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Identical hard spheres in cylindrical confinement exhibit a rich variety of densest-packed
columnar structures. Such structures, which generally vary with the corresponding
cylinder-to-sphere diameter ratio D, serve as structural models for a variety of
experimental systems at the micro- or nano-scale. In this research, the electrical
conductivity as a function of D has been studied for four different types of such
columnar structures. It was found that, for increasing D, the electrical conductivity of
each type of structures decreases monotonously, as a result of the system’s resistive
components becoming more densely packed along the long axis of the cylindrical space.
However, there exists a discontinuous rise in the system’s electrical conductivity at D � 1 +��
3

√
/2 (discontinuous zigzag-to-single-helix transition) and D � 2 (discontinuous double-

helix-to-double-helix transition), respectively, as a result of the establishment of additional
conducting paths upon an abrupt increase in the number of inter-particle contacts. This is
not the case for the continuous single-helix-to-double-helix transition at D � 1 + 4

��
3

√
/7.

The results, which tell us how the system’s electrical conductivity can be tuned through a
variation of D, could serve as a guide for the development of quasi-one-dimensional
materials with a structurally tunable electrical conductivity.
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1 INTRODUCTION

Packing problems [1], which concern the optimal arrangements of objects in space, have historically
been of great interest to both physicists and mathematicians. Such problems not only pose sufficient
intellectual challenges for mathematicians [2], but they also yield solutions that physicists can use as
theoretical models to understand the structures of matter [3–6]. Prominent examples include the
application of the face-centered cubic (fcc) and hexagonal close-packed (hcp) structures as models
for bulk crystal structures of solids [4] and the application of random close packings as models for
bulk amorphous structures of liquids [3, 6]. In contrast to these examples for bulk systems, the past
few decades have seen an uprising interest in the packings of particles in confined settings, such as
those of particles confined within a two-dimensional box [7, 8], within a parallel strip [9–14], within
a spherical container [15, 16], within a cylindrical container [17–36], onto a cylindrical surface [37],
between parallel plates [38–46], within a wedge cell [47, 48], or within a flexible container [49]. In
particular, for packings of identical spheres in cylindrical confinement, more than fifty densest-
packed columnar structures have been discovered within a relatively narrow range of the cylinder-to-
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sphere diameter ratio D [17, 22, 24, 29, 30] where, intriguingly,
many of such columnar structures exhibit unexpected chirality
despite the simplicity of the confining cylindrical geometry. On
the other hand, such columnar structures of spheres have been
observed for a variety of experimental systems at both the micro-
[50–56] and the nano-scale [57–63]. This problem of confined
packings has recently been extended to shape-anisotropic
particles [13, 14, 36, 37], for which a variety of confinement-
induced crystal structures with specific orientational order have
been discovered.

The research described above focussed on the structural
aspects of the corresponding densest-packed arrangements of
particles. For each densest-packed structure, those studies mainly
involved a characterisation of the packing fraction and contact
network and an investigation of the underlying mechanism of
confinement-induced geometric frustration. Not only have the
theoretical findings helped us understand better the structural
properties of some existing experimental systems; they can also
serve as a basis for the design of quasi-one-dimensional materials
with designated physical properties. From the viewpoint of
materials design, however, it is also important to understand
how the macroscopic mechanical, electrical or optical properties
of a system depend on the microscopic arrangements of its
constituents, because an understanding of such structure-
property relationships would allow those macroscopic
properties to be tailored via a controlled microscopic assembly
of the system’s constituents. Following this spirit, we have
investigated how the electrical conductivity of a densest-
packed columnar structure of identical spheres in cylindrical
confinement depends on the underlying microscopic
arrangement of spheres and how this property varies with the
cylinder-to-sphere diameter ratio D. The structures investigated
were the zigzag structures at D ∈ (1, 1 + �

3
√

/2), the single-helix
structures at D ∈ (1 + �

3
√

/2, 1 + 4
�
3

√
/7), the double-helix

structures at D ∈ (1 + 4
�
3

√
/7, 2), and the double-helix

structures at D ∈ (2, 1 + 3
�
3

√
/5). Based on a resistor-network

model [64–68] and certain symmetry considerations, an analytic
expression that describes the electrical conductivity σ as a
function of D has been derived for each type of structures.
The results, which tell us how the system’s electrical
conductivity can be tuned through a variation of D, could
serve as a guide for the development of quasi-one-dimensional
materials with a structurally tunable electrical conductivity.

This paper is organized as follows: In Section 2, we introduce
the resistor-network model [67] as employed in our study of
electrical conductivity. In Sections 3–5, we present an analytic
derivation of the electrical conductivity σ as a function of D for,
respectively, the zigzag structures at D ∈ (1, 1 + �

3
√

/2) (Section
3), the two types of helical structures at D < 2 (Section 4), and the
double-helix structures at D ∈ (2, 1 + 3

�
3

√
/5) (Section 5). In

Section 6, we summarize our results and discuss their implications.

2 RESISTOR-NETWORK MODEL

For any pair of touching spheres with a potential difference Δψ
and with a current I that flows from one sphere to the other, the

inter-particle resistance R, which takes into account the bulk
resistance of each sphere and the contact resistance between the
spheres, is defined as

R ≡
Δψ
I

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣, (1)

and is modelled by a resistor that joins the centres of the spheres.
The contact resistance is thought to be arising from a negligibly
small overlap between the spheres. Let dc be the cross-sectional
diameter of the overlap volume and d the diameter of either
sphere. The ratio dc/d is then a measure of the extent of inter-
sphere overlap. Figure 1 shows that, as this ratio decreases, the
inter-particle resistance R increases monotonously. We assume
the value of dc/d to be sufficiently small such that, while the value
of R remains finite, any uncertainty in the value of D can be
ignored.

In principle, for such columnar structures, the electrical
conductivity σ as a function of D can be derived by
considering the spatial distribution of resistors within the
confining cylindrical space. For any assembly of identical
spheres, we take the value of R to be the same for any pair
of touching spheres. Since our focus is on the conducting
behaviour of the confined spheres, we simplify our problem
by assuming all other regions of the confining cylindrical space
to be electrically insulating, such that we only need to be
concerned with the conducting paths across the assembly of
spheres. For each type of structures, we replace each pair of
touching spheres by a resistor, identify the corresponding
spatial distribution of resistors, and apply Kirchhoff’s laws
with some symmetry considerations to derive an analytic
expression for the electrical conductivity of an infinitely long
structure.

FIGURE 1 | Plot of the inter-particle resistance R as a function of dc/d for
a pair of touching spheres, where dc is the cross-sectional diameter of the
overlap volume and d the diameter of either sphere. The results were obtained
from COMSOL simulations. As the ratio dc/d decreases, the inter-
particle resistance R increases monotonously. In our resistor-network model,
we assume the value of dc/d to be sufficiently small such that, while the value
of R remains finite, any uncertainty in the value of D can be ignored.
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3 ZIGZAG STRUCTURES
AT D ∈ (1,1+ ��

3
√

/2)
Consider the zigzag structures at D ∈ (1, 1 + �

3
√

/2), and assume
each of them to be infinitely long. Figure 2 illustrates such a zigzag
structure and the corresponding zigzag chain of resistors. At D < 2,
the spheres of any columnar structure are distinguishable in terms of
their vertical z-positions along the long axis of the cylindrical space.
Taking advantage of this, we have indexed the spheres of the
abovementioned zigzag structure in ascending order of their
vertical positions. Any sphere i in such a zigzag structure is only
in contact with its two nearest neighbours, i.e. spheres (i − 1) and (i +
1), such that the corresponding coordination number (C. N.) is 2.
For any pair of neighbouring spheres, the centre-to-centre
separation along the long axis of the cylindrical space is given by

(Δz)D � ��������
D(2 −D)√

, (2)

if the diameter of each sphere is taken to be unity. The electrical
conductivity σ as a function ofD can be derived by considering an
equivalent linear chain of resistors, in which each resistive
component occupies a cylindrical space of length (Δz)D and
cross-sectional area AD � π(D/2)2:

σ ′ ≡
πR

4
( )σ �

�����
2 −D

√
D3/2

(3)

where, for increasing D, the numerator and denominator of this
expression for the rescaled conductivity σ′ decreases and
increases, respectively. This corresponds to a monotonous
decrease in σ′, as the columnar structure becomes thicker in
diameter and the resistors inside become more densely packed
along the long axis of the cylindrical space.

4 SINGLE- AND DOUBLE-HELIX
STRUCTURES AT D < 2

The single-helix structures at D ∈ (1 + �
3

√
/2, 1 + 4

�
3

√
/7) and

the double-helix structures at D ∈ (1 + 4
�
3

√
/7, 2) are different

from the zigzag structures at D ∈ (1, 1 + �
3

√
/2) in terms of

their networks of inter-particle contacts, and for this reason we
classify the zigzag-to-single-helix transition atD � 1 + �

3
√

/2 as
a discontinuous structural transition. On the other hand, these
two types of helical structures at D < 2 share the same network
of inter-particle contacts, and therefore we classify the single-

FIGURE 2 | Schematic illustration of a zigzag structure at
D ∈ (1, 1 + ��

3
√

/2) and the corresponding zigzag chain of resistors. For any
pair of touching spheres, the inter-particle resistance R, which takes into
account the bulk resistance of each sphere and the contact resistance
between the spheres, is modelled by a resistor that joins the centres of the
spheres. The diameter of the confining cylindrical tube is just equal to D, if the
diameter of each sphere is taken to be unity. The spheres are indexed in
ascending order of their vertical z-positions.

FIGURE 3 | Schematic illustration of (A) a single-helix structure at
D ∈ (1 + ��

3
√

/2, 1 + 4
��
3

√
/7) and (B) a double-helix structure at

D ∈ (1 + 4
��
3

√
/7, 2), as well as (C) the corresponding electrical circuit (i.e. a

resistor network not drawn to scale) for either structure. The spheres in
each structure are indexed in ascending order of their vertical z-positions. As
shown in Panel (C), this electrical circuit, which corresponds to the presence
of triplets of mutually touching spheres across each structure, can be
presented in two equivalent versions that are mirror images of each other.
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helix-to-double-helix transition at D � 1 + 4
�
3

√
/7 as a

continuous structural transition. In each of those helical
structures, be it a single- or a double-helix structure, each sphere
is not only in contact with its two nearest neighbours but also in
contact with its two next-nearest neighbours [e.g., sphere i in contact
with spheres (i ± 1) and (i ± 2)] such that, for a coordination number
of 4, there exist triplets of mutually touching spheres, in the form of
{1, 2, 3}, {2, 3, 4}, {3, 4, 5}. . ., across the structure.

As illustrated in Figure 3, with additional resistors joining
pairs of next-nearest neighbours, the resistor network of any
single- or double-helix structure at D < 2 is no longer a simple
chain of resistors and is therefore different from that of a zigzag
structure. It reflects the presence of triplets of mutually touching
spheres in the structure. But based on some symmetry
considerations for an infinitely long structure, an equivalent
linear chain of resistors can be derived from this more
complex resistor network. The electrical conductivity σ as a
function of D can then be derived be considering the length
and cross-sectional area of the cylindrical space occupied by each
resistive component in this equivalent circuit.

Consider the electrical circuit on the left-hand side of
Figure 3C, and let Ii→j be the current that flows from sphere i
to sphere j. Since this circuit is infinitely long, the circuital
environment (i.e., the way a sphere is connected to all other
components in the circuit) of sphere i ∈ (−∞, +∞) is the same for
respectively all even values of i and all odd values of i as a result of
translational symmetry across the circuit. On the other hand, the
equivalent mirror-symmetric circuit on the right-hand side of
Figure 3C implies that the circuital environment is the same for
all spheres regardless of whether their indices i are odd or even. It
follows that the symmetry conditions

Ii→(i+1) � I(i+1)→(i+2) (4)

and

Ii→(i+2) � I(i+2)→(i+4) (5)

apply to any value of i. According to Kirchhoff’s current law, the
total current that flows into any sphere i is equal to the total
current that flows out of the same sphere:

Itotal � I(i−2)→i + I(i−1)→i � Ii→(i+1) + Ii→(i+2). (6)

This condition also follows naturally from the symmetry
conditions I(i−1)→i � Ii→(i+1) and I(i−2)→i � Ii→(i+2), as described
respectively by Eqs 4 and 5. On the other hand, let Vi→j � Ii→jR be
the voltage across sphere i and sphere j. According to Kirchhoff’s
voltage law, the voltage across any pair of spheres is path-
independent, so that we can link up the voltages across
nearest neighbours and those across next-nearest neighbours
as follows:

Ii→(i+2)R � Ii→(i+1)R + I(i+1)→(i+2)R. (7)

A combination of Eqs 4 and 7 yields the following relation
between Ii→(i+1) and Ii→(i+2):

Ii→(i+2) � 2Ii→(i+1), (8)

such that the total current that flows across any sphere i is equal to

Itotal � 3Ii→(i+1). (9)

For any integerN, the voltage across sphere i and sphere (i +N) is
a sum of the voltages across nearest neighbours:

Vi→(i+N) � NVi→(i+1) � NIi→(i+1)R. (10)

This voltage can also be expressed in terms of the effective
resistance Ri,(i+N) between sphere i and sphere (i + N):

Vi→(i+N) � 3Ii→(i+1)Ri,(i+N), (11)

where, according to Eq. 9, 3Ii→(i+1) is the total current that flows
across either sphere. A combination of the above expressions for
Vi→(i+N) reveals a simple proportionality between Ri,(i+N) and R:

Ri,(i+1) � Ri,(i+N)
N

� R

3
. (12)

It follows that the electrical conductivity of any single- or
double-helix structure at D < 2 can be obtained from an
equivalent linear chain of resistors in which the resistance of
each component is equal to R/3. For any single-helix structure
at D ∈ (1 + �

3
√

/2, 1 + 4
�
3

√
/7), each resistive component in the

equivalent linear chain of resistors occupies a cylindrical
space of length [35].

(Δz)D �
����������������
1 +

�
3

√
2

( ) −
�
3

√
2

D

√
(13)

and cross-sectional area AD � π(D/2)2, so that the electrical
conductivity σ as a function of D is given by

σ ′ ≡
πR

4
( )σ � 3�

2
√

��������������(2 + �
3

√ ) − �
3

√
D

√
D2

. (14)

For the double-helix structures at D ∈ (1 + 4
�
3

√
/7, 2), a similar

derivation using the condition [35].

(Δz)D � 1
2

�
2

√
���������������
1 +

����������
1 − (D − 1)2

√√
(15)

yields the following expression for the electrical conductivity as a
function of D:

σ ′ ≡
πR

4
( )σ � 3

2
�
2

√

���������������
1 +

����������
1 − (D − 1)2

√√
D2

. (16)

Like the case of zigzag structures, the rescaled conductivity σ′
of either type of helical structures at D < 2 decreases
monotonously for increasing D, as the numerator and
denominator in the corresponding expression decreases and
increases, respectively.

5 DOUBLE-HELIX STRUCTURES
AT D ∈ (2,1+ 3 ��

3
√

/5)
For the double-helix structures at D ∈ (2, 1 + 3

�
3

√
/5), the

electrical conductivity σ as a function of D can be derived in a
manner similar to that for the two types of helical structures at
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D < 2. Here we need to consider a slightly different resistor
network (Figure 4), because each sphere in such a double-helix
structure is not only in contact with its two nearest neighbours
and two next-nearest neighbours but also with one of its third-
nearest neighbours (C. N. � 5). Take the structure in Figure 4 as
an example. For any odd value of i, sphere i is in contact with
sphere (i + 3), such that the consecutive quartet of spheres, {i, (i +
1), (i + 2), (i + 3)}, are in mutual contact and exhibit a tetrahedral
configuration. This gives rise to the presence of quartets of
mutually touching spheres, in the form of {1, 2, 3, 4}, {3, 4, 5,
6}, {5, 6, 7, 8}. . ., across the structure. Since sphere (i + 1) is not in
contact with sphere (i + 4), the circuital environment of sphere i is
different from that of sphere (i + 1), such that we should only
consider the following conditions of translational symmetry for
pairs of next-nearest neighbours:

Ii→(i+1) � I(i+2)→(i+3), (17)

Ii→(i+2) � I(i+2)→(i+4) (18)

and

Ii→(i+3) � I(i+2)→(i+5). (19)

According to Kirchhoff’s current law, the total current that flows
across sphere i is given by

Itotal � I(i−2)→i + I(i−1)→i � ∑3
n�1

Ii→(i+n), (20)

which can also be written as

Itotal � Ii→(i+2) + I(i+1)→(i+2) � ∑3
n�1

Ii→(i+n) (21)

according to the above symmetry conditions for next-nearest
neighbours. This implies

Ii→(i+1) + Ii→(i+3) � I(i+1)→(i+2). (22)

On the other hand, according to Kirchhoff’s voltage law, we have the
following conditions for the path independence of voltages:

Vi→(i+3) � Ii→(i+3)R � ∑3
n�1

I(i−1+n)→(i+n)R (23)

and

Vi→(i+2) � Ii→(i+2)R � Ii→(i+1)R + I(i+1)→(i+2)R. (24)

Using the symmetry condition I(i+2)→(i+3) � Ii→(i+1), Eq. 23 can be
written as

Ii→(i+3)R � 2Ii→(i+1)R + I(i+1)→(i+2)R. (25)

Substituting Eq. 34 into Eq. 22 yields

Ii→(i+1) � 0, (26)

which implies

Ii→(i+2) � I(i+1)→(i+2) (27)

and hence

Itotal � 2Ii→(i+2) (28)

according to Eqs 21 and 24, respectively. For any integer N, the
voltage across sphere i and sphere (i + 2N) is a sum of the voltages
across next-nearest neighbours:

Vi→(i+2N) � NVi→(i+2) � NIi→(i+2)R. (29)

This voltage can also be expressed in terms of the effective
resistance Ri,(i+2N) between sphere i and sphere (i + 2N):

Vi→(i+2N) � 2Ii→(i+2)Ri,(i+2N) (30)

for Itotal � 2Ii→(i+2). A combination of Eqs 29 and 30 yields

FIGURE 4 | Schematic illustration of (A) a double-helix structure at
D ∈ (2, 1 + 3

��
3

√
/5) and (B) the corresponding network of inter-particle

contacts. The spheres in the structure are indexed in ascending order of their
vertical z-positions. Each sphere is not only in contact with its two
nearest neighbours and two next-nearest neighbours but also with one of its
third-nearest neighbours, such that there exist quartets of mutually touching
spheres, in the form of {1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}. . ., across the
structure.

FIGURE 5 | Plot of the rescaled electrical conductivity σ′ as a function of
the cylinder-to-sphere diameter ratio D. The vertical dashed lines indicate a
discontinuous rise in σ′ at D � 1 + ��

3
√

/2 (discontinuous zigzag-to-single-helix
transition) and D � 2 (discontinuous double-helix-to-double-helix
transition), respectively.
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Ri,(i+1) ≡
Ri,(i+2N)
2N

� R

4
. (31)

According to Eqs 12 and 31, there is a drop in the effective
resistance Ri,(i+1) as the diameter ratio D increases beyond 2. This
is attributed to the establishment of additional conducting paths
across the system. For this type of helical structures, we have [69].

(Δz)D �

����������������
1 +

�����������
9 − 8(D − 1)2

√√
4

. (32)

The electrical conductivity σ as a function of D is then given by

σ ′ ≡
πR

4
( )σ �

����������������
1 +

�����������
9 − 8(D − 1)2

√√
D2

, (33)

where, as in the case of the other types of structures, the rescaled
conductivity σ′ decreases monotonously for increasing D.

6 RESULTS AND DISCUSSION

The rescaled electrical conductivity σ′ as a function of D has been
derived for the zigzag structures at D ∈ (1, 1 + �

3
√

/2), the single-
helix structures at D ∈ (1 + �

3
√

/2, 1 + 4
�
3

√
/7), the double-helix

structures at D ∈ (1 + 4
�
3

√
/7, 2), and the double-helix structures

atD ∈ (2, 1 + 3
�
3

√
/5). From the results, we have also found out how

σ′ is related to the volume fraction VF of spheres. As shown in
Figure 5, for increasing D, the rescaled electrical conductivity σ′
decreases monotonously for each type of structures, as the resistive
components of the system become more densely packed along the
long axis of the cylindrical space. However, there exists a
discontinuous rise in σ′ at D � 1 + �

3
√

/2 (discontinuous zigzag-to-
single-helix transition) and D � 2 (discontinuous double-helix-to-
double-helix transition), respectively, as a result of the establishment of
additional conducting paths upon an abrupt increase in the number of

inter-particle contacts. This is not the case for the continuous single-
helix-to-double-helix transition atD � 1 + 4

�
3

√
/7. Figure 6 shows an

auxillary plot of the volume fraction VF of spheres as a function of D,
where for each type of structures this volume fraction is given by [23].

VF � 2
3D2(Δz)D. (34)

As indicated by the inset of Figure 6, this volume fraction is continuous
across every structural transition, as different from the case of σ′.Figure 7
shows a plot of σ′ as a function ofVF. It was found that, for each type of
helical structures, the rescaled electrical conductivity σ′ decreases
monotonously for increasing VF. For the zigzag structures at
D ∈ (1, 1 + �

3
√

/2), however, this is only the case for a limited
regime of σ′, where σ′ increases monotonously with VF for all other
values of σ′.

The results presented in Figure 5 could serve as a guide for the
development of quasi-one-dimensional materials with a structurally
tunable electrical conductivity. Any such experimental system should
be a densest-packed assembly of conducting spherical particles
immersed in an insulating medium. Once the inter-particle
resistance R between any pair of touching spheres is known, the
system’s electrical conductivity can be tuned to any designated value
through a variation of D. On the other hand, the relation between σ′
and VF as presented in Figure 7 suggests that it is possible to
characterise the volume fraction experimentally by means of
electrical-conductivity measurements. In cases where the measured
value of σ′ corresponds to two possible values ofVF, i.e to two possible
types of columnar structures, the correct type of structures can be
determined from the corresponding measured value of D.
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FIGURE 6 | Plot of the volume fraction VF of spheres as a function of the
cylinder-to-sphere diameter ratio D. The inset indicates that this volume
fraction is continuous across each structural transition.

FIGURE 7 | Plot of the rescaled electrical conductivity σ′ as a function of
the volume fraction VF of spheres. For each type of helical structures, σ′
decreases monotonously for increasing VF. For the zigzag structures at
D ∈ (1, 1 + ��

3
√

/2), this is only the case for a limited regime of σ′, where σ′
increases monotonously with VF for all other values of σ′.
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