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In magnetic reconnection, magnetic lines break and reconnect to change their topology to
a lower-energy state. This process can liberate stored magnetic field energy and
accelerate particles during unsteady explosive events. Here, we report the
observations of the magnetic reconnection and kink instability of plasma jet in single
wire electrical explosion and their effect on propellant ignition. The results showed that the
initial velocity of plasma was ∼2,000 m/s, and when the magnetic reconnection occurred,
the velocity increased by ∼400–∼2,400m/s. The evaluated Alfvén velocity was ∼500m/s,
the Alfvén time was ∼20 µs, and the Lundquist number S � 1.7 × 107. Based on these
experimental results and model, the three-dimensional magnetic field topology and its
evolution process was evaluated and presented. Furthermore, the magnetic reconnection
occurred when its curvature reached a certain value due to the fact that the motion of the
current sheet changes the topology of the magnetic field, and then, the plasma jet was
accelerated and exhausted. The plasma jet angle was ∼50° in experiment 1, and it was
consistent with the calculated results. The resulting magnetic reconnection plays an
important role in propellant ignition, which enhances the ignition ability of wire electrical
explosion. Furthermore, the results represent a key step towards resolving one of the most
important problems of plasma physics and can be used to improve the understanding of
wire array explosion and propellant ignition.
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INTRODUCTION

In the last decades, it has been realized that a class of processes known variously as magnetic
merging, magnetic field annihilation, or magnetic reconnection must be the key to change in
magnetic topology [1–3]. Magnetic reconnection, which is the breaking and topological
rearrangement of magnetic field lines in plasma, occurs everywhere in the universe, in solar
flares, in solar corona, the Earth’s magnetosphere, and laboratory plasmas [4–15]. The laboratory
plasmas mainly include magnetized plasma (16), laser-driven plasma [17], and two-gun plasma
[18]. Furthermore, the most important feature of magnetic reconnection is the acceleration and
heating of plasma particles.

Reference [18] suggested that the magnetic reconnection did not start or proceed in a steady
manner, but rather, there were unsteady periods of time during which magnetic flux was
accumulated and followed by rapid energy dissipation events. In this experiment, two plasma
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guns generated two hydrogen plasma current channels and
embedded in a background magnetic guide field, and then,
the flux ropes were merged and reconnected. Furthermore,
the conversion of magnetic energy in the magnetic
reconnection had also been studied [19, 20]. The results
showed that electron heating occurred outside the electron
diffusion region and that ion acceleration and heating
dominated in a wide region of the exhaust of the
reconnection layer. Approximately 50% of the magnetic
energy was converted to particle energy, and two-thirds of
magnetic energy was transferred to ions and one-third to
electrons.

Recently, laser-driven high-energy-density plasmas have been
used to study magnetic reconnection in the laboratory [17, 21,
22]. In these experiments, by focusing terawatt class lasers onto
solid foils, plasma bubbles were produced and then expanded and
generated megagauss-scale toroidal magnetic fields by the
expansion of two bubbles placed in close proximity.
Subsequently, these drove the reconnection between the self-
generated or externally imposed magnetic fields [5].
Furthermore, many of the prominent fdeatures of
reconnection had been observed in these experiments,
including plasma jets, plasma heating, topological changes of
magnetic field, and plasmoid formation. Until now, no research
has been performed for magnetic reconnection in wire electrical
explosion.

In this paper, we investigate the magnetic reconnection and
kink instability of plasma jets in wire electrical explosion and its
effect on propellant ignition. In addition, based on the
experimental results, the Lundquist number, Alfvén velocity,
Lorentz force, the magnetic field of discharge current, and the
moving plasma are evaluated. The three-dimensional magnetic
field topology and its evolution process is evaluated and
presented. Finally, the effect of propellant ignition is verified
by experiments.

DETAILS OF THE PLASMA EXPERIMENT

Figure 1 shows a schematic diagram of the experimental setup.
A copper wire of 100 μm in diameter and ∼60 mm in length
crossed the gap (the distance ∼50 mm) and connected the anode
and the cathode. The electrodes were made of steel, were
spherical, and had a diameter of 50 mm. The propellant was
located ∼50 mm below the copper wire; the detailed
compositions are listed in Table 1. A magnetic probe
(TIANDUN, TR600) was located above the center of the gap
(the distance ∼30 mm). The pulse power source applied in our
experiments had a total capacitance of 750 μF and an inductance
of 40 μH. The currents were measured by a Pearson 101 type
self-integrated Rogowski coil (0.01 V A-1 and 4 MHz) with a 20-
dB attenuator. The voltages were measured by a high voltage
probe (Tektronix, P6015A, 1,000:1). The surface morphology of
the plasma jet was recorded by a high-speed camera, using a
50,000 frames per second (fps) frequency and 20 μs exposure.
The charging voltage of the pulse power source was 8 kV in the
experiments. A scanning electron microscope (SEM, Keyence
VE-9800S) was used to study the surface conditions of the
propellant after experiments.

According to Ampere’s law, there are two sources for creating
magnetic fields in electrical explosions. One source is the
discharge current, and the other source is the moving plasma.
Due to the instability of plasma, the phenomenon of magnetic
reconnection may occur under the interaction of two magnetic
fields. In addition, the stability and instability of the plasma were
observed in our experiments.

NUMERICAL METHODS

Magnetic reconnection plays a crucial role in fast changing the
magnetic field topology and converting electric and magnetic
energy into the plasma kinetic energy. Here, we presented a
simplified numerical method that ignored thermal energy, which
was ∼10% [23]. The detailed numerical methods are presented in
[4, 19, 23–25].

MHD Equations of Reconnection in
Resistive Magneto-hydrodynamics
The paradigm of a magnetic reconnection can only be
unambiguously formulated within the framework of the
resistive magneto-hydrodynamics [4]. Here, we used the
brevity MHD equations where only the Ohmic dissipation was
retained. It can be written in the form

ztρ + ∇(ρv) � 0, (1)

ztv + (v∇)v � −1
ρ
∇p + 1

ρ
j × B, (2)

where ρ is the plasma density, and v is the plasma velocity.
The plasmamotion was caused by the pressure p gradients and

Lorentz force j × B/c. The relationship between the electric
current density j and the magnetic field B is given by the
equations,

FIGURE 1 | Schematic diagram of the experiment setup.
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j � c

4π
∇ × B, (3)

ztB � −c∇ × E, (4)

∇ · B � 0, (5)

In the ideal MHD limit [26], when the magnetic diffusivity
vm � c2/4πσ vanishes, the magnetic field lines cannot reconnect
due to the Alfvén’s frozen-in theorem, which states that the
magnetic flux through the surface encircled by the contour
moving with the plasma is conserved.

Energy Conversion of Reconnection
Conservation law of electric and magnetic energy into the plasma
kinetic energy is derived from Maxwell Eq. 23,

zu

zt
+ ∇ · S � −E · j, (6)

where the total electric and magnetic energy u � ε0
2 E

2/2 + B2/2μ0,
and Poynting flux S � μ−10 E × B. ε0 is the vacuum dielectric
constant, and μ0 is the permeability of vacuum.

The E · j is an energy source term for plasmas; the converted
energy is distributed as kinetic energy of plasmas.

Based on the method, the magnetic reconnection and its
energy conversion are calculated and discussed in the next
section.

RESULTS AND DISCUSSION

Comparison Between Experiment and
Calculation of Magnetic Reconnection
Figure 2 shows the time series images of plasma jet evolution for
experiment 1. According to the images recorded by high-speed
camera, the velocity of plasma is ∼2,000 m/s in the initial stage.
Subsequently, the phenomenon of the plasma re-acceleration is
obviously observed in Figures 2B–D. At this time, the kink
instability of the plasma occurs. The plasma velocity increases
by ∼ 400 m/s and moves towards the top of the cathode. With the
further development of the discharge process, the
Rayleigh–Taylor instability of plasma gradually formed, as
shown in Figures 2E–H. Our observations are similar to that
in the literature [16, 27, 28]. It is considered to be the
Rayleigh–Taylor instability and kink instability, which is
explained by magnetic reconnection. Figure 3 shows the time

TABLE 1 | The propellant component.

Nitrocellulose (%) Nitroglycerin (%) Hexogen (%) Other components (%)

52 25 20 3

FIGURE 2 | Time-series images of plasma jet evolution for experiment 1. The solid lines show the position of the electrodes in the first image; the plasma
acceleration is observed in Panels (B–D), and the kink instability of plasma is observed in Panels (E, F).
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series images of plasma jet evolution for experiment 2, although
the measured voltage and current curves in experiment 2 were
similar to that in experiment 1, as shown in Figure 4A. However,
the phenomenon of plasma instability was not observed; the
possible reason is that the plasma kink instability did not happen,

or its intensity was not enough to be observed. Figure 4B shows
the magnetic probe signal. The probe signal was enhanced
significantly between 1.5 and 2 ms in experiment 1. It shows
that the magnetic field has been enhanced, and this occurs at the
same time as shown in Figures 2B–D. However, the probe signal

FIGURE 3 | Time-series images of plasma jet evolution for experiment 2. The solid lines show the position of the electrodes in the first image, and the plasma
instability is not observed.

FIGURE 4 | Measured discharge waveform and magnetic probe signal in the experiments. (A) The voltage and current curves of the discharge process. (B) The
magnetic probe signal of the discharge process.
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remained unchanged in experiment 2, which is consistent with
Figure 3.

In magnetic reconnection, an important figure of merit in the
characterization of reconnection environments is the Lundquist
number (23), S � LVA/η, where L is the fundamental plasma scale
lengths, VA is the Alfvén velocity, and η is the collisional
resistivity. In typical solar coronal conditions (23),
S ∼1012–1014; in the Earth’s magnetotail, S ∼1015–1016; and in
a modern tokamak such as JET, S ∼106–108. In our experiment,
the peak voltage is 7 kV and the peak current is 19 kA, the
measured half-peak discharge current is ∼10 kA, and the

variation trend in experiment 1 is consistent with that in
experiment 2, as shown in Figure 4A. The plasma density n
can be evaluated to be ∼2.5 × 1023 m−3, which is similar to that in
electrical explosion experiment [29]. In the discharge process, the
whole magnetic fields are composed of the magnetic field formed
by the discharge current and the magnetic field formed by the
moving plasma to the radial direction. The evaluated magnetic
field of the discharge current is ∼2 T (B � μ0I/2πr). In addition,
according to the radial velocity of the plasma (∼2000 m/s), the
evaluated current is ∼8 kA (I � nesv), and then the evaluated
magnetic field of the moving plasma is ∼1.6 T. Therefore, it can be

FIGURE 5 | Schematic diagram of the formed magnetic field of electrical explosion. (A) The counter-clockwise toroidal magnetic field formed by the axial current.
(B) The plasma and the magnetic field it creates in the electrical explosion; the direction of the magnetic field is opposite on both sides of the plasma. (C) Three-
dimensional magnetic field topological map obtained by superimposing the image (A, B). (D) The distribution of the magnetic lines of force on the slice plane of the
inverted magnetic field region, and this slice plane is parallel to the direction of plasma motion.
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considered that the radial plasma jet is moving in the magnetic
field (∼2T). Furthermore, the evaluated Alfvén velocity is
∼500 m/s ( VA � B/

����
4πρ

√
, ρ is the plasma mass density), the

Alfvén time is ∼20 µs(τA � L/VA), and the evaluated Lundquist
number S � 1.7 × 107. Furthermore, our observations are carried
out in a steady reconnection stage, which lasted ∼1 ms, and
significantly longer than its Alfvén time (∼20 µs) [19].

The electric field between electrodes is ∼20,000 V/m, as
calculated in Figure 4A. The Lorentz force of the moving
plasma in radial is ∼840 N (F � q(E + v × B)), as evaluated by
the data in the direction of the center. However, as the distance
between plasma and axis increases, the Lorentz force decreases.
Furthermore, the Lorentz force changes the direction of plasma
movement and the topological structure of the magnetic field.
Therefore, the magnetic reconnection can occur under specific
conditions. For example, the plasma jet undergoes a kink
instability in agreement with the prediction of
Kruskal–Shafranov theory [30]: the jet is unstable to kinking
when μ0I/ψ > 4π/L, where L is the jet length, I is the current
measured at the electrodes, and ψ is the poloidal magnetic flux.
We assumed that the magnetic field region is on the order of
millimeter, and the plasma jet length is on the order of centimeter.
Accordingly, the evaluated μ0I/ψ ≈ 2,000 and 4π/L ≈ 200.
Therefore, it is possible that the kink instability of plasma
occurs in the experiment according to the theoretical analysis.

Overall, the magnetic reconnection and kink instability and
Rayleigh–Taylor instability of plasma were observed. When the
magnetic reconnection occurs, a large part of magnetic field
energy transforms into kinetic energy of plasma jet [19], and
the plasma jet velocity increases by ∼ 400 m/s.

Topology of Coupled Magnetic Field
Based on the experiment and numerical method, the topological
structure of magnetic field was drawn. Figure 5 shows the
schematic diagram of the formed magnetic field of electrical
explosion. Obviously, the magnetic field was formed by axial
current and radial moving plasma in the electrical explosion.
Figure 5A shows the magnetic field topology formed by the axial
current. According to Ampere’s law, the magnetic field presents a
counter-clockwise toroidal structure, and its value can be
evaluated by B � μ0I/2πr. As shown in Figure 5B, when an
electrical explosion occurs, the plasma moves in all directions.
However, to simplify the process, we assume that the plasma is
moving outward from the center. Thus, the plasma jet can be
regarded as an infinite number of current sheets due to its own
motion, each of which forms a toroidal magnetic field. On either
side of the plasma jet, the entire magnetic field is superimposed by
the magnetic field formed by each current sheet, in opposite
directions. Therefore, on the left side of the plasma jet, the
direction of the entire magnetic field is counter-clockwise. On
the right side of the plasma jet, the direction of the entire
magnetic field is clockwise.

Figure 5C shows the three-dimensional magnetic field
topological map obtained by superimposing Figures 5A,B.
Obviously, on the left side of the plasma jet, the entire
magnetic field intensity increased by superimposing the
magnetic field in the same direction. On the right side of the

plasma jet, the entire magnetic field intensity decreased by
superimposing the magnetic field in the reverse direction. In
the isosurface, it can be found that the magnetic field on the right
side of the central location is small, and this region is fan-shaped
on the slice plane. Under the effect of Lorentz force, the plasma
moves to the right, resulting in the transformation of the
magnetic field topology. The region of potential magnetic
reconnection is shown in Figure 5C. In addition, since the
magnetic field direction in other regions is the same, magnetic
reconnection will not occur.

Figure 5D shows the distribution of the magnetic lines of
force on the slice plane of the inverted magnetic field region, and
this slice plane is parallel to the direction of plasma motion. The
direction of the plasma motion is perpendicular to the axial
current direction. Therefore, with the movement of plasma, the
three-dimensional magnetic field topology and the distribution
of the magnetic lines of force change. When the plasma is
disturbed, magnetic reconnection occurs due to the instability
of the plasma.

Evolution of Magnetic Reconnection
Topology
Figure 6 shows the evolution of calculated magnetic field
topology with plasma motion. The angle between the moving
plasma and the axis is 75°, 60°, 45°, and 30°, corresponding to
Figures 6A–D, respectively. The distribution of the magnetic
lines of force in Figures 6E–H corresponds to Figures 6A–D,
respectively. As the plasmamoves, the topological structure of the
magnetic field changes, especially in the region where the plasma
moves; the right side region of the plasma changes to the left side
region. Because the magnetic fields on both sides of the plasma
are in opposite directions, the magnetic field in this region
suddenly changes direction, which may be the reason for
magnetic reconnection.

As shown in Figures 6A–D, as the angle between the moving
plasma and the axis decreases, the area in the direction of the
same magnetic field increases and that in the direction of the
opposite magnetic field decreases. In addition, the moving plasma
presents a cone shape, and the area of potential magnetic
reconnection decreases. Figures 6E–H show the distribution of
magnetic lines of force. As the angle between the moving plasma
and the axis decreases, the curvature of the magnetic lines of force
increases. Due to the elasticity of magnetic lines, the magnetic
reconnection occurs when its curvature reaches a certain value,
and the plasma jet is accelerated and exhausted. In this
experiment, the motion of the current sheet changes the
topology of the magnetic field, which leads to magnetic
reconnection. Obviously, the plasma jet has two opposite
directions of exhaust, as shown in Figures 6E–H. However,
according to the distribution of magnetic field topology, the
direction that parallels to the plasma jet motion direction is
easier to exhaust.

In addition, in experiment 1, the plasma jet angle is ∼50°, as
shown in Figure 2. The calculation results are consistent with
those in Figures 6B, C. This shows that the proposed theory
explains the experimental phenomenon well.
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Effect on Propellant Ignition
The surface conditions of the propellant are examined by a SEM
after the experiments. Figure 7 shows the surface conditions of
the propellant after being ignited. In experiment 1, obviously,
more, larger, and deeper circular pits are illustrated in the
image, as shown in Figure 7A. The reason is that magnetic
reconnection increases the temperature and the velocity of
plasma (from ∼2,000 to ∼2,400 m/s, as shown in Figures 2
and 3), causing more particles to form, thus increasing the
impact capacity of plasma on the propellant surface. In
experiment 2, compared with Figure 7A, the circular pits
formed are fewer and shallower in the image, as shown in
Figure 7B. Therefore, the resulting magnetic reconnection
plays an important role in propellant ignition, which
enhances the ignition ability of wire electrical explosion.

The results in this paper are useful for wire array explosion and
propellant ignition. For example, in wire array explosion, the
exhausted direction of magnetic reconnection can be controlled
by designing the location of the wires properly, and the collision
energy of plasma can be further improved. In propellant ignition,
magnetic reconnection can increase the temperature and velocity
of plasma and further improve the ignition ability of wire electric
explosion.

CONCLUSION

In this paper, we investigated the magnetic reconnection and kink
instability of plasma jet in single wire electrical explosion and
their effect on propellant ignition. The experiment was carried

FIGURE 6 | The evolution of magnetic field topology with plasma motion. (A–D) Three-dimensional magnetic field topological map, the angle between the moving
plasma, and the axis of 75°, 60°, 45°, and 30°, corresponding to Panels (A–D), respectively. (E–H) Distribution of the magnetic lines of force on the slice plane of the
inverted magnetic field region, which is parallel to the direction of plasma motion. In addition, Panels (E–H) correspond to Panels (A–D) respectively.

FIGURE 7 | The surface conditions of the propellant after being ignited. (A) Experiment 1. (B) Experiment 2.
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out under the charging voltage of 8 kV. Furthermore, based on
the experimental results, the Lundquist number, Alfvén velocity,
Lorentz force, the magnetic field of discharge current, and the
moving plasma were evaluated. The three-dimensional magnetic
field topology and its evolution process was evaluated and
presented. Finally, the effect on propellant ignition was
verified by experiments.

The initial velocity of plasma was ∼2,000 m/s, and when the
magnetic reconnection occurred, the velocity increased by ∼ 400
to ∼2,400 m/s. The probe signal was significantly enhanced at
1.5–2 ms in experiment 1. In addition, the evaluated Alfvén
velocity was ∼500 m/s, the Alfvén time was ∼20 µs, and the
Lundquist number S � 1.7 × 107. Furthermore, the three-
dimensional magnetic field topology and its evolution process
was evaluated, presented, and analyzed. Due to the motion of the
current sheet changes the topology of the magnetic field, the
magnetic reconnection occurs when the curvature of magnetic
lines reached a certain value. The direction that parallels to the
plasma jet motion direction is easier to exhaust. The plasma jet
angle is ∼50° in experiment 1, which is consistent with the

calculated results. Magnetic reconnection enhances the ignition
ability of wire electrical explosion to the propellant.

The results can be used to improve the understanding of wire
array explosion and propellant ignition. Furthermore, we believe
that the present results represent a key step towards resolving one
of the most important problems of plasma physics: how is the
plasma jet acting on the wire array explosion.
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