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African swine fever first broke out in mainland China in August 2018 and has caused a
substantial loss to China’s pig industry. Numerous investigations have confirmed that
trades and movements of infected pigs and pork products, feeding pigs with
contaminative swills, employees, and vehicles carrying the virus are the main
transmission routes of the African swine fever virus (ASFV) in mainland China.
However, which transmission route is more risky and what is the specific transmission
map are still not clear enough. In this study, we crawl the data related to pig farms and
slaughterhouses from Baidu Map by writing the Python language and then construct the
pig transport network. Following this, we establish an ASFV transmission model over the
network based on probabilistic discrete-time Markov chains. Furthermore, we propose
spatiotemporal backward detection and forward transmission algorithms in semi-directed
weighted networks. Through the simulation and calculation, the risk of transmission routes
is analyzed, and the results reveal that the infection risk for employees and vehicles with the
virus is the highest, followed by contaminative swills, and the transportation of pigs and
pork products is the lowest; the most likely transmission map is deduced, and it is found
that ASFV spreads from northeast China to southwest China and then to west; in addition,
the infection risk in each province at different times is assessed, which can provide effective
suggestions for the prevention and control of ASFV.
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1 INTRODUCTION

African swine fever (ASF) is a highly infectious and fatal disease of wild boars and domestic pigs
caused by the African swine fever virus (ASFV) [1]. It is characterized by featuring a short course of
onset, a mortality rate of up to 100% in the most acute and acute infections; clinical manifestations of
fever; cyanosis of the skin; and obvious bleeding in lymph nodes, kidneys, and gastrointestinal
mucosa [2]. The first African swine fever outbreak in mainland China was reported in a pig farm on
August, 2018, in Shenbei District, Shenyang City of Liaoning Province [3]. According to the report of
the Chinese government, within 1 month after the onset of clinical symptoms, all 400 pigs on the pig
farm died [4]. Since then, the disease has spread rapidly throughout China and caused the deaths of
more than onemillion pigs [5]. According to epidemiological investigation, ASFVwas transmitted in
mainland China mainly by three ways. First, trades andmovements of pigs themselves as well as pork
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products; second, feeding pigs with contaminative swills
(i.e., food residue from restaurants); and third, contaminated
transport vehicles or employees without effective disinfection,
that is, employees and vehicles with the virus which spreads over
others [6, 7].

African swine fever broke out in China in August 2018 and has
caused great economic losses for the market of pigs and pig
products. Since the first spread of ASFV to China, the study about
transmission regularity and control strategies has been in
progress. Zhang et al. established a dynamic model to explore
the impact of disinfection and fixation of employees on ASFV
spread in the pig farms and presented some essential
requirements for large-scale pig farms to decrease the
transmission risk of ASFV [8]. Li et al. used the vulnerability
index and data envelopment analysis (DEA) method to assess the
regional vulnerability to ASF in mainland China from August
2018 to July 2019 and gave the severity level of African swine fever
in 31 provinces in mainland China [9]. Vergne et al. evaluated the
relative contribution of stable flies to the transmission of the
African swine fever virus by establishing a model of the vector-
borne transmission mechanism of ASFV in outdoor pig farms
[10]. Ma et al. studied the distribution characteristics of African
swine fever cases based on spatiotemporal clustering and the
directional distribution analysis method and determined the
high-risk areas of African swine fever outbreaks using the
presence-only maximum entropy (MaxEnt) ecological niche
model [11]. Akhmetzhanov et al. estimated the reproduction
numbers, serial intervals, and transmission distances of ASF in
China, according to the reconstructed ASF transmission network
based on the nearest neighbor method, exponential function,
equal probability, and spatiotemporal case distribution
algorithms [12]. However, none of these efforts focused on the
transmission process of ASFV in mainland China, and it is
unclear how ASFV spreads after it has been introduced into
China or how the transmission risks of the three transmission

routes are. The network transmission model not only takes into
account the transmission mechanism of infectious diseases but
also can reflect the structure of the transmission network and has
been widely used in the study of epidemic transmission [13, 14]. It
will be a good choice to study the transmission process of African
swine fever in mainland China.

In this study, we collect data related to pig farms and
slaughterhouse locations from Baidu Map in web crawler.
From this, we construct a pig transportation network and
establish an ASFV transmission model on the basis of
discrete-time Markov chains. Then, we propose spatiotemporal
backward detection and forward transmission algorithms on the
semi-directed weighted network from the constructed network
and established model to analyze the risk of transmission routes,
to infer the most likely transmission map of ASF in mainland
China, and to assess the infection risk in different provinces at
different times. Figure 1 shows the overall framework of
the study.

2 MATERIALS AND METHODS

According to the report on the official website of the Ministry of
Agriculture and Rural Affairs, PRC (http://www.moa.gov.cn),
ASF mainly breaks out in pig farms and some
slaughterhouses. This study deals with the spread of ASFV in
mainland China from August 1, 2018, to August 31, 2019, taking
pig farms and slaughterhouses as the main research objects.
According to the current pig breeding mode in China, the live
pig industry chain from top to bottom includes pig forage, pig
breeding, slaughtering, meat product processing and
manufacturing, and the sale of pork and its products. We take
the live pig feeding and slaughter processing industry chain which
has a direct relationship with the spread of ASF as the mainline to
describe the transmission of ASFV along the pig transport route

FIGURE 1 | Overview of the proposed framework in the study.

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7858852

Hu et al. Risk Analysis of ASFV Transmission

http://www.moa.gov.cn
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


as shown in Figure 2. Pig farms include small-, medium-, and
large-scale farms, which are mainly engaged in the farrowing and
breeding of pigs, and pig trade is carried out between these pig
farms.When they are fattened to a sufficient weight, the pigs from
pig farms are transported to the slaughterhouses for slaughter.
The construction of the pig transportation network and the
establishment of the transmission model followed are both
based on this trading mode above.

2.1 Data
2.1.1 Data Collection
Data for African swine fever cases: We collected surveillance data
of ASFV in mainland China from the official website of the
Ministry of Agriculture and Rural Affairs of the People’s Republic
of China (http://www.moa.gov.cn) from August 1st, 2018, to
August 31st, 2019. They include the geographical location, the
type of site (pig farm or slaughterhouse), date of onset, date of

report, the number of pig stocks, and whether to enable the
emergency response mechanism, take blockade, and prohibit pigs
or pork products to be transferred out or into the blockade area.

Data for the geographical location of the pig farm and
slaughterhouse: We apply the Python language to crawl the
information of pig farms and slaughterhouses in each city
from Baidu Map. The search terms in the Python language
include “geographic name,” “pig farm, pig farmer, pig
breeding cooperative,” and “slaughterhouse, slaughter.” The
extracted results include data about the names and longitude
and latitude of all sites. Figure 3 shows the GIS visualization map
of the extracted pig farms and slaughterhouses.

Data for the pig production and total population: The pig
output in each province was obtained from the China Animal
Husbandry and Veterinary Yearbook [15], and the total
population of each province was obtained from the China
Statistical Yearbook [16].

FIGURE 2 | Transmission diagram of ASFV along the live pig transport route.

FIGURE 3 | GIS visualization map of the extracted pig farms and slaughterhouses based on the Python language.
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2.1.2 Data Cleaning and Preprocessing
Data cleaning: In order to make the data related to pigs and pork
products accurate, we need to manually delete some sites not
related to pig and pig slaughter from the above results.

Data preprocessing: We calculate the Euclidean distances
between any two pig farms, each pig farm and slaughterhouse,
based on their longitude and latitude using Eq. 1:

Γ �
���������������������������������
(Lat.P1 − Lat.P2)2 + (Lon.P1 − Lon.P2)2

√
. (1)

In Eq. 1, Lat. P1 (Lat.P2) and Lon. P1 (Lon.P2) are the latitude
and longitude of site P1 (P2), respectively, in Baidu Map; Γ is the
Euclidean distance between site P1 and P2 [17].

2.2 Pig Transport Network Construction
After these above preparations, we start to construct the pig
transport network. The network considered here is a semi-
directed and weighted network G � (V, E), where V represents
the set of nodes and E denotes a set of edges [18]. As follows, we
give the specific network construction project:

Nodes: The nodes can be divided into two types: pig farm node
and slaughterhouse node.

Edges: We construct two types of edges according to the
maximum Euclidean distance between different types of nodes:

1) Each pig farm is connected to the pig farms within 289 km
[19] to establish an undirected edge.

2) Each pig farm is connected to the slaughterhouse within
285 km [19], and a directed edge from the pig farm to the
slaughterhouse is established.

The maximum distance is determined according to article
[19], which gives that the maximum Euclidean distance observed
in the farm-to-farm movements was 289 km, while in the farm-
to-abattoir movements, it was 285 km.

Time-varying: The network is temporally dynamic. Nodes and
edges are deleted or added according to the information obtained
from the official website of the Ministry of Agriculture and Rural
Affairs, PRC (http://www.moa.gov.cn), on whether the areas with
ASF outbreaks have activated the emergency response
mechanism: the blockade shall be adopted to prohibit the
transfer of live pigs or pork products out of or into the
blocked areas.

2.3 Transmission Model
In this section, a network dynamic model based on the discrete
Markov process is established in terms of the transmission
process of ASFV along the pig transport route [20]. Nodes in
the network comprise pig farm nodes and slaughterhouse nodes.
According to the states of nodes, the pig farm nodes are divided
into four states: susceptible (Sf), latent (Ef), infected (If), and dead
(Df), while the slaughterhouse nodes are divided into susceptible
(Sh) and infected (Ih). V represents the virus carried by employees
and vehicles, coming out from latent, infected, and dead (culled)
pig farms, which then spreads the virus to other pig farms where
they enter without thorough disinfection. W represents the
contaminative swills (i.e., food residue from restaurants),

which is released by pork from infected slaughterhouses and
spreads the virus to others. In addition, susceptible pig farms and
slaughterhouses can be infected through the trades and
movements of pigs. Based on the above, the transmission
process of ASF in pig farms and slaughterhouses is shown in
Figure 4. The detailed state transitions of nodes in the network
are as follows:

1) The susceptible pig farm (Sf) is infected by the ASF virus
carried by employees and vehicles (V), contaminative swills
(W), or latent pig farms neighbor (Ef) and infected pig farm
neighbors (If) due to the trades and movements of pigs with
probability λvf(t) + λwf(t) + λff (i, t) and then becomes (Ef);

2) The latent pig farm (Ef) becomes the infected farm (If) with
probability σ;

3) The infected pig farm (If) is culled with probability d, which
then becomes the dead pig farm (Df);

4) The susceptible slaughterhouse (Sh) is infected by latent pig
farm neighbor (Ef) and infected pig farm neighbor (If) due the
trades of infected pigs with probability λEfh(j, t) + λIfh(j, t),
which then becomes (Ih).

In order to more accurately describe the status of different
nodes at time t, two sub-states of the infected node (I) are
introduced, which are “contagious”(C) and “maintained
contagious” (M) in Figure 4. The contagious state (C)
represents the node’s newly infected state. The node in state C
at the time tmeans that the node is susceptible at time t − 1, but it
is infected at time t. An infected node first transits to contagious
(C) at time t and then transits to being misled (M) at time t + 1.
The node in the M state will remain infected until it dies and is
removed from the network. By synthesizing the above description
and flow chart in Figure 4, a network dynamic model of ASF
based on the discrete Markov process is established. The
meanings and values of variables and parameters involved in
the model are shown in Tables 1, 2.

Briefly, the modeling idea is illustrated by exampling the state
transition of a pig farm node. At time t, a susceptible farm (Sf)
node i can be infected through the following three ways and
transformed into a latent pig farm node (Ef):

1) Virus carried by employees and vehicles (V): The virus
from latent (Ef), infected (If), and dead (Df) pig farms at
time t − 1 attaches to the relevant transport vehicles or
employees and then transmits to susceptible pig farms.
The probability that a susceptible pig farm is not infected
with the ASF virus carried by employees and vehicles
means that none of its latent, infected, or dead pig farm
neighbors spread the virus to it through vehicles or
employees. Therefore, the probability that a susceptible
pig farm i being infected with the ASF virus carried by
employees and vehicles at time t is as follows:

λvf(t) � 1 − ∏
i′∈{1,2,...,n},i′ ≠ i

[1 − βvfP
f
E(i′, t − 1) + Pf

I (i′, t − 1)

+ Pf
D(i′, t − 1)]. (2)
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2) Contaminative swills (W): Infected slaughterhouses (If) at
time t − 1 sold pork products to restaurants, and then,
susceptible pigs in pig farms can be infected by eating

contaminated swills (i.e., food residue from restaurants)
(W). The probability that a susceptible pig farm is not
infected by contaminative swills means that none of its

FIGURE 4 | State transition of nodes in the ASFV transmission model.

TABLE 1 | Meanings of the variables in the model.

Variable Interpretation

zjin The set of pig farm neighbors connected to slaughterhouse node j in the network
zi The set of pig farm neighbors of pig farm node j in the network
di′i The distance between node i′ and node i
ηi′i The transmission probability from pig farm i′ to pig farm i
ηij The transmission probability from pig farm node i to slaughterhouse node j
Nm

i The number of pig outputs in the province where pig farm i is located

Np
i The total population of the province where pig farm i is located

λvf(t) The probability that a susceptible pig farm being infected with the ASF virus carried by employees and vehicles V at time t
λwf(t) The probability that a susceptible pig farm being infected by contaminative swills (W) at time t
λff (i, t) The probability of a susceptible pig farm i being infected by its latent or infected pig farm neighbor at time t

Pf
Y (i, t) The probability that the arbitrary pig farm i is state Y at time t, Y ∈ {S, E, C, I, D}

Ph
Y (j, t) The probability that the arbitrary slaughterhouse j is in state Y at time t, Y ∈ {S, C, I}

TABLE 2 | Descriptions and values of the parameters in the model.

Parameter Interpretation Value Source

Σ The transformation rate of pig farms from the latent state to the infected state 0.1 [8]
D The culling rates of the infected pig farm 0.7 [8]
βff The infection rate of the infected pig farm to the susceptible pig farm 0.3 Assumed
βfh The infection rate of the infected pig farm to the susceptible slaughterhouse 0.28 LHS
βvf The infection rate of latent, infected, or dead pig farms to susceptible employees and vehicles 0.49 LHS
βwf The infection rate of the infected slaughterhouse to contaminative swills 0.36 LHS
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infected slaughterhouse neighbors spread the virus to it
through pork products. Therefore, the probability that a
susceptible pig farm i being infected with the ASF virus
carried by contaminative swills at time t is as follows:

λwf(t) � 1 − ∏
j∈{1,2,...,n}

[1 − βwfP
h
I(j, t − 1)]. (3)

3) Trades of infected pigs and pork products: The susceptible
pig farm at time t − 1 can be infected by the importation of
infected pigs from latent (Ef) or infected (If) pig farm
neighbors. The probability that a susceptible farm is not
infected means that none of its latent or infected pig farm
neighbors spread the virus to it through their links.
Therefore, the probability that a susceptible farm node i
being infected by its latent or infected pig farm neighbors at
the time t is as follows:

λff(i, t) � 1 −∏
i′∈zi

[1 − ηi′i(Pf
E(i′, t − 1) + Pf

I (i′, t − 1))], (4)

where ηi′i is the transmission probability of pig farm i′ to pig farm
i, and the formulation is as follows:

ηi′i � βffKi′ i. (5)

In Eq. 5, βff is the maximum infection rate among pig farms,
and Ki′i means the transmission kernel function at pig farm node
i′ to i [21].

When node i′ and i are the pig farms in the same province, the
kernel function Ki′i is calculated by the distance between the two
farms di′i. The closer the distance is, the bigger the value is, and its
expression is as follows:

Ki′i � k0

1 + d
i′ i
d0

, (6)

where k0 and d0 determine the form of the kernel function, and
the value refers to Ref. [21].

When nodes i′ and i are pig farms from different
provinces, the value Ki′i of the kernel function not only is
determined by the distance between the two farms di′i but also
depends on the pig output Nm

i′ and Nm
i and the total

population Np
i′
and Np

i of the provinces. Its expression is
as follows:

Ki′ i � k0

1 + d
i′ i
d0

·
Nm

i′
Np

i′
− Nm

i

Np
i

∑
i′∈zi

Nm

i′
Np

i′
− Nm

i

Np
i

( ). (7)

In conclusion, the probability that an arbitrary susceptible
pig farm node i at time t − 1 is still in the susceptible state at
time t is as follows:

Pf
S (i, t) � [1 − λvf(t) − λwf(t) − λff(t)]Pf

S (i, t − 1). (8)

That is, the pig farm is not infected by any of the above
three ways.

The expression of the probability that pig farm node i is in the
latent state at time t is as follows:

Pf
E(i, t) � [λvf(t) + λwf(t) + λff(i, t)]Pf

S (i, t − 1)
+ (1 − σ)Pf

E(i, t − 1). (9)

The pig farm node i that is in the latent state at time t − 1 is first
converted to the newly infected state C with transformation rate
σ. Thus, the expression of the probability that an arbitrary pig
farm node i is in the contagious state at time t is as follows:

Pf
C(i, t) � σPf

E(i, t − 1). (10)

Pig farm node i is in the infection state at time t, which means
that it is newly infected at time t or it has been in the infection state
and not culled before time t. The expression of the probability that
pig farm node i is in the infection state at time t is as follows:

Pf
I (i, t) � Pf

C(i, t) + (1 − d)Pf
I (i, t − 1). (11)

Pig farm node i is in the dead state at time t, which means that
it was in the infection state at time t − 1 and culled at time t or it
has been in the dead state before time t. The expression of the
probability that pig farm node i is in the dead state at time t is as
follows:

Pf
D(i, t) � dPf

I (i, t − 1) + Pf
D(i, t − 1). (12)

The probability that the slaughterhouse node is in each state at
time t can be deduced in a similar manner. In conclusion, the
network dynamics model of ASF based on the Markov process
can be obtained as follows:

Pf
S (i, t) � [1 − λvf(t) − λwf(t) − λff(i, t)]Pf

S (i, t − 1),
Pf
E(i, t) � [λvf(t) + λwf(t) + λff(i, t)]Pf

S (i, t − 1) + (1 − σ)Pf
E(i, t − 1),

Pf
C(i, t) � σPf

E(i, t − 1),
Pf
I (i, t) � Pf

C(i, t) + (1 − d)Pf
I (i, t − 1),

Pf
D(i, t) � dPf

I (i, t − 1) + Pf
D(i, t − 1),

Ph
S(j, t) � [1 − λEfh(j, t) − λIfh(j, t)]Ph

S(j, t − 1),
Ph
C(j, t) � [λEfh(j, t) + λIfh(j, t)]Ph

S(j, t − 1),
Ph
I(j, t) � Ph

C(i, t) + Ph
I(i, t − 1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

The terms λvf(t), λwf(t), λff(i, t), λEfh(j, t), and λIfh(j, t) in
the model 13) can be deduced as follows:

λvf(t) � 1 − ∏
i′∈{1,2,...,n},i′ ≠ i

[1 − βvf(Pf
E(i′, t − 1) + Pf

I (i′, t − 1)

+Pf
D(i′, t − 1))],

λwf(t) � 1 − ∏
j∈{1,2,...,n}

[1 − βwfP
h
I(j, t − 1)],

ηi′i � βffKi′i,

λff(i, t) � 1 −∏
i′ϵzi

[1 − ηi′iP
f
E(i′, t − 1) + Pf

E(i′, t − 1)],

ηij � βfhKij, λEfh(j, t) � 1 − ∏
iϵzjin

[1 − ηijP
f
E(i, t − 1)],

λIfh(j, t) � 1 − ∏
iϵzjin

[1 − ηijP
f
I (i, t − 1)]. (14)
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Here, expressions 6 and 7 should be applied for
kernel function Ki′i and Kij depending on whether the
adjacent pig farms or slaughterhouses belong to the same
province.

2.4 Algorithm
Based on the pig transport network and ASFV network
dynamics model, the spatiotemporal backward detection
and forward transmission algorithms on the semi-directed
network are proposed in this section to detect the most
probable infection source for each infected pig farm and
slaughterhouse and to infer the most likely transmission
route and the infection risk of nodes in the network at
different times.

2.4.1 Spatiotemporal Backward Detection
In this section, the spatiotemporal backward detection algorithm
on a semi-directed weighted network is proposed to detect the
most likely infection source of each infected pig farm or
slaughterhouse. The spatiotemporal backward detection
algorithm proposed in this section is inspired by the algorithm
proposed in Ref. [13]. The similarities are as follows: 1) they are
both dynamic networks from the perspective of whether the
network is changeable with time; 2) The detection mechanism
is the same in time, and both are inverse detection. The
differences are as follows: 1) The network structure is
different, as the network is a directed weighted network in
[13], while the algorithm proposed in this section is a semi-
directed weighted network; 2) the spatial detection mechanism is
different. The former is reverse detection, while in this section,
apart from reverse detection, two-way detection is also applied in
the algorithm; 3) the connection weights of edges are different.
The connection probability of the two nodes in the former is
related to the spatial distance, while in this section, in addition to
the spatial distance, the number of pig productions and the total
population are relative to the probability of the two nodes’
connection. This algorithm is detailed as shown in Table 3.

The pig transport network constructed here records the spatial
location and infection time of each infected pig farm or
slaughterhouse. In infection source set U, the real infection
source of the infected pig farm node or slaughterhouse node is
more consistent with the real situation in space and time than
other nodes. The key role of the algorithm proposed in the section
is the disease transmission model (13), which shows the
probability of any nodes which are in newly infected state C at
time t. PC(u, ts|oi) means the probability that node u is in the
newly infected state C, and the reverse detection begins from the
objected node oi in the span of ts. According to Bayes’ rule, the
probability that node u transmits the virus to node oi is in
proportion to the probability that node oi transmits the virus
back to the infected node u [22]. That is, P (oi|u) ∼ P (u|oi).

P(u|oi) � ∏
oi∈O

PC(u, ts|oi). (15)

To brief the calculation available, the maximum likelihood is
derived by ln (·), which is induced by the logarithmic function,
and the expression is as follows:

L(u, t) � ln∏
oi∈O

PC(u, ts|oi). (16)

Mathematically, among all nodes in possible infection source
set Ui detected in the algorithm, the node with the largest
maximum likelihood is defined as the most likely infection
source of objected nodes oi, namely,

(u*, t*) � argmax
u∈Ui

L(u, t). (17)

2.4.2 Spatiotemporal Forward Transmission
As a node may infect multiple nodes, the spatiotemporal forward
propagation algorithm on a semi-directed weighted network is
proposed in this section to determine the transmission influence
of the infection source node in the whole network and to calculate
the infection risk of nodes in the network at different times. The
details of this algorithm are shown in Table 4.

PC(oi, ts|u) represents the probability that node oi is in the
newly infected state C after the time span ts, starting forward
transmission from the infection source node u. L (t, u) represents
the maximum likelihood when the infection source node u
transmits the virus to infected object nodes at time t. To brief
the calculation available, the maximum likelihood is derived by
logarithmic function ln (·), and the expression is as follows:

L(t, u) � ln∏
oi∈F

PC(oi, ts|u). (18)

In addition, Eq. 19 can be used to estimate the infection size I
(t, u), which is infected by the spread of the infection source
detected at time t. The validity of the algorithm proposed in this
section can be verified through reviewing the accuracy of I (t, u).
Its expression is as follows:

I(t, u) � ∑
u∈U

∑
oi∈F

PI(oi, t|u). (19)

Table 3 | Spatiotemporal backward detection algorithm in a semi-directed
weighted network.
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3 RESULTS

In this section, based on the pig transport network and a network
dynamic model of ASFV, the simulation of the spatiotemporal
backward detection and forward transmission algorithm is
proposed on the semi-directed weighted network, the infection
source nodes are detected, the risk of three main transmission
routes of ASFV is analyzed, the most likely transmission map is
inferred, and the infection risk in provinces at different times
is shown.

3.1 Detected Infection Sources
The most likely infection source for every infection node can be
detected by the spatiotemporal backward detection algorithm. In
this section, we take an infected pig farm node f20 in Liaoning
province and an infected slaughterhouse node h6 in Guizhou
province as examples since the ASF virus first reported, and the
largest number of ASFV nodes occurred in the two provinces.
Figure 5 shows all the probable infection sources of f20 as well as
h6 detected by the algorithm and the sequence of the maximum
likelihood L (u, t). As the infection rates βff, βfh, βvf, βwf in model
13) and the formula of maximum likelihood L (u.t) are uncertain,
in this section, the four parameters are sampled of a 1,000 times of
random sampling with the Latin hypercube sampling method
(LHS) on the assumption that the parameters are in
correspondence with the normal distribution to calculate the
maximum likelihood L (u.t), and the simulation results are shown
in the form of the violin plots, and the median, quartile range, and
95% confidence interval are shown. As shown in Figure 5A, for
infected pig farm nodes f20, six possible pig farms are detected as
infection sources, among which the maximum likelihood value L
(u, t) of the pig farm f5 is greater than the other five possible
infection sources, so pig farm f5 is the most likely infection source
for infected pig farm f20. Similarly, as shown in Figure 5B, node
f126 is the most likely infection source for infected
slaughterhouse h6.

Then, based on the most likely infection source detected,
spatiotemporal forward transmission is carried out on the
constructed pig transport network. Eq. 19 is used to estimate
the size I (u, t) of infected objects that were infected by the
infection source at time t. The effectiveness of the algorithm is
verified. Figure 6 shows the reported accumulated infected cases
as well as estimated accumulated infected cases from infection
sources by forward transmission from August 2018 to August
2019. The results show that there is a small difference between the
estimated accumulative cases and reported accumulative cases, so
the model and algorithm proposed in this study are verified
rationally.

3.2 Risk Analysis of Transmission Routes
There are three main transmission ways of ASFV in mainland
China: first, trades and movements of pigs and pork products;
second, feeding pigs with contaminative swills (i.e., food residue
from restaurants); and third, employees and vehicles with the ASF
virus which spreads over others. In this section, the risk of three
transmission routes is analyzed.

First, the uncertainty and sensitivity of the parameters
regarding the maximum likelihood L (u, t) of the infection
source are analyzed. Uncertainty analysis and sensitivity
analysis of parameters based on LHS and partial rank
correlation coefficients (PRCCs) have previously been used in
many infectious disease models [23, 24]. Taking infected nodes f20
and h6 as examples, Figure 7 shows the PRCCs of these four
parameters to L (u, t) of all detected possible infection sources.
The PRCC value of the parameter to L (u, t) is proportional to the
correlation of this parameter to L (u, t). That is, the larger the
PRCC value of the parameter is, the greater the influence of the
parameter with regard to L (u, t) is. Figure 7 shows that the PRCC
value (|PRCC| > 0.8, p < 0.05) related to the maximum likelihood
L (u, t) regarding the infection rate βvf of employees and vehicles
with the virus is the highest, that is, the virus transmission carried
by employees and vehicles has the greatest influence on the
maximum likelihood L (u, t), followed by the infection rate
βwf (|PRCC| > 0.7, p < 0.05) of contaminative swills; for the
infection rate βff, βfh, the PRCC value is lower, that is, it has little
influence on the maximum likelihood L (u, t).

In addition, based on the parameters obtained in Section 4.1, it
is assumed that only one of the three transmission routes, which
forward-transmits the ASF virus on the constructed pig transport
network, plays a role. The number of infected nodes is compared
under the three transmission routes. Figure 8 shows the newly
infected nodes per month which are simulated under three
assumptions. By comparison, it is found that the number of
newly infected sites per month is the highest when only the virus
carried by employees and vehicles is taken into account. When only
contaminative swills (i.e., food residue from restaurants) are
considered, the number of infected nodes is moderate; when only
trade of infected pigs is considered, the number of infected nodes is
the lowest. In summary, among the three main transmission routes
of ASFV in mainland China, the infection risk for employees and
vehicles with the virus is the highest, followed by contaminative
swills, and the trade of infected pigs is the lowest.

TABLE 4 | Spatiotemporal forward transmission algorithm in the semi-directed
weighted network.
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3.3 Most Likely Transmission Map
The most likely infection source for each infected node in the
network can be detected by the spatiotemporal backward
detection algorithm on the semi-directed network, and the
transmission path can be known. Based on the transmission
path of each infected node, the most likely transmission path map
in provinces in mainland China from August 1, 2018, to August
31, 2019, can be deduced. Figure 9A shows the distribution of
infected pig farms and slaughterhouses by ASFV in mainland
China from August 1, 2018, to August 31, 2018, with 10 cases in
Liaoning province, 3 cases in Zhejiang province, and 1 case each in
Henan, Jiangsu, and Anhui provinces. Figure 9B presents themost
likely ASFV transmission map by the spatiotemporal backward
detection algorithm. The results generally show that ASFV spreads
from northeast China to southwest China and then to west.

In particularly, according to the notice of “The General Office
of the Ministry of Agriculture and Rural Affairs of the People’s

Republic of China on Typical Cases of Violation of Laws and
Disciplines in the Prevention and Control of ASF” issued by the
Ministry of Agriculture and Rural Affairs of the People’s Republic
of China (http://www.moa.gov.cn), on September 29, 2018, after
the test by China Animal Health and Epidemiology Center, the
source of the pigs from the slaughterhouse of Shuanghui Food
Company in Zhengzhou city, Henan province, where ASF broke
out on August 14, 2018, is Jiamusi, Heilongjiang province
(marked with a solid blue line); on July 30, 2018, in the course
of transferring pigs from Heilongjiang province, which was
directed by a company in Siping city, Jilin province, ASF
broke out (marked with a yellow solid line); on June 2018,
piglets bought by a farmer of Shenyang, Liaoning province,
from Jilin province died out of control, and the pigs sold to a
farmer were confirmed to be infected with ASF on August 2. In
summary, before August 1, 2018, there had been ASFV cases in
Heilongjiang and Jilin provinces (marked by the red five-pointed
star), and the source of pandemic occurred in Henan and Jilin
provinces was most likely to be Heilongjiang. The epidemic in
Liaoning province was probably spread from Jilin province.

3.4 Risk Assessment of Spatiotemporal
Infection
The infection probability of each pig farm and slaughterhouse in
the network at time t can be calculated by the spatiotemporal
forward detection algorithm on the semi-directed weighted
network. In reference to the whole pig transportation network
in mainland China, the infection risk of each province at different
times can be shown, as shown in Figure 10, which shows the
infection risk of ASFV in provinces at four times as examples.
Figure 10A shows the infection risk map of provinces in
mainland China in October 2018. As a result, the infection
risk in Liaoning province is the highest, followed by adjacent
areas of the Inner Mongolia autonomous region and Jilin
province. In addition, several provinces in central China and
east China have a higher infection risk, while southwest China
and northwest China have the lowest. Figure 10B shows the
infection risk map in various provinces of mainland China in
December 2018. The result depicts that at this time, the distribution

FIGURE 5 | Violin plots presenting the maximum likelihood L (u, t) for all possible infection sources with (A) infected pig farm node f20 and (B) infected
slaughterhouse node h6.

FIGURE 6 | Real accumulated infected cases and estimated
accumulated infected cases through the spatiotemporal forward transmission
algorithm in mainland China.
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FIGURE7 | Partial rank correlation coefficients (PRCCs) for parameters βff, βfh, βvf, βwfwith respect to themaximum likelihood L (u, t) associated with all the detected
possible infection sources of (A) infected pig farm node f20 and (B) infected slaughterhouse node h6.

FIGURE 8 | Newly infected cases with time by simulations under the assumption that only one transmission route works.

FIGURE 9 | (A)Geographic distribution of ASFV cases inmainland China from August 1st to 31st, 2018. (B)Geographic distribution of ASFV cases by August 31st,
2019, and inference of the most likely transmission map of ASFV based on the spatiotemporal backward detection algorithm.
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with a high infection risk has shifted to some provinces in central
China, south China, and southwest China, and some provinces in
northwest China have a higher infection risk than before.
Figure 10C shows the distribution of infection risk in various
provinces of mainland China in April 2019. The result shows that
the infection risk is generally low in northeast China, north China,
and east China, while it is high in south, southwest, and northwest
China. Figure 10D presents a distribution of infection risk in the
provinces ofmainland China in June 2019, showing that the overall
infection risk has decreased at this time, with the highest risk of
infection in southwest China. Summarily, with regard to the
infection risk of ASFV in mainland China, the overall infection
risk has been high by January 2019. As the regulatory measures
such as the ban on pig transfer have been enhanced, the infection
risk gradually decreases, and the high-risk areas gradually shift
from northeast to southwest and northwest China.

4 CONCLUSION

In this study, the pig transmission network and the network
dynamics model of ASFV based on the discrete Markov process
are built based on the site’s data of pig farms and slaughterhouses
which are extracted from Baidu Map in the Python language. In
addition, the spatiotemporal backward detection and forward

algorithms on the semi-directed weighted network are proposed
to detect the source of infection of pig farms and slaughterhouses
infected with ASFV. Through the analysis on the transmission
route risk, it is concluded that the spread risk of employees and
vehicles with the virus is the highest, followed by the contaminated
swill (i.e., food residue from restaurants), while the risk of pig and
pork product trades is relatively lower. By tracing the source of the
infected sites, we give the possible transmission path map of ASFV
in mainland China. The map shows that ASFV is spread from
northeast China to southwest China and then westward. By
calculating the probability of each node in the network being
infected at different times, we give the infection risk of each
province at different times on a large spatial scale.

The innovation of this study is the establishment of a data-
driven network transmission dynamics model of African swine
fever, which is used to assess the transmission risk of ASFV in
three transmission ways in mainland China. In practice, it is
found that the transmission risk of employees and vehicles with
the virus is the highest, and the infection risk in different regions
at different times is shown, which can provide effective
suggestions for the prevention and control of ASFV.

There are also some defects in the study. For example, we only
crawled the location information of pig farms and
slaughterhouses from Baidu Map and then constructed the pig
transport network based on the distance between them, which

FIGURE 10 | Infection risk maps of ASFV in mainland China in (A) October 2018, (B) December 2018, (C) April 2019, and (D) June 2019.

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 78588511

Hu et al. Risk Analysis of ASFV Transmission

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


may be deviated from the actual pig trade network. In the future
study, we will integrate the actual traffic data between cities into
the spread of infectious diseases on the network. Besides, we
ignored the community structure of the real pig trade network
when building the transmission model [25, 26], which is
worth to be paid attention and further studied. In
addition, the network transmission model we established
in the study lacks theoretical analysis due to its high
dimension. Therefore, it is necessary to further study the
high-dimensional system dimension reduction method of the
network propagation dynamics model and to analyze
dynamic behavior. In general, this study depicts the risk of
different transmission routes of ASFV in mainland China,
which can provide effective suggestions for the prevention
and control of the pandemic and is practical.
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