

The relationship between runoff and discharge is an important
condition for runoff prediction, which has a very important
strategic significance for the scientific formulation of the water
use plan, the optimal scheduling and rational allocation of water
resources, and the protection of water ecological environment. In
fact, the medium- and long-term hydrological factors are affected
bymany factors, such as astronomy, meteorology, geography, and
so on, and are the result of many factors. Therefore, we should
select many factors with physical causes related to the prediction
factors from the historical data as the prediction factors and
establish the quantitative or qualitative relationship between the
factors and the prediction factors through statistical analysis and
other mathematical methods, so as to carry out the hydrological
forecast. This kind of method is called multifactor prediction
method [7]. For multifactor forecast, the commonly used
methods are multiple regression, stepwise regression, and so
on. The ultimate purpose of runoff prediction is to serve the
hydrological business application. In production practice, there is
a demand for both short-term forecast and medium- and long-
term forecast, and the future demand may be more extensive [8].
In addition, there are many uncertainties in runoff forecast, so
people need to synthesize various information to judge the value
of the forecast information. Machine learning theory is based on
statistics, information theory, biology, cybernetics, and computer
science, involving more theoretical knowledge [9]. In the follow-

up development process, it is gradually applied to hydrological
runoff prediction and other research fields. Accuracy prediction
of rainfall–runoff has high importance in redistributing water
resources and the strategic planning, as well as fitting the issue of
being carbon neutral, while there is a high complexity between the
inherent randomness of behavior and the variables of the
hydrometeorological [10, 11]. Meanwhile, there exists many
factors, which may be due to the difference results of
rainfall–runoff. Nowadays, there are many available methods
for the prediction of streamflow forecasting. It can be divided
into data-driven models and physical models [12]. The physical
models are often used to study the movements and deposits of
water [13, 14], while the resolution of prediction results is often
influenced by the physical parameters, the initial condition of
catchments, and the temporal resolution. Thus, the traditional
model has a limitation in solving such complicated problem of
predicting the accurate value of rainfall–runoff [15]. In fact,
artificial neural networks (ANNs) have been widely used in
many engineering fields, which achieve good results [16–20].
Among them, the long short-term memory (LSTM), which has
the advantage of having high resolution and accountability, is
adopted in this study. Based on the prediction results, the
parameter estimation is investigated in detail.

PREDICTION OF STREAMFLOWBASEDON
THE LONG SHORT-TERM MEMORY

The Han River, with a drainage area of 159,000 km2 and a total
length of more than 1,500 km, is the largest tributary of the
Yangtze River basin. HRB (106°12′–114°14′E, 30°08′–34°11′N)
has obvious climate characteristics of a subtropical monsoon. The
climate is comparatively mild, with a mean annual temperature
between 15°C and 17°C. Rainfall within the Han basin is
comparatively abundant, with a mean annual rainfall of
600–1,300 mm. The precipitation is especially concentrated
within the summer half year, accounting for quite 70% of the
annual precipitation. Among them, June, July, and August are
particularly prominent, with precipitation accounting for about
40% to 50% of the annual total. The largest source of the water
volume of the Han River and its tributaries is rainwater, followed
by groundwater. Groundwater recharge accounts for about
15%–20% of the annual runoff. Therefore, the annual runoff
changes of the rivers within the Han River system are basically
equivalent because of the annual precipitation changes. The
runoff varies greatly from year to year within the basin, with
the utmost annual runoff usually thrice the dimensions of the
minimum annual runoff. The annual average runoff of the full
basin is about 60 billion cubic meters. Because of abundant
rainfall, water resources within the basin are very abundant.
However, there are differences within the distribution of water
resources within the basin and uneven seasonal distribution, and
water must be transferred outside the basin. There has been a
decreasing trend in water resources in recent years. The maps of
Han River basin are shown as Figure 1.

As shown in Figure 1, the topography of the eastern area is
higher than the western area in the Han River, with dense river
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networks. The hydrological stations are distributed in the upper,
middle, and lower reaches. Except for the Huanglongtan (HLT)
station, which is on the tributary, the Zenghe, Baihe (BH) station,
Huangjiagang (HJG) station, and Huangzhuang (HZ) station are
all on the main stream. The monitoring data of the Huangjiagang
(HJG) station are used in this study to investigate the application
and accuracy of the LSTM. As shown in the analysis results of the
machine learning method, the LSTM method is adopted in this
study. The structure of the LSTM method is shown in Figure 2.

As shown in Figure 2, the model can be trained by adding the
input gate, the forget gate, and the output gate. Autocorrelation is
very important in time series forecasting, especially with LSTM
models. Autocorrelation is the basis of LSTM model prediction,
and the larger the autocorrelation coefficient (ACF), the better.

ACF reflects the memory of the sequence. The LTP and STP
mentioned in some studies refer to long-term memory and short-
term memory, which are also characteristics of sequences. In
addition, the forecast period is determined by autocorrelation:
The LSTMmethod mentioned earlier has a drawback in that it can
only predict the next data xt+1. If you want to predict xt+2, we need
to substitute xt+1 into the model for prediction. This will cause the
accumulation of errors. How does the the encounter period be
improved? There is a need to use batch forecasting (batch
forecasting): in a forecast to give the expected results of the
encounter period. However, the premise of making such a
prediction is that the autocorrelation ACF of the data sequence
has an order of k, and the prediction order cannot be greater than k.
The results of autocorrelation are shown in Figure 3.

FIGURE 1 | Maps of the Han River basin.

FIGURE 2 | The structure of the long short-term memory (LSTM) method unit [18].
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As shown in Figure 3, it could be presumed that the
application of the results can be acceptable. Before the
prediction process, the cross-validation should be verified
to study the accuracy and application of the trained model.
The historical data are adopted in this study. The historical
data of Huangjiagang (HJG) and Shiquan (SQ) gauge station
from January 1st 1956 to October 1st 2012 are adopted in this
study. The specific method is to divide the entire sequence
value into 12 parts, each with a length of 144 steps or 12
years, and a sliding window of 4 years. The first 11 years of
each subset of 12 years are the training set, and the last year is
used as the verification set, which is compared with actual
data for verification, and model evaluation indicators are
selected to judge the applicability of the model. This study
currently selects the RMSE root mean square error, which
will be shown later. The cross-validation results of HJG and
SQ based on the LSTM are shown as Figures 4 and 5
separately.

From the simulation results (Figure 4), the overall
performance of the model is relatively good. Most of the
trends in the next year and most points can be found in the
7th, 10th, and 11th subsets. However, the problem is also obvious:
the peak value is not too clear. This will be fully reflected in the
RMSE. Through the selection of the optimal self-lag order, it can
be seen that the largest autocorrelation coefficient appears at the
12th order. Therefore, this high correlation can be used to build a
model to make a 12-order prediction. In this study, it is the
forecast for the next year for the purpose of the future risk
analysis. Finally, the prediction results are shown in Figure 5.

As shown in Figure 5, the prediction result of the
Huangjiagang station from January 2014 to January 2015 uses
the established model. It can be seen that the perfect prediction of
the flood season and nonflood season within a year has surpassed
most forecasting models. The results show high application and
accuracy characteristics. The parameter estimation study is based
on this prediction results.

MODELING ANALYSIS AND PARAMETER
ESTIMATION OF HYDROLOGICAL RUNOFF
RELATIONSHIP BASED ON MACHINE
LEARNING

Extracting calibration characteristics of
runoff parameters
According to the research data, after studying a large number of
spatial and nonspatial hydrological runoff data, the relationship and
parameter estimation of hydrological runoff are the key links
affecting hydrological application business. For the purpose of
simulating the natural hydrological cycle process of a watershed,
its basic principle is to generalize various elements in the water cycle
by analyzing the key factors of the hydrological cycle process of a
watershed, and establish amathematical model that can truly reflect
the relationship between various elements and the hydrological
cycle process by using various algebraic, partial differential, or
integral equations [21, 22]. Due to the complex structure of the
hydrological model and the complex evolution characteristics and
spatiotemporal evolution trend of a basin water cycle system, in
order to accurately describe the hydrological cycle process of the
basin, most hydrological model parameters are difficult to
determine. How to determine the runoff parameters that can
adapt to the heterogeneity of the underlying surface and the size
of runoff level of different basins is the key to obtain high-precision
short-term runoff forecast information of the basin [23, 24].
Including basin spatial data, basin meteorological data, runoff
simulation data, and other information, through data collection,
data processing, parameter estimation, and optimization,
hydrological runoff relationship modeling and analysis are
realized [25]. Because meteorological conditions and hydrological
factors can have a direct impact on runoff, specific
hydrometeorological data are needed as the research basis.
Among many factor analysis methods, the random forest
method is often used for factor analysis and result prediction,

FIGURE 3 | The results of autocorrelation.
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due to its high resolution and reliability of prediction results [22, 26,
27]. In essence, it belongs to an important branch of ensemble
learning. It uses nonparametric calculations to generate several
weak decision trees in a randommanner and predicts by integrating
the prediction results of all decision trees, which can solve
classification problems and can also be used for regression
analysis. Random forest is a combined classifier of ensemble

learning. It uses bootstrap resampling method to sample from
the original data, and then model the decision tree of the
extracted samples, combine multiple decision trees, and get the
result through voting. For the traditional random forest, when the
final voting classification is performed, the voting weight of each
decision tree is the same. It seems that this votingmethod is fair, but
the classification accuracy of each decision tree in the random forest

FIGURE 4 | The results of cross-validation based on the LSTM.
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is different. Some classification results may be better; some are
relatively poor. The main idea is to set a weight for each decision
tree. When voting, each decision tree must be multiplied by this
weight value. Among them, a part of the training samples is used to
train the decision tree in the traditional random forest. After the
training is completed, another part of the training samples is used as
the test samples to test the classification ability of the decision tree.

The PSO algorithm is a global random search algorithm, which is
based on group predation behavior of birds in the migration
process, while the particle swarm optimization (PSO) is
introduced to solve this limitation [28, 29]. The prediction of
PSO-RF, prediction value of RF, and observed values are compared.

As shown in Figure 6, the PSO algorithm is adopted in this
study to optimize the random forest. First, the training data and

FIGURE 5 | the results of cross-validation based on the LSTM in SQ station
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test dataset are divided. In this study, the training datasets are
635 months, and the test dataset is 30, which stands for the last
30 months. The input factors are rainfall, temperature, sunshine,
relative humidity, wind speed, and evaporation. The output factor
is runoff value. Then, in the data preprocessing procedure, the
data are standardized. In the PSO algorithm part, the fitness
function is first determined. Then the population and speed are
initialized. The termination conditions are determined if they are
met; if met, the best parameter is obtained; if not, then the speed
and position are updated, and the fitness value is calculated until
the termination conditions are met. Finally, the best RF model is
obtained. Then the prediction results are shown as follows:

According to Figure 7, it can be obtained that the prediction
result of PSO-RF and RF has high resolution and is a good
application. The prediction value of PSO-RF and RF has good
consistency with the observed value. In the 3 months, it can be
seen that the prediction of PSO-RF is closer to the true value
compared with the prediction value of RF. It means that the PSO
has to improve the peak point value prediction ability. The
prediction result of PSO-RF and RF is shown in Table 1.

According to the Table 1, it can be obtained that the R2 of
PSO-RF increases compared with the RF. It is mainly due to
the increase that reflects the peak point value, while the
RMSE value and MAE of PSO-RF decreases compared with
the RF, which means that the PSO-RF can well reflect the real
value of the runoff. According to the calculated result, the
influence impact of rainfall, temperature, sunshine, relative
humidity, wind speed, and evaporation are 7.59, 1.05, 0.50,
2.76, 0.351, and 0.72, respectively. It means the rainfall has
the greatest impact on the runoff, which is consistent with

FIGURE 6 | Prediction results of 2014–2015 based on the LSTM.

FIGURE 7 | Random forest model optimized by the particle swarm
optimization (PSO).

FIGURE 8 | Prediction results based on different methods.
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the true situation, and wind speed has the lowest impact on
the runoff.

Comparison the Results of HJG and SQ
Cross Validation
We chose two sites to compare the applicability of the LSTM
method in the Han River Basin. As the Figure 1 shows, the SQ
station is the upstream of Hanjiang basin and the HJG is in the
middle of Hanjiang basin. According to Figures 4 and 5, the
result of catching peak point has shown noticeable difference. The
LSTMmethod has more ability to catch the peak point in SQ than
HJG station may as the a result of the location of these two
stations. SQ station has less human activities than HJG will make
LSTM more applicative in this area.

CONCLUSION

In actual engineering fields, the pore water content in a rock has a
certain correlation with the runoff. In order to solve the actual
engineering issue, the rainfall–runoff of the Han River, which is
located in the Karst area, is investigated in detail and predicted. In
fact, the accuracy prediction of streamflow is also one of the
critical factors for the hydrology. However, due to the highly
complicated characteristics of the rainfall–runoff, the LSTM
method is adopted in this study to predict the streamflow, and
the cross-validation and fitness are studied to verify the effectivity
of the prediction model. The result of the prediction well explains
the change law of the streamflow. Due to the complexity of the
prediction result and influence factor, the RF algorithm is
adopted in this study, and PSO is introduced to optimize the
RF algorithm. The prediction result shows high accuracy and

good consistency with the real results. Among the influence
factors, the rainfall has the most impact compared with other
factors, which means the PSO-RF has a good application in the
influence factor analysis.
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