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Investigation of the classical self-excited and hidden attractors in the modified Chua’s
circuit is a hot and interesting topic. In this article, a novel Chua’s circuit system with an
absolute item is investigated. According to the mathematical model, dynamic
characteristics are analyzed, including symmetry, equilibrium stability analysis, Hopf
bifurcation analysis, Lyapunov exponents, bifurcation diagram, and the basin of
attraction. The hidden attractors are located theoretically. Then, the coexistence of the
hidden limit cycle and self-excited chaotic attractors are observed numerically and
experimentally. The numerical simulation results are consistent with the FPGA
implementation results. It shows that the hidden attractor can be localized in the digital
circuit.
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1 INTRODUCTION

According to Jenkins [1] and Kuznetsov et al. [2], there are two kinds of attractors, namely, the self-
excited attractors and the hidden attractors. It can be distinguished by considering whether the basin
of attraction of an attractor intersects any arbitrarily small open neighborhood of an equilibrium. If it
does, the attractor is a self-excited attractor; otherwise, it is hidden. Generally, the “self-excited”
attractors are generated in a system from a small vicinity of an unstable equilibrium. However, for
instance, the hidden attractor can be generated by a system without equilibria [3–5] or with one
stable zero equilibrium [6–8]. Meanwhile, there is a concept in the nonlinear systems, which is the
“extreme multistability” [9–12]. Those attractors are obtained in a multistability system with given
parameters but using different initial conditions. Although the definitions of the hidden attractors
and coexisting attractors are not the same, they can be observed using different initial conditions.
Currently, investigation of the multiple coexisting hidden attractors in the nonlinear systems is a
research hotspot [13–16]. It means that multiple coexisting attractors and hidden attractors are both
found in the system with different initial conditions [17].

Currently, the multiple coexisting attractors can be analyzed by using the basin attraction plots
[18, 19] in the initial condition plane in which different initial conditions are used, and characteristics
of the attractors such as size, center of gravity, and bounds are considered. Usually, different colors
represent different kinds of attractors in the initial condition plane. Also, there could be some rules
for choosing the initial conditions for systems, such as the symmetric coexisting chaotic systems
[20–22] and the self-reproducing chaotic systems [23, 24]. However, as the basin of attraction of the
hidden attractors is not connected with equilibria, it should be noted that the location of hidden
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attractors could be a challenging task. At present, hidden
attractors have been widely investigated by researchers such as
Leonov et al. [8, 25, 26], Sajad et al. [27], Dudkowski et al. [28],
Zhang et al. [29], and Stankevich et al. [30]. Especially, the
method by Leonov et al. [8, 25, 26] can locate the exact
positions of the hidden attractors for the given systems. In real
applications, dynamics of the systems with hidden attractors is
determined not only by the parameters but also by the initial
conditions.

In 1984, a system was derived based on Chua’s circuit [31] with
two capacitors, one inductor, one resistor, and one nonlinear
element, and it shows that its attractor is different from that of
the Lorenz system andChen system. In 1986, the existence of chaotic
attractors in Chua’s circuit was provenmathematically [32]. Because
of its rich dynamic characteristic behaviors and plasticity of the
nonlinear item, Chua’s circuit has aroused much interest of scholars.
Zhong et al. [33] implemented Chua’s circuit with a cubic
nonlinearity. Moreover, the bifurcation, chaos, hidden attractors,
and synchronization of different Chua’s circuits were investigated in
Refs. [34–36]. Meanwhile, designing multiscroll chaotic systems
based on Chua’s system by expanding the index two saddle coke
equilibriumpoints has aroused, increasing research interests [37, 38].
Furthermore, hidden attractors and coexisting attractors in Chua’s
circuit have been widely investigated [39, 40]. By replacing the
nonlinear element in Chua’s circuit with memristor, memristor-
based Chua’s circuits are designed, and then dynamic analysis and
applications of those circuits are carried out [41–43]. In conclusion,
Chua’s circuit provides a basis for designing nonlinear circuits with
complex dynamic behaviors.

In the real applications, to find hidden chaotic attractors, we need
to use the particular initial conditions. Thus, analog circuit
implementation for hidden attractors becomes a key issue.
Although analog circuit implementation of chaotic systems can
generate real chaos, the initial conditions cannot be set, artificially
and accurately. Compared with analog circuit implementation,
digital circuit implementation of chaotic systems has the
advantages such as reproducibility, good stability, and good
controllability. Meanwhile, the initial conditions can be set
accordingly. As a result, digital circuit implementation including
DSP implementation [44], FPGA implementation [45], and
microcontroller implementation [46] of chaotic systems has
aroused much research interest. However, there are few reports
regarding digital circuit implementation of hidden chaotic systems
with observation of hidden attractors in the oscilloscope.

Motivated by the above discussions, in this article, a Chua’s
system with an absolute item is investigated. Then, the
dissipativity, equilibria, stability, and Hopf bifurcation diagram
are studied, and the coexistence hidden attractors are investigated
theoretically and demonstrated by numerical simulation and
FPGA circuit realization. Specifically, we will use the method
proposed by Leonov et al. [8, 25, 26] to find the initial conditions
for the hidden attractors. Phase diagram and basin attraction
plots are used to verify the effectiveness of the analyses.

The rest of this article is organized as follows. In Section 2, the
modified Chua’s system is presented, and its equilibrium analysis,
Hopf bifurcation analysis, bifurcation diagram, Lyapunov
exponents, coexisting attractors, and basin attractions are

analyzed. In Section 3, location of the hidden attractors in
Chua’s circuit system is investigated theoretically and
numerically. In Section 4, FPGA implementation of Chua’s
system is carried out, and hidden attractors are observed.
Finally, the results are summarized in Section 5.

2 THEMODIFIED CHUA’S SYSTEMAND ITS
DYNAMICS

The absolute circuit x|x| can increase the nonlinearity of the
circuit. For instance, Tang et al. [47, 48] introduced the absolute
function x|x| to Chua’s system and Chen system and show the
role of the function as a chaos generator in nonautonomous
systems. Here, a Chua’s system with absolute item is investigated,
and the system is defined by [47, 48]

_x � α(y +mx − x|x|)
_y � x − cy + z
_z � −βy

⎧⎪⎨⎪⎩ , (1)

where α, β, c, andm are the system parameters, and x, y, and z are
the state variables.

2.1 Basic Properties and Equilibria
2.1.1 Dissipativity
According to system (1), we have

∇V � z _x

zx
+ z _y

zy
+ z _z

zz
� α m − |x| − xsgn(x) − 1

α
( ). (2)

Obviously, when m< 1
α, we get ∇V < 0. It means that the

system is dissipative. At this point, the solution of system (1) is
bounded and could be chaotic.

2.1.2 Symmetry
As system (1) satisfies (x, y, z) ↔ ( −x, −y, −z), it is symmetric to
the origin in the state variable space.

2.1.3 Equilibria and Stability
The equilibrium points of the system are (0, 0, 0) and (±m, 0, ∓m).

Theorem 1. If α > 0, β > 0, and m > 0 hold, the equilibria point
O(0, 0, 0) is unstable.

Proof. The Jacobian matrix of system (1) at the equilibria point
O(0, 0, 0) is given by

J0 �
αm α 0
1 −c 1
0 −β 0

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣, (3)

Then, its characteristic equation is denoted as

P0(λ) � λ3 + λ2(c − αm) + λ(β − α − αm) − αβm � 0. (4)

If α > 0, β > 0, andm > 0, we have −αβm < 0. According to the
Routh–Hurwitz criterion, Eq.(4) has at least one positive real
solution. It means that the system is unstable at the point O(0, 0,
0) if α, β, and m are positive real numbers. End proof.
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For the equilibria point P± � (±m, 0, ∓m), the Jacobian
matrix is

J± �
−αm α 0
1 −c 1
0 −β 0

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣, (5)

and its characteristic equation is

λ3 + λ2(c + αm) + λ(β − α + αcm) + αβm � 0. (6)

Let p � c + αm, q � β − α + αcm, and r � αβm, we have

λ3 + pλ2 + qλ + r � 0. (7)

As α > 0, β > 0, c > 0, and m > 0, thus r > 0, thus Eq. 7 has at
least one negative root. Let f(λ) � λ3 + pλ2 + qλ + r, thus
df(λ)
dλ � 3λ2 + 2pλ + q. When Δ � p2 − 3q is defined, the

following theorem is obtained.

Theorem 2. IfΔ < 0, then the system has no positive roots and it is
asymptotically stable. If Δ ≥ 0, λ0 � 1

3 (−p + 		
Δ

√ )> 0 and f(λ0) ≤
0, the system has two positive roots, then P± are unstable saddle
points.

2.1.4 Hopf Bifurcation Analysis
According to the above section, the equilibria point O(0, 0, 0) is
unstable. Thus, we focus on the bifurcation near the equilibria
point P±(±m, 0 ∓ m). Suppose that there is a pair of pure
imaginary roots iω(ω> 0); according to Eq. 7, we have

−ω3 + ω(β − α + αcm) � 0
−ω2(c + αm) + αβm � 0

{ . (8)

Set the system parameter α as the bifurcation parameter, based
on Eq. 8, we obtain

α2(cm2 −m) + α(−c + c2m) + cβ � 0. (9)

When α > 0, we have the following conclusions: (1) if cm ≥ 1,
then Eq. 7 has no positive roots; (2) if cm < 1, then Eq. 6 has one
positive root.

As α > 0 is the bifurcation parameter, the critical point αH
satisfies the following equation:

αH � −c(cm − 1) − 		
Δ

√
2m(cm − 1)

ω �
						
αβm

c + αm

√
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ . (10)

where Δ � (−c + c2m)2 − 4(−m + cm2)cβ.
Differentiating Eq. 6 versus α, we have

dλ

dα
� − λ2m + λ(cm − 1) + βm

3λ2 + 2λ(c + αm) + λ(β − α + αcm). (11)

Substituting αH to Eq. 11 and λ(αH) � iω, the calculation
result is

dRe(λ)
dα

∣∣∣∣∣∣∣α�αH � −ω
2(cm − 1)(c + αHm)

2ω4 + 2ω2(c + αHm)2 . (12)

According to Eq. 12, when cm < 1, dRe(λ)
dα |α�αH > 0. Thus, we

have the result as presented in Theorem 3.

Theorem 3. When the parameter α passes through the critical
value αH, system (1) undergoes a Hopf bifurcation at equilibria
P±(±m, 0 ∓ m).

2.2 Dynamic Analysis
Set β � 100, m � 0.2, and c � 1.6, bifurcation diagram and
Lyapunov exponents of the system with α are illustrated in
Figure 1. For the bifurcation diagrams, the initial conditions
for the red are [x0, y0, z0] � [0.01, 0, 0.01]; the initial conditions for
the blue is [x0, y0, z0] � [−0.01, 0, −0.01]. It shows that when α <
70, the system has coexisting attractors and enters to chaos
through period doubling bifurcation. After this, the system has
periodic windows with the increase of α. It indicates that the
system has rich dynamics.

2.3 Multistability With Symmetry
First, fix α � 50, β � 100,m � 0.2, and c � 1.6. x0 varies from −2 to
2 with step size of 0.0268, y0 varies from −0.2 to 0.2 with step size
of 0.0027, and y0 varies from −4 to 4 with step size of 0.0537. Set z0
� −1 and α � 50, basin of attraction in the x0 − y0 plane is
presented (Figure 2A). Let y0 � −0.1 and x0 � 0.3, basins of
attraction in the x0 − z0 plane and y0 − z0 are illustrated in Figures
2B,C, respectively. Moreover, when α � 69, let z0 � −1, y0 � 0.1
and x0 � 0.3, basins of attraction in the x0 − y0 plane, x0 − z0 plane,
and y0 − z0 are shown in Figures 2D,E,F, respectively. It shows
that the system has three coexisting states with different initial
conditions.

Moreover, phase diagrams of Chua’s system with different
parameters and initial conditions are presented. The initial
conditions for the red attractors are [x0, y0, z0] � [0.01, 0,
0.01], and the initial conditions for the blue attractors are
[x0, y0, z0] � [−0.01, 0, −0.01]. Phase diagrams with α � 60,
α � 63, α � 63.8, α � 69, α � 72, and α � 75 are shown in
Figure 3. Coexisting symmetric periodic-1, periodic-2, and
periodic-4 attractors are found in Figures 3A–C; coexisting
chaotic attractors are observed in Figure 3D. Figures 3E,F
do not show coexisting attractors, but different chaotic
attractor and periodic circle are found. However, it shows
only two coexisting symmetric attractors. Meanwhile, it
shows that there are third regions in the basin attractions;
thus, there should be one more attractor that is hidden. In the
next section, hidden attractors in Chua’s system are
investigated.

3 HIDDEN ATTRACTORS

3.1 Localization of Hidden Attractors
Leonov et al. [8, 25, 26] proposed a scheme that is used to
find the location of the hidden attractors in the chaotic
systems. We here use this method to find the initial
conditions for the hidden attractors in the system (1).
According to the scheme, the system is rewritten as a lure’s
system, which is given by
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dx

dt
� Px + qψ(rpx), x ∈ R3, (13)

where P �
αm α 0
1 −c 1
0 −β 0

⎛⎜⎝ ⎞⎟⎠, q �
−α
0
0

⎛⎜⎝ ⎞⎟⎠, r �
1
0
0

⎛⎜⎝ ⎞⎟⎠, ψ(σ) � σ|σ|.

Let k be the coefficient of harmonic linearization, and ε be an
infinitesimal number, the system (13) can be rewritten as

dx

dt
� P0x + qεδ(rpx). (14)

where P0 �
α m + k( ) α 0

1 −c 1
0 −β 0

⎛⎜⎝ ⎞⎟⎠, λP0
1,2 � ±iω 0, λP0

3 � −d< 0 and

δ(σ) = ψ(σ) − kσ.
Using nonsingular linear transformation x � Sy, the system

(14) can be transformed as

dy

dt
� Hx + bεϕ(upy) (15)

where H �
0 −ω0 0
ω0 0 0
0 0 −d

⎛⎜⎝ ⎞⎟⎠, b �
b1
b2
1

⎛⎜⎝ ⎞⎟⎠ and u �
1
0
−h

⎛⎜⎝ ⎞⎟⎠.

The transfer function of the system (15) can be expressed as

WH(p) � −b1p + b2ω0

p2 + ω2
0

+ h

p + d
(16)

The transfer functions of system (14) can be expressed as

WP0(p) � rp(P0 − pI)−1q (17)

where p is complex variables;ω0 is the initial frequency, which can be
calculated by ImWH(ω0) � 0; k is the harmonic linearization
coefficient, which can be calculated by k � −(ReWH(iω0))−1.

FIGURE 1 | Dynamics of the modified Chua’s system with the variation of the parameter α. (A) Bifurcation diagram; (B) Lyapunov exponents (LEs).

FIGURE 2 | Basin of attractions of the system with different α and in different planes. (A) α � 50, z0 � −1, and x0 − y0 plane; (B) α � 50, y0 � −0.1, and x0 − z0 plane;
(C) α � 50, x0 � 0.3, and y0 − z0 plane; (D) α � 69, z0 � −1, and x0 − y0 plane; (E) α � 69, y0 � 0.1, and x0 − z0 plane; (F) α � 69, x0 � 0.3, and y0 − z0 plane.
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From the equivalence of the transfer functions of system (14) and
system (15), then it can be concluded:

k � (β − α(1 + cm) − ω2
0)/αc

d � (ω2
0 − β + α + c2)/c

h � (αβ − αcd + αd2)/(ω2
0 + d2)

b1 � (αβ − αcd − αω2
0)/(ω2

0 + d2)
b2 � (αcω2

0 + αβd − αdω2
0)/(ω0(ω2

0 + d2))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (18)

The system (14) is transformed by nonsingular linear
transformation; it can be concluded that:

H � S−1P0S
b � S−1q
up � rpS

⎧⎪⎨⎪⎩ · (19)

Let S �
s11 s12 s13
s21 s22 s23
s31 s32 s33

⎛⎜⎝ ⎞⎟⎠, we can obtain

s11 � 1, s12 � 0, s13 � −h
s21 � −(m + k)
s22 � −ω0

α

s23 � −h(α(m + k) + d)
α

s31 � −β
α
, s32 � −β(m + k)

ω0

s33 � hβ(α(m + k) + d)
αd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· (20)

For the infinitesimal number ε, the initial value of system
(15) is

y(0) �
y1(0)
y2(0)
y3(0)

⎛⎜⎝ ⎞⎟⎠ �
a0
0
0

⎛⎜⎝ ⎞⎟⎠. (21)

From Eq. 9, the relationship between the initial values of system
(14) and (15) can be obtained

x 0( ) � Sy(0) � S
x1(0)
x2(0)
x3(0)

⎛⎜⎝ ⎞⎟⎠ �
a0s11
a0s21
a0s31

⎛⎜⎝ ⎞⎟⎠. (22)

In this way, the initial value of the system (1) is as follows:

x 0( ) � a0

y 0( ) � −a0 m + k( )

z 0( ) � −a0β
α

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (23)

here, the description function of a0 can be calculated as follows:

Φ(a) � ∫2π/ω0

0
φ1 t( ) + φ2 t( )( )dt (24)

FIGURE 3 | Phase diagram of the modified Chua’s system with different values of the parameter α, the red attractor with initial condition [x0 , y0 , z0] � 0.01, 0,0.01
and blue attractor with initial condition [x0, y0, z0] � [ −0.01, 0, −0.01]. (A) α � 60, (B) α � 63, (C) α � 63.8, (D) α � 69, (E) α � 72, (F) α � 75.

TABLE 1 | Initial conditions of hidden attractors for different α.

α ω0 k Initial conditions

47 12.8498 0.3611 [0.4000, −0.2244, −1.7021]
50 12.6631 0.3294 [0.3900, −0.2065, −1.5600]
60 12.1294 0.2742 [0.3200, −0.1517, −1.0667]
63 11.9792 0.2645 [0.3100, −0.1440, −0.9841]
63.8 11.9395 0.2622 [0.3100, −0.1433, −0.9718]
69 11.6835 0.2499 [0.2900, −0.1305, −0.8406]
72 11.5366 0.2442 [0.2900, −0.1288, −0.8056]
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where φ1(t) � δ1((cosω0t)a, (sinω0t)a, 0)cosω0t and
φ2(t) � δ2((cosω0t)a, (sinω0t)a, 0)sinω0t. The description
function satisfies Φ(a0) = 0 and
< /b> < b> b1dΦ(a)

da |a�a0 ≠ 0< /b> < b> .

3.2 Numerical Verification
Set β � 100, m � 0.2, and c � 1.6, the initial conditions of hidden
attractors for different α are presented in Table 1. Meanwhile,

values of ω0 and k are listed, correspondingly. Based on the initial
condition obtained, the coexisting hidden attractors, limited
circles, and chaotic attractors are presented in Figure 4. It
shows that the hidden attractors are not chaotic, but they are
periodic circles.

4 FPGA IMPLEMENTATION

In this section, FPGA implementation of Chua’s system is carried
out. We implement Chua’s system in Altera DE2-115 with
EP4CE115F29C7. Figure 5 shows the physical implementation
platform of Chua’s systemwith absolution item, where the system
is solved by the fourth-order Runge–Kutta algorithm. Then, the
output of the Altera DE2-115 contains two 16-bit current and
voltage signals, which are converted by the DAC8552 chip. The
obtained attractors are displayed in the oscilloscope and captured
for further analysis.

System chart based on the FPGA implementation is shown
in Figure 6. There are three modules including system
module, float number to DAC input number module, and
DAC output control module. As a result, the generated signals
are sent to DAC8552. The total resources occupied by the
system are presented in Table 2. The total logic elements, total
memory bits, and embedded multiplier 9-bit elements costs
are 4%, 0.14%, and 7%, respectively. In addition, the designed
system requires very little logic, register, and memory
resources.

The obtained phase diagrams are presented in Figure 7. And
the parameter and initial conditions for Figure 7A are α � 60 and
[x0, y0, z0] � [0.3200, −0.1517, 1.0667]; those for Figure 7B are

FIGURE 4 | Coexisting hidden attractors of Chua’s system, where the red attractors and blue attractors are those from Figure 3, and the green attractors are the
hidden attractors. (A) α � 50, [x0, y0, z0] � [0.3900, −0.2065, 1.5600]; (B) α � 60, [x0, y0, z0] � [0.3200, −0.1517, 1.0667]; (C) α � 63, [x0, y0, z0] � [0.3100, −0.1440,
0.9841]; (D) α � 63.8, [x0, y0, z0] � [0.3100, −0.1433, 0.9718]; (E) α � 69, [x0, y0, z0] � [0.2900, −0.1305, 0.8406]; (F) α � 72, [x0, y0, z0] � [0.2900, −0.1288, 0.8056].

FIGURE 5 | FPGA implementation platform.
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α � 63, [x0, y0, z0] � [0.3100, −0.1440, 0.9841]; those for Figure 7C
are α � 69, [x0, y0, z0] � [0.2900, −0.1305, 0.8406]; and those for
Figure 7D are α � 72, [x0, y0, z0] � [0.2900, −0.1288, 0.8056].
Meanwhile, for the given parameters, the coexisting periodic
circles or chaotic attractors are presented with initial
conditions [x0, y0, z0] � [0.01, 0, 0.01] and [x0, y0, z0] � [−0.01,
0, −0.01]. For a given α, the captured phase diagrams are put
together in the same figure, and coexisting hidden attractors are
observed in the FPGA digital circuit.

FIGURE 6 | System chart based on the FPGA implementation.

TABLE 2 | Compilation resource report

Values

Total logic elements 5,052/114,480 (4%)
Total registers 3,369
Total pins 6/529 (1%)
Total memory bits 5,418/3,981,312 (<1%)
Embedded multiplier 9-bit elements 39/532 (7%)

FIGURE 7 |Coexisting hidden attractors based on the FPGA. (A) α � 60, [x0, y0, z0] � [0.3200, −0.1517, 1.0667], (B) α � 63, [x0, y0, z0] � [0.3100, −0.1440, 0.9841],
(C) α � 69, [x0, y0, z0] � [0.2900, − 0.1305, 0.8406], (D) α � 72, [x0, y0, z0] � [0.2900, −0.1288, 0.8056].
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The main difficulty for analog circuit implementation of
hidden attractor chaotic system is to locate the initial
conditions. Thus, it is almost impossible to find the target
hidden attractors in the analog circuits. However, when the
hidden chaotic system is realized in the FPGA circuit, the
initial condition can be set; thus, hidden attractors can be
observed.

5 CONCLUSION

In this article, dynamics and hidden attractors and modified
Chua’s circuit with an absolute item are investigated. The
dynamics of the system is analyzed by means of stability
analysis, Hopf bifurcation, Lyapunov exponents, bifurcation
diagrams, phase diagrams, and basin of attraction plots. It
shows that the system has rich dynamics with the variation of
the system parameter α, and the system enters to chaos through
period-doubling bifurcation. The locations of the hidden periodic
circles are found by using the describing function method. The
coexisting hidden periodic circles, chaotic attractors, and periodic
circles are observed. Finally, the FPGA digital circuit of the system
is realized. It shows that the FPGA results are consistent with the
numerical simulation results.
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