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In this article, we study the existence and uniqueness of square-mean piecewise almost
periodic solutions to a class of impulsive stochastic functional differential equations driven
by fractional Brownian motion. Moreover, the stability of the mild solution is obtained. To
illustrate the results obtained in the paper, an impulsive stochastic functional differential
equation driven by fractional Brownian motion is considered.
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1 INTRODUCTION

Impulsive systems arise naturally in a wide variety of evolutionary processes in which states are
changed abruptly at certain moments of time. Impulsive stochastic modeling has come to play an
important role in many branches of science where more and more people have encountered
impulsive stochastic differential equations. For example, a stochastic model for drug distribution in a
biological system was described by Tsokos and Padgett [1] as a closed system with a simplified heart,
one organ, or capillary bed, and recirculation of blood with a constant rate of flow, where the heart is
considered as a mixing chamber of constant volume. Recently, there has been a significant
development in impulsive stochastic differential equations (ISDEs). The existence and stability of
ISDEs were investigated in [2–11] and the references therein.

On the other hand, in recent years, there has been considerable interest in studying fractional
Brownian motions (fBms) due to their compact properties and applications in various scientific
areas, including telecommunications [12, 13], turbulence [14], image processing [15], and finance
[16]. Stochastic differential equations (SDEs) driven by fBms attract the interest of researchers [2, 3,
17–21]. Taking the time delay into account, the theory of stochastic differential equations has been
generalized to stochastic functional differential equations; it makes the dynamics more complex and
the system may lose stability and show almost periodicity. Arthi et al. [2] considered the existence
and exponential stability for neutral stochastic integrodifferential equations with impulses driven by
fractional Brownian motion (fBm), and Caraballo [3] studied the existence of mild solutions to
stochastic delay evolution equations with fBm and impulses.

In this paper, we are concerned with the existence and stability of almost periodic mild solutions
to the following impulsive stochastic functional differential system driven by fBm with Hurst
index H ∈(1/2, 1):

dx t( ) � Ax t( ) + b t, xt( )[ ]dt + σ t( )dBH t( ), t≠ ± ti, i ∈ Z,
△x ti( ) � x t+i( ) − x t−i( ) � Ii x ti( )( ), i ∈ Z,
xt0 � ξ � ξ t( ): − θ ≤ t≤ 0{ },

⎧⎪⎨⎪⎩ (1)
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where Z is the set of integer, for any i, k ∈ Z, and the sequence {ti}
is such that the derived sequence {tki � ti+k − ti} is equipotentially
almost periodic. Moreover, A: D(A) ⊂ H→H is a linear
bounded operator, ρ(A) is the resolvent set of A, and for λ ∈
ρ(A), R(λ, A) is the resolvent of A. In addition, b, σ, and Ii are
appropriate functions, xt(·): [−θ, 0]→H is given by xt(s) � x(t +
s), for any s ∈ [ − θ, 0], and ξ ∈ Cθ is an F t0−measurable random
variable such that E‖ξ‖2 <∞. Let θ > 0 be a given constant and let

Cθ � ϕ: [−θ, 0] × Ω→H, ϕ{ be continuous everywhere except
for a finite number of points s at which ϕ(s−) and ϕ(s+) exist and
satisfy ϕ(s−) � ϕ(s)}, endowed with the norm

‖ϕ‖Cθ � sup
−θ≤s≤0

E‖ϕ s( )‖2( )12,
such that ϕ(s, ·) is F 0-measurable for each s ∈ [ − θ, 0] and
sup

s∈[−θ,0]
E‖ϕ(s)‖2 <∞.

There are several difficulties with our problems. First, there is
the delay for the impulsive stochastic differential equations.
Second, about the stochastic differential equations driven by
fractional Brownian motion, the classical stochastic integral
failed for lack of the martingale property. Third, there is no
strong solution for stochastic partial delay differential equations
driven by fractional Brownian motion. The lifting space method,
mild solutions, fixed point theorem, and semigroup theory will be
used to overcome these difficulties.

The paper is organized as follows. In Section 2, we introduce
some notations and necessary preliminaries. Section 3 is devoted
to stating the existence and uniqueness of the mild square-mean
piecewise almost periodic solution to (1). In Section 4, we show
the stability of the mild square-mean piecewise almost periodic
solution. An example is provided to illustrate the effectiveness of
the results.

2 PRELIMINARIES

Let (H, ‖ · ‖H, (·, ·)H) and (K, ‖ · ‖K, (·, ·)K) denote two real
separable Hilbert spaces. We denote by L(H,K) the set of all
linear bounded operators from H into K, equipped with the usual
operator norm ‖ ·‖ and use |·| to denote the Euclidean norm of a
vector. In this article, we use the symbol ‖·‖ to denote the norms of
operators regardless of the spaces involved when no confusion
possibly arises. Let (Ω,F , {F t}t≥ 0, P) be a filtered complete
probability space satisfying the usual condition.

2.1 Fractional Brownian Motion
In this subsection, we briefly introduce some useful results about
fBm and the corresponding stochastic integral taking values in a
Hilbert space. For more details, refer to Hu [22], Mishura [23],
Nualart [24], and references therein.

A real standard fractional Brownian motion {βH(t), t ∈ R}
with Hurst parameter H ∈ (0, 1) is a Gaussian process with
continuous sample paths such that E[βH(t)] � 0 and

E βH t( )βH s( )[ ] � 1
2

|t|2H + |s|2H − |t − s|2H( ),

for all s, t ≥ 0. It is known that fBm {βH(t), t ≥ 0} withH> 1
2 admits

the following Wiener integral representation:

βH t( ) � ∫t

0
KH t, s( )dW s( ),

whereW is a standard Brownian motion and the kernel KH(t, s) is
given by

KH t, s( ) � cH ∫t

s
u − s( )H−3

2
u

s
( )H−1

2

du, s< t,

where cH > 0 is a constant satisfying E(βH1 )2 � 1. For any function
σ ∈ L2(0, T), the Wiener integral of σ with respect to βH is
defined by

∫T

0
σ s( )dβH s( ) � ∫T

0
K∗

Hσ s( )dW s( ),

for any T > 0, where K∗
Hσ(s) � ∫Ts zKH

zr (r, s)dr. A K-valued,
F t-adapted fBm BH with Hurst index H can be defined by

BH t( ) �∑∞
n�1

��
λn

√
enβ

H
n t( ),

where βHn , n � 1, 2, · · · are independent fBms with the same Hurst
parameter H ∈ (12, 1), {en, n ∈ N}, which is a complete
orthonormal basis in K, {λn, n ∈ N} that is a bounded
sequence of non-negative real numbers satisfying Qen � λnen,
and Q is non-negative self-adjoint trace class operator with
TrQ � ∑∞

n�1 λn < +∞.
Let L0

2(H,K) denote the space of all σ ∈ L(H,K) such that
σQ

1
2 is a Hilbert–Schmidt operator. The norm is defined by

‖σ‖2
L0
2
� ∑∞

n�1 ‖
��
λn

√
σen‖2. Generally, σ is called a Q-

Hilbert–Schmidt operator from H to K.

Definition 2.1. Let σ: [0, T]→ L02(H,K) such that

∑∞
n�1

‖K∗
H σen( )‖2L0

2
<∞,

then the stochastic integral of σ with respect to fBm BH is defined by

∫t

0
σ s( )dBH s( )d∑∞

n�1
∫t

0
σ s( )Q1

2 endβ
H s( )

�∑∞
n�1
∫t

0
K∗

H σ s( )Q1
2en( )( ) s( )dW s( ).

Remark. If {λn}n∈N is a bounded sequence of non-negative real
numbers such that the nuclear operator Q satisfies Qen � λen,
assuming that there exists a positive constant Kσ such that
‖σ‖2

L0
2
≤Kσ uniformly in [0, T], then it is obvious that∑∞

n�1 ‖σQ1
2 en‖2 is uniformly convergent for t ∈ [0, T].

2.2 Piecewise Almost Periodic Stochastic
Processes
In this subsection, we recall some notations about the square-
mean piecewise almost periodic stochastic process and introduce
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some lemmas. For further details, we refer to Takens and Teissier
[25] and Liu [26].

Recall that a stochastic process X: R→ L2(Ω;H) is said to be
continuous if

lim
t→s

E‖X t( ) −X s( )‖2 � 0,

for all s ∈ R, and it is said to be bounded if there existsN > 0, such
that E‖X(t)‖2 ≤ N for all t ∈ R. For convenience, we list the
following concepts and notations:

• L2(Ω,H) is Banach space when it is equipped with norm
‖ · ‖L2(Ω,H).

• Let T be the set consisting of all real sequences {ti}i∈Z such
that α � inf i∈Z(ti+1 − ti)> 0, and lim

i→∞
ti � ∞, lim

i→−∞ ti � −∞,
x(t−i ),and x(t+i ) represent the left and right limits of x(t) at
the point ti, i ∈ Z, respectively.

• Let PC(R, L2(Ω,H)) be the space consisting of all
stochastically bounded functions b: R→L2(Ω,H) such
that b(·) is stochastically continuous at t for any
t ∉ {ti}i∈Z, and b(ti) � b(t−i ) for all i ∈ Z, {ti}i∈Z ∈ T .

• Let PC(R × Cθ, L2(Ω,H)) be the space of all piecewise
stochastic process b: R × Cθ → L2(Ω,H) such that

• for any ϕ ∈ Cθ , b(·, ϕ) is stochastically continuous at point t
for any t ∉ {ti}i∈Z and b(ti, ϕ) � b(t−i , ϕ) for all i ∈ Z;
and b(t, ·) is stochastically continuous at ϕ ∈ Cθ , for t ∈ R.

• For k < i, t − tk � t − ti + ti − tk ≥ t − ti + (i − k)α, if {ti}i∈Z ∈ T ,
and ti < t ≤ ti+1 (see [27]).

Definition 2.2. ([28]). The family of the sequence {tki � ti+k −
ti}, i ∈ Z, k ∈ Z will be called equipotentially almost periodic if for
any ε > 0; there exists a relatively dense set Qε of R and an integer
q ∈ Z such that the inequality

|ti+q − ti − τ|< ε, (2)

holds for each τ ∈ Qε and i ∈ Z.

Definition 2.3. A function {b(t), t ≥ 0} is said to be square-mean
piecewise almost periodic if the following conditions are fulfilled:

a) For any ε > 0, there exists a positive number δ � δ(ε) such that if
the points t′ and t″ belong to the same interval of continuity
and |t′ − t″| < δ, then E‖b(t′) − b(t″)‖2 < ε.

b) For any ε > 0, there exists l(ε) > 0, such that every interval of
length l(ε) contains a number τ with the property

sup
t∈R

E‖b t + τ( ) − b t( )‖2 < ε,

which satisfies the condition |t − ti|> ε, i ∈ Z.
Let APT (R, L2(Ω;H)) denote the space of all square-mean

piecewise almost periodic functions. Obviously
APT (R, L2(Ω;H)) endowed with the supremum norm is a
Banach space. Let UPC(R; L2(Ω;H)) be the space of all
functions b ∈ PC(R, L2(Ω;H)) such that b satisfies the
condition (a) in Definition 2.3. It is easy to check that
UPC(R; L2(Ω;H)) is a Banach space with the norm

‖X‖∞ � sup
t∈R

E‖X t( )‖2( )12,
for each X ∈ UPC(R; L2(Ω;H)).

Definition 2.4. (compare with [28]). A sequence
{xi}: Z→ L2(Ω,H) is called square-mean almost periodic if for
any ε > 0, there exists a natural number N � N(ε) such that, for
each k ∈ Z, there is at least one integer p in the segment [k, k + N],
for which inequality

E‖xi+p − xi‖2 < ε,
holds for all i ∈ Z.

Definition 2.5. The function b(t,φ) ∈ PC(R × Cθ, L2(Ω,H)) is
said to be square-mean piecewise almost periodic in t ∈ R

uniformly in φ ∈ Λ, where Λ4Cθ is compact if for any ε > 0,
there exits l(ε, Λ) > 0 such that any interval of length l(ε, Λ)
contains at least a number τ for which

sup
t∈R

E‖b t + τ, x( ) − b t, x( )‖2 < ε,

for each x ∈ Λ, t ∈ R, satisfying |t − ti| > ε. The collection of all such
processes is denoted by APT (R × Cθ, L2(Ω,H)).

Lemma 2.1. Let the function f: R × Cθ → L2(Ω;H) be square-
mean piecewise almost periodic in t ∈ R uniformly for y ∈ Cθ,
whereΛ ⊂ Cθ is compact. If f is a Lipschitz function in the following
sense,

E‖f t, y( ) − f t, ~y( )‖<M2 ‖y − ~y‖Cθ( ), (3)

for all y, ~y ∈ Cθ, t ∈ R, and a constant M2 > 0, then for
any ϕ(·) ∈ APT (R, L2(Ω;H)), f(·, ϕ·) ∈ APT (R, L2(Ω;H)).

Proof. Noting that ϕ(t): R→ L2(Ω;H) is square-mean almost
periodic, we can conclude that ϕt � {ϕ(t + s), − θ ≤ s ≤ 0, θ > 0} is
square-mean almost periodic by Theorem 1.2.7 of [29]. Thus, for
each ε > 0, there exists a constant l(ε) > 0 such that every interval
with the length l(ε) contains a number τ satisfying

E‖ϕt+τ − ϕt‖2Cθ ≤
ε

4M2
,∀t ∈ R. (4)

Noting that f: R × Cθ → L2(Ω;H) is square-mean piecewise
almost periodic, we can see that for any ε > 0, there exits l(ε,Λ) > 0
such that each interval with length l(ε, Λ) contains at least a
number τ satisfying

E‖f t + τ, ϕt( ) − f t, ϕt( )‖2 ≤ ε

4
,∀t ∈ R, (5)

for any x ∈ Λ(4Cθ), t ∈ R with |t − ti| > ε. Using the elementary
inequality |a + b|2 ≤ 2(|a|2 + |b|2) and condition (3), we have

E‖f t + τ, ϕt+τ( ) − f t, ϕt( )‖2
≤ 2E‖f t + τ, ϕt+τ( ) − f t, ϕt+τ( )‖2 + 2E‖f t,ϕt+τ( ) − f t,ϕt( )‖2
≤ 2E‖f t + τ, ϕt+τ( ) − f t, ϕt+τ( )‖2 + 2M2

2E‖ϕt+τ − ϕt‖2Cθ ,

for all t ∈ R. Combining (4) and (5), one can show that
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sup
t∈R

E‖f t + τ, ϕt+τ( ) − f t,ϕt( )‖2 ≤ 2 · ε
4
+ 2M2 · ε

4M2
≤ ε,

which implies that f(t, ϕt) is square-mean piecewise almost
periodic.

3 EXISTENCE OF SQUARE-MEAN
PIECEWISE ALMOST PERIODIC SOLUTION

In this section, we study the existence of the square-mean piecewise
almost periodic solution to (1). We first present some assumptions
as follows:

(H1) Let the bounded linear operator A be an infinitesimal
generator of an analytic semigroup {S(t), t ≥ 0} such that

‖S t( )‖≤Me−ct, t≥ 0 (6)

for some c > 0,M > 0. Moreover, R(λ,A) is almost periodic, where
λ ∈ ρ(A).

(H2) Let b ∈ APT (R × Cθ, L2(Ω,H)). Moreover, there exists a
positive constant Mb such that

E‖b t, x( ) − b t, ~x( )‖2 ≤Mb‖x − ~x‖2Cθ ,
for any x, ~x ∈ Cθ .

(H3) Let σ ∈ APT (RL02(Ω, L2(Ω,H))) and let {Iix(ti), i ∈ Z}
be a square-mean piecewise almost periodic sequence
satisfying

E Ii x( ) − Ii y( )���� ����2 ≤MIE x − y
���� ����2.

for some positive constant MI.
Recall the notion of a mild solution for Eq. 1.

Definition 3.1. An F t-progressive process {x(t)}t∈R is called a
mild solution of the system (1) on R if it satisfies the corresponding
stochastic integral equation

x t( ) � S t( )x0 + ∫t

t0

S t − s( )b s, xs( )ds

+∫t

t0

S t − s( )σ s( )dBH s( )
+ ∑

t0 < t< ti
S t − ti( )Ii x ti( )( ), (7)

for all t ≥ t0 and for each t0 ∈ R.

Theorem 3.1. Let (H1) − (H3) be satisfied. Then, (1) has a
unique square-mean piecewise almost periodic mild solution
whenever

ΘdM2Mb

c2
+ M2MI

1 − e−cα( )2 < 1. (8)

Consider the following equation:

x t( ) � ∫t

−∞
S t − s( )b s, xs( )ds + ∫t

−∞
S t − s( )σ s( )dBH s( )

+ ∑
ti < t

S t − ti( )Ii x ti( )( ),

with t ≥ t0. It is easy to verify that the above equation is
equivalent to (7). Define the operator L on APT (R, L2(Ω,H))
by

Lx t( ):� ∫t

−∞
S t − s( )b s, xs( )ds

+∫t

−∞
S t − s( )σ s( )dBH s( ) + ∑

ti < t

S t − ti( )Ii x ti( )( )
≡ Φ1 t( ) +Φ2 t( ) + Φ3 t( ),

for all t ∈ R. To prove the theorem, it is sufficient to show that the
next statements hold:

I) Lx(t) is square-mean piecewise almost periodic.
II) L admits a unique fixed point.

Proof of Statement (I)This will be done in two steps.

Step 1. We claim that Lx(t) ∈ UPC.
Let i ∈ Z. By the uniform continuity of S(t), we can see that, for

any ε > 0, there exists a number δ > 0 between 0 and
min {

�
ε
~b

√
,

�
ε
~σ

2H
√

} such that

‖S t″ − t′( ) − I‖2 ≤min
c2ε
~b
,
c2Hε

H2H~σ
,
1 − e−cα( )2ε

~I
{ }, (9)

for all t′, t″ ∈ (ti, ti+1), t′ < t″ as 0 < t″ − t′ < δ, where
~b � 36M2‖b‖2∞, ~σ � 36H(2H − 1)M2‖σ‖2∞, ~I � 9M2‖I‖2∞. It
follows from the inequality |a + b + c|3 ≤ 3(a2 + b2 + c2) that

E‖Lx t′( ) − Lx t″( )‖2 ≤ 3E‖Φ1 t′( ) −Φ1 t″( )‖2
+3E‖Φ2 t′( ) −Φ2 t″( )‖2 + 3E‖Φ3 t′( ) −Φ3 t″( )‖2,

for all t′, t″ ∈ (ti, ti+1), t′ < t″. By the assumptions (H1), (H2), and
(H3), we have that

E‖∫t″

t′
S t″ − s( )b s, xs( )ds‖2 ≤M2 ∫t″

t′
e−c t″−s( )

ds∫t″

t′
e−c t″−r( )E‖b s, xr( )‖2dr
≤M2 t″ − t′( )2 sup

t∈R
E‖b t, xt( )‖2, (10)

and

E‖∫t″

t′
S t″ − s( )σ s( )dBH s( )‖2 ≤H 2H − 1( )M2‖σ‖2∞ ∫t″

t′
e
−
c t″ − s( )

H ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠
2H

≤M2 t″ − t′( )2H sup
t∈R

E‖b t, xt( )‖2,
(11)

for all t′, t″ ∈ (ti, ti+1), t′ < t″. Moreover, we also have that
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E‖∫t′

−∞
S t′ − s( ) − S t″ − s( )[ ]b s, xs( )ds‖2

� E‖∫t′

−∞
I − S t″ − t′( )[ ]S t′ − s( )b s, xs( )ds‖2

≤M2‖I − S t″ − t′( )‖2 ∫t′

−∞
e−c t′−s( )ds∫t′

−∞
e−c t′−r( )E‖b s, xr( )‖2dr

≤M2‖I − S t″ − t′( )‖2c−2 sup
t∈R

E‖b t, xt( )‖2,
(12)

and

E‖∫t′

−∞
S t′ − s( ) − S t″ − s( )[ ]σ s( )dBH s( )‖2

≤H 2H − 1( )M2‖I − S t″ − t′( )‖2

∫t′

−∞
e
−
c t′ − s( )

H ‖σ s( )‖ 1
H

L20
ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

2H

≤H 2H − 1( )M2‖I − S t″ − t′( )‖2‖σ‖2∞
H

c
( )2H

,

(13)

for all t′, t″ ∈ (ti, ti+1), t′ < t″. Combining these with Hölder’s
inequality and (9), we get that

E‖Φ1 t′( ) − Φ1 t″( )‖2 ≤ 2M2

c2
c2ε
~b
‖b‖2∞ + 2δ2M2‖b‖2∞ ≤

ε

9
,

and

E ‖Φ2 t′( ) − Φ2 t″( )‖2

≤ 2H 2H − 1( )M2⎛⎝‖I − S t″ − t′( )‖2‖σ‖2∞
H

c
( )2H

+ ‖σ‖2∞ t″ − t′( )2H⎞⎠≤
ε

9
,

for all t′, t″ ∈ (ti, ti+1), t′ < t″ provided |t″ − t′| < δ. Similarly, by the
assumptions (H1) and (H3) and (9), one can see that

E‖Φ3 t′( ) −Φ3 t″( )‖2 ≤E‖ ∑
ti < t′

S t′ − ti( )Ii x ti( )( )
− ∑

ti < t″
S t″ − ti( )Ii x ti( )( )‖2

≤E‖ ∑
ti < t″

S t′ − ti( )Ii x ti( )( ) − S t″ − ti( )Ii x ti( )( )[ ]‖2

≤M2‖I − S t″ − t′( )‖2 ∑
ti < t′

e−c t′−ti( )⎛⎝ ⎞⎠
∑
ti < t′

e−c t′−ti( )E‖Ii x ti( )( )‖2⎛⎝ ⎞⎠
≤M2‖I − S t″ − t′( )‖2 ∑

ti < t′
e−c t′−ti( )⎛⎝ ⎞⎠2

‖I‖2∞

≤M2‖I − S t″ − t′( )‖2 1
1 − e−cα
( )2‖I‖2∞ ≤

ε

9
,

for all t′, t″ ∈ (ti, ti+1), t′ < t″ provided |t″ − t′| < δ. Thus, we have
shown that the estimate

E‖Lx t′( ) − Lx t″( )‖2 < ε,
holds for all t′, t″ ∈ (ti, ti+1), t′ < t″ provided |t″ − t′| < δ, which
means Lx(t) ∈ UPC.

Step 2. We prove the almost periodicity of Lx(t).
For Φ1(t), let ti < t < ti+1; by (H1), (H2), and Hölder’s

inequality, we have that

E Φ1 t + τ( ) −Φ1 t( )‖ ‖2

� E ∫t+τ

−∞
S t + τ − s( )b s, xs( )ds − ∫t

−∞
S t − s( )b s, xs( )ds

�������
�������
2

� E ∫t

−∞
S t − s( ) b s + τ, xs+τ( ) − b s, xs( )[ ]ds

�������
�������
2

≤E ∫t

−∞
Me−c t−s( ) b s + τ, xs+τ( ) − b s, xs( )‖ ‖ds( )2

≤
M2

c
∑i−1

j�−∞
∫tj+1−η

tj+η
e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds⎛⎝

+ ∑i−1
j�−∞

∫tj+η

tj

e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds

+ ∑i−1
j�−∞

∫tj+1

tj+1−η
e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds

+∫ti+η

ti

e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds),
where η � min {ε, α2}. By Lemma 2.1 and (H2), we find that for
any ε > 0 and i ∈ Z, there exists a real number l(ε, Λ) > 0 such
that every interval of length l(ε, Λ) contains at least a constant
τ and

E b t + τ, xt+τ( ) − b t, xt( )‖ ‖2 < ε, ∀t ∈ R,

for each x ∈ Λ, |t − ti| > ε, since b ∈ APT (R, L2(Ω,H)), where
Λ ⊂ Cθ is compact.

For s ∈ [tj + η, tj+1 − η], j ∈ Z, j ≤ i, t − s ≥ t − ti + ti − (tj+1 − η) ≥
t − ti + α(i + j − 1) + η, we have

∑i−1
j�−∞

∫tj+1−η

tj+η
e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds

≤ ε ∑i−1
j�−∞

∫tj+1−η

tj+η
e−c t−s( )ds≤

ε

c
∑i−1

j�−∞
e−c t−tj+1+η( )

≤
ε

c
∑i−1

j�−∞
e−cα i−j+1( ) ≤ ε

c 1 − e−cα( ).
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For s ∈ [tj, tj + η], j ∈ Z, j≤ i, by the mean value theorem of
integral, we get that

∑i−1
j�−∞

∫tj+η

tj

e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds

≤ 2 sup
s∈R

E‖b s, xs( )‖2 ∑i−1
j�−∞

∫tj+η

tj

e−c t−s( )ds≤ 2‖b‖2∞εecη

∑i−1
j�−∞

e−c t−tj( )

≤ 2‖b‖2∞εecηec t−ti( ) ∑i−1
j�−∞

e−cα i−j( ) ≤ 2‖b‖2∞e
c
2

1 − e−cα
ε.

Similarly, we can show that

∑i−1
j�−∞

∫tj+1

tj+1−η
e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds≤C1ε,

∫ti+η

ti

e−c t−s( )E‖b s + τ, xs+τ( ) − b s, xs( )‖2ds≤C2ε,

whereC1,C2 are two positive constants. Thus, we have introduced
the next estimate:

E Φ1 t + τ( ) − Φ1 t( )‖ ‖2 <N1ε,

where N1 is a positive constant, which implies that Φ1(t) is
square-mean piecewise almost periodic.

We now show that Φ2(t) is square-mean piecewise almost
periodic. Recall that t1σ(t) is piecewise almost periodic if for
each ε > 0 there exists a real number l(ε) > 0 such that the
estimate

σ s + τ( ) − σ s( )‖ ‖2 < ε,∀t ∈ R, |t − ti|> ε, i ∈ Z (14)

holds for every interval of length l(ε) containing a number τ. By
using (H1) and the computation of fBm, we have

E Φ2 t + τ( ) −Φ2 t( )‖ ‖2

� E ∫t+τ

−∞
S t + τ − s( )σ s( )dBH s( ) − ∫t

−∞
S t − s( )σ s( )dBH s( )

�������
�������
2

� E ∫t

−∞
S t − s( )σ s + τ( )dBH s + τ( ) − ∫t

−∞
S t − s( )σ s( )dBH s( )

�������
�������
2

� E ∫t

−∞
S t − s( ) σ s + τ( ) − σ s( )[ ]d~BH

s( )
�������

�������
2

� H 2H − 1( )∑∞
n�1
∫t

−∞
∫t

−∞
S t − u( ) σ u + τ( ) − σ u( )[ ]Q1

2en
����� �����

× S t − v( ) σ v + τ( ) − σ v( )[ ]Q1
2en

����� ����� · u − v| |2H−2dudv

≤H 2H − 1( )M2∑∞
n�1
∫t

−∞
∫t

−∞
e−c t−u( ) σ u + τ( ) − σ u( )[ ]Q1

2en
����� �����

× e−c t−v( ) σ v + τ( ) − σ v( )[ ]Q1
2en

����� ����� · u − v| |2H−2dudv

≤H 2H − 1( )M2 ∫t

−∞
e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖L02( ) 1

Hds( )2H

.

Furthermore, by Hölder’s inequality, we have

E Φ2 t + τ( ) − Φ2 t( )‖ ‖2

≤H 2H − 1( )M2 ∫t

−∞
e

−c t − s( )
2H − 1 ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

2H−1
2H

∫t

−∞
e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds( )

≤H 2H − 1( )M2 2H − 1
c

( )2H−1
2H

∑i−1
j�−∞

∫tj+1−η

tj+η
e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds⎛⎝

+ ∑i−1
j�−∞

∫tj+η

tj

e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds

+ ∑i−1
j�−∞

∫tj+1

tj+1−η
e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds

+∫ti+η

ti

e−c t−s( ) σ s + τ( ) − σ s( )‖ ‖2L02ds)⎞⎠,
where η � min {ε, α2}. In the same way as that of handling Φ1(t),
one can introduce the estimate

E Φ2 t + τ( ) − Φ2 t( )‖ ‖2 <N2ε,

where N2 is a positive constant, and hence Φ2(t) is piecewise
square-mean almost periodic.

For Φ3(t) � ∑ti < tS(t − ti)Ii(x(ti)), i ∈ Z, let βi � Ii(x(ti)).
For ti < t ≤ ti+1, |t − ti| > ε, |t − ti+1|> ε, i ∈ Z, by (2), one
has ti+q+1 > t + τ > ti+q. From (H3), it follows that βi is a square-
mean almost periodic sequence, for any ε > 0; there exists such
a natural number N � N(ε) that, for an arbitrary k ∈ Z, there is
at least one integer p > 0 in the segment [k, k + N] such that the
inequality

E‖βi+p − βi‖2 < ε,

holds for all i ∈ Z. We get

E Φ3 t + τ( ) −Φ3 t( )‖ ‖2

� E ∑
ti < t+τ

S t + τ − ti( )βi − ∑
ti < t

S t − ti( )βi
���������

���������
2

≤E S t − ti( ) βi+q − βi( )����� �����2
≤M2 ∑

ti < t
e−c t−ti( ) ∑

ti < t

e−c t−ti( )E‖βi+q − βi‖2

≤
M2ε

1 − e−cα( )2,

which implies that Φ3(t) ∈ APT (R, L2(Ω,H)). Thus, we have
proved that Lx(t) ∈ APT (R, L2(Ω,H)) and Lx(t) is square-
mean piecewise almost periodic.

Proof of Statement (II). Given B � {u ∈ APT (R, L2(Ω,H))}
and assuming that x(t), y(t) ∈ B are both almost periodic
solutions of (1) and x(t) ≠ y(t), then we have
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E‖Lx t( ) − Ly t( )‖2
� E ∫t

−∞
S t − s( ) b s, xs( ) − b s, ys( )[ ]ds�������
+∑

ti < t
S t − ti( ) Ii x ti( )( ) − Ii y ti( )( )[ ]‖2

≤ 2 E ∫t

−∞
S t − s( ) b s, xs( ) − b s, ys( )[ ]ds�������

�������
2(

+E ∑
ti < t

S t − ti( ) Ii x ti( )( ) − Ii y ti( )( )[ ]
���������

���������
2

)
≡ 2 A1 + A2( ).

From (H1), (H2), (H3) and the Cauchy-Schwarz inequality, we
have that

A1 ≤E ∫t

−∞
M2e−2c t−s( ) b s, xs( ) − b s, ys( )���� ����ds( )2

≤ ∫t

−∞
M2e−c t−s( )ds( ) ∫t

−∞
e−c t−s( )E b s, xs( ) − b s, ys( )���� ����2ds( )

≤
M2

c
∫t

−∞
e−c t−s( )MbE xs − ys

���� ����2Cθds
≤
M2

c2
Mb sup

r∈R
E x r( ) − y r( )���� ����2 � M2Mb

c2
x − y
���� ����2∞,

and

A2 ≤E ∑
ti < t

M2e−2c t−ti( ) Ii x ti( )( ) − Ii y ti( )( )[ ]
���������

���������
2

≤ ∑
ti < t

M2e−c t−ti( )⎛⎝ ⎞⎠ ∑
ti < t

e−c t−ti( )E Ii x ti( )( ) − Ii y ti( )( )���� ����2⎛⎝ ⎞⎠
≤

M2

1 − e−cα
∑
ti < t

e−c t−ti( )MIE x ti( )( ) − y ti( )( )���� ����2⎛⎝ ⎞⎠
≤

M2MI

1 − e−cα( )2 supr∈R
E x r( ) − y r( )���� ����2 � M2MI

1 − e−cα( )2 x − y
���� ����2∞.

It follows that

E‖Lx t( ) − Ly t( )‖2 ≤Θ x − y
���� ����2∞,

for each t ∈ R, which implies that

‖Lx t( ) − Ly t( )‖∞ ≤
��
Θ2

√
x − y
���� ����∞.

This means that L is a contraction when (8) holds and
statement (II) follows.

4 ASYMPTOTIC STABILITY

In this section, we are interested in the asymptotical stability of
the almost periodic mild solution to (1) with t0 � 0. For
convenience, we rewrite the equation as follows:

dx t( ) � Ax t( ) + b t, xt( )[ ]dt + σ t( )dBH t( ), t ∈ t0,∞[ ), t≠ ± ti i ∈ Z,
△x ti( ) � x t+i( ) − x t−i( ) � Ii x ti( )( ), i ∈ Z,
xt0 � ξ � ξ t( ) : − θ ≤ t≤ 0{ }.

⎧⎪⎨⎪⎩
(15)

Lemma 4.1. ([30]). Let a nonnegative piecewise continuous
function t1v(t) satisfy the inequality

v t( )≤C + ∫t

t0

u σ( )v σ( )dσ + ∑
t0 < σi < t

αiv σ i( ),

for t ≥ t0, where C ≥ 0, u(σ) > 0, αi ≥ 0, i ∈ Z, and σ i, i ∈ Z are the
first kind discontinuity points of the function v. Then, the following
estimate holds:

v t( )≤C ∏
t0 < σi < t

1 + αi( )e∫t

t0
u σ( )dσ

.

Theorem 4.1. Assume that (H1) − (H3) hold. The almost periodic
solutions to (15) are asymptotically stable in the square-mean
sense if

1
α
ln 1 + 3M2MI

1 − e−cα
( ) − c + 3M2Mb

c
< 0, (16)

Proof. Let x(t) and x*(t) be two square-mean piecewise almost
periodic mild solutions of (15); we then have that

E x t( ) − x∗ t( )‖ ‖2 � E S t( ) ξ − ξ∗[ ] + ∫t

0
S t − s( ) b s, xs( ) − b s, x∗

s( )[ ]ds�������
+ ∑

0<ti < t
S t − ti( ) Ii x ti( )( − Ii x∗ ti( )( )[ ]‖2,

for all t ≥ 0. By using Cauchy–Schwartz’s inequality, Fubini’s
theorem, and assumptions (H1) − (H3), we deduce that

E x t( ) − x∗ t( )‖ ‖2 ≤ 3E S t( ) ξ − ξ∗[ ]���� ����2 + 3E ∫t

0
S t − s( ) b s, xs( ) − b s, x∗

s( )[ ]ds�������
�������
2

+3E ∑
0<ti < t

S t − ti( ) Ii x ti( )( )[ − Ii x∗ ti( )( )
���������

���������
2

≤ 3M2e−2ct ξ − ξ∗
��� ���2 + 3E ∫t

0
Me−c t−s( ) b s, xs( ) − b s, x∗

s( )[ ]���� ����ds( )2

+3E ∑
0<ti < t

Me−c t−ti( ) Ii x ti( )( )[ − Ii x∗ ti( )( )
���������

���������
2

≤ 3M2e−ct ξ − ξ∗
��� ���2 + 3∫t

0
M2e−c t−s( )ds∫t

0
e−c t−s( )E b s, xs( ) − b s, x∗

s( )���� ����2ds
+ 3 ∑

0<ti < t

M2e−c t−ti( )⎛⎝ ⎞⎠ ∑
0<ti < t

e−c t−ti( )E Ii x ti( )( ) − Ii x∗ ti( )( )‖ ‖2⎛⎝ ⎞⎠
≤ 3M2e−ct ξ − ξ∗

��� ���2 + 3M2

c
Mb ∫t

0
e−c t−s( ) xs − x∗

s

���� ����2Cθds
+ 3M2

1 − e−cα
MI ∑

0<ti < t

e−c t−ti( )E x ti( ) − x∗ ti( )‖ ‖2⎛⎝ ⎞⎠
≤ 3M2e−ct ξ − ξ∗

��� ���2 + 3M2

c
Mb ∫t

0
e−c t−s( ) sup

0≤r≤s
E x r( ) − x∗ r( )‖ ‖2( )ds

+ 3M2

1 − e−cα
MI ∑

0<ti < t

e−c t−ti( )E x ti( ) − x∗ ti( )‖ ‖2⎛⎝ ⎞⎠,

for t ≥ 0. Multiplying both sides of the above inequality by ect,
we get

ectE x t( ) − x∗ t( )‖ ‖2 ≤ 3M2 ξ − ξ∗
��� ���2

+ 3M2

c
Mb ∫t

0
ecs sup

0≤r≤s
E x r( ) − x∗ r( )‖ ‖2( )ds

+ 3M2

1 − e−cα
MI ∑

0<ti < t

ectiE x ti( ) − x∗ ti( )‖ ‖2⎛⎝ ⎞⎠,

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7831257

Gao and Sun Almost Periodic Solutions to ISDDEs

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


for t ≥ 0, which implies that

sup
0≤s≤t

ecsE x s( ) − x∗ s( )‖ ‖2 ≤ 3M2 ξ − ξ∗
��� ���2 + 3M2

c
Mb ∫t

0

× sup
0≤r≤s

ecsE x r( ) − x∗ r( )‖ ‖2ds

+ 3M2

1 − e−cα
MI ∑

0<ti < t

sup
0≤r≤ti

ecrE x r( ) − x∗ r( )‖ ‖2⎛⎝ ⎞⎠,
for t ≥ 0. Combining this with Lemma 4.1, we get that

sup
0≤s≤t

ecsE x s( ) − x∗ s( )‖ ‖2

≤ 3M2 ξ − ξ∗
��� ���2 ∏

0<ti < t

1 + 3M2

1 − e−cα
MI( )e∫

t

0

3M2

c
Mbdσ

≤ 3M2 ξ − ξ∗
��� ���2 1 + 3M2

1 − e−cα
MI( )

t

α
e

3M2

c
Mbt

,

for t ≥ 0. So,

ectE x t( ) − x∗ t( )‖ ‖2 ≤ 3M2 ξ − ξ∗
��� ���2 1 + 3M2

1 − e−cα
MI( )t

α

e
3M2
c Mbt,

for t ≥ 0. Thus, we get the desired estimate

E x t( ) − x∗ t( )‖ ‖2 ≤ 3M2 ξ − ξ∗
��� ���2 1 + 3M2

1 − e−cα
MI( )t

α

e

3M2

c
Mbt

e−ct

≤ 3M2 ξ − ξ∗
��� ���2e

1
α
ln 1 + 3M2MI

1 − e−cα
( ) − c + 3M2Mb

c
[ ]t

,

and the square-mean piecewise almost periodic solution of (15) is
asymptotically stable in the square-mean sense because of (16).
This completes the proof.

5 AN EXAMPLE

Consider the semilinear impulsive stochastic partial functional
differential equations of the following form:

dv t, x( ) � z2

zx2 v t, x( ) + 2a sin x t − r( )( )sin t[ ]dt
+cos tdBH t( ), t≠ ± ti i ∈ Z,

△x ti( ) � x t+i( ) − x t−i( ) � 2a cos x ti( )( ), i ∈ Z,

v t, 0( ) � v t, π( ) � 0,

xt0 � ξ � ξ s( ): − θ ≤ s≤ 0{ },

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where r is a constant and BH(t) is a fractional Brownian motion.
Denote X � L2(Ω, L2([0, π])) and define A: D(A)4 X→ X given
by A � z2

zx2 with the following domain:

D A( ) � v ·( ) ∈ X: v″ ∈ X, v′ ∈ X are absolutely continous on{
0, π[ ]}.

It is well known that a strongly continuous semigroup {S(t)}t≥0
generated by the operator A satisfies ‖S(t)‖ ≤ e−t, for t ≥ 0. Take

b t, xt( ) � 2a sin xt( )sin t,

and

Ii x ti( )( ) � 2a cos x ti( )( ).
Thus, one has

E‖b t, xt( ) − b t, yt( )‖2 ≤ 4a2‖xt − yt‖2Cθ ,
and

‖Ii x( ) − Ii y( )‖2 ≤ 4a2‖x − y‖2.
Let α � 1. Then, (17) has a square-mean piecewise almost

periodic mild solution, provided that 0< a2 < 1
16 by Theorem 3.1,

and moreover the solution of (17) is asymptotically stable in the
square-mean sense provided that 0< a2 < 1

36 by Theorem 4.1.

6 CONCLUSION

In this article, we have investigated the existence and asymptotic
stability of square-mean piecewise almost periodic mild solutions
for a class of impulsive stochastic delay differential equations
driven by fractional Brownian motion with the Hurst parameter
H ∈ (12, 1) in a Hilbert space. An example is presented to illustrate
our theoretical results. Fractional Brownian motion BH with
H ∈ (0, 12) admits different Wiener integral representation from
fractional Brownian motion withH ∈ (12, 1). It is difficult to get the
square-mean piecewise almost periodic mild solutions of ISDEs
driven by fractional Brownian motion withH ∈ (0, 12) in a Hilbert
space properly due to estimation without moment.
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