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The emerging memories are great candidates to establish neuromorphic computing
challenging non-Von Neumann architecture. Emerging non-volatile resistive random-
access memory (RRAM) attracted abundant attention recently for its low power
consumption and high storage density. Up to now, research regarding the tunability of
the On/Off ratio and the switching window of RRAM devices remains scarce. In this work,
the underlying mechanisms related to gate tunable RRAMs are investigated. The principle
of such a device consists of controlling the filament evolution in the resistive layer using
graphene and an electric field. A physics-based stochastic simulation was employed to
reveal the mechanisms that link the filament size and the growth speed to the back-gate
bias. The simulations demonstrate the influence of the negative gate voltage on the device
current which in turn leads to better characteristics for neuromorphic computing
applications. Moreover, a high accuracy (94.7%) neural network for handwritten
character digit classification has been realized using the 1-transistor 1-memristor
(1T1R) crossbar cell structure and our stochastic simulation method, which
demonstrate the optimization of gate tunable synaptic device.

Keywords: resistive random-accessmemory, neuromorphic synaptic device, neural network, online learning, device
optimization

INTRODUCTION

Artificial intelligence has surpassed human beings in some areas, especially can help process complex and
duplicate tasks constantly [1,2]. Traditional Von Neumann architecture is a mainstream architecture
adopted to realize large scale AI computing, which separate the storage and calculation unit. The data
transmission bus between memory circuit and CPU result in large power consumption, make the Von
Neumann not suitable to execute the large scale AI processing in low-power environment such as the
Internet of Things (IoT). Inspired by the structure of human brain, neuromorphic computing chips have
been proposes and fabricated in a large scale [3,4]. To further improve the performance and energy
efficiency, in recent years, emerging nonvolatile memory (NVM) based hardware for neuromorphic
computing, which can emulate synapse function in a single device, has attractedmuch attention [5,6]. The
continuous scaling down even down to sub-2 nm of NVM device also indicate that NVM is a great
candidate to fabricate large scale high-density neuromorphic computing chips [7]. As for the underlying
hardware components, numerous new devices that can integrate both storage and calculation functions
have been investigated to establish brain-like circuits to accelerate the running time and reduce power
dissipation. Among the NVMs device, RRAM is usually a simple two-terminal structure with a metal
oxide layer between the two electrodes, which has been regarded as a promising nextmainstreammemory
technology, due to its fast switching speed, excellent scalability, and non-volatile characteristic [8–11].
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The resistance changes of a typical RRAM device are done by
controlling the formation and the rupture of conductive filaments
(CF). For most metal-oxide RRAM, the CFs are composed of
oxygen vacancies [12]. Under the influence of an electric field, the
metal-oxide is ionized into oxygen ions O2− and oxygen vacancy.
During the SET operation, O2− are pulled out of the lattice and
drift to the region near the top electrode/dielectric interface. The
vacancies generated from the lack of oxygen are forming CFs
which in turn are causing a dramatic increase in conductance.
During the RESET operation, the reverse electric field repels the
O2− away from the top electrode/dielectric interface. The ions
recombine with the vacancies, resulting in the CF rupture and
therefore a decrease in conductance. Due to abrupt rupture and
formation in resistive oxide layer, the RRAM device shows great

advantages on switching speed, on/off ratio. On the other hand,
the great scalability and recently proposed 3D integration
technology of RRAM device.

In order to improve the characteristics of RRAM devices for
neuromorphic computing applications, many studies have
discussed different methods to enhance the control of the
filament growth. One proposed solution is to use a gate tuning
mechanism. This solution is effective to control the RRAM device
set voltage and the On/Off ratio. This solution has another
advantage as it is compatible with the traditional
complementary-metal-oxide-semiconductor technology [13]. It
is valuable to adopt a physics-based simulation combining the
distribution of vacancies evolution with the device performances
and analyze the physical mechanisms, so as to accurately predict

FIGURE 1 | Device structure, tuning mechanism and simulation flowchart. (A) Schematic structure of a gate tunable RRAM under a positive, and a negative gate
bias. (B) The Vo distributions during the set process and after set. (C) Flow chart of the simulation process adopted in this work to study the switching process and the
device performance. (D) The tuning mechanism of gate electric field toward device performance and neuromorphic application.
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its characteristics. In this work, a physics-based stochastic
simulation method has been conducted in order to achieve
this goal. The particle evolution and the IV characteristics
under various gate bias are simulated and analyzed. The
simulation results can guide researchers to optimize the gate
bias that needs to be applied to obtain an optimal device
characteristic. Moreover, oxide RRAM based neuromorphic-
computing simulation using a handwritten recognition neural
network has been trained on the MNIST dataset to verify the
optimization of the applied bias, which obtained a 94.7%
recognition accuracy and provide a guideline to tune the
online learning accuracy based on novel NVM device.

SIMULATION METHOD

The Structure of Gate Tunable RRAM
Figure 1E demonstrates the whole framework to simulate gate
tunable RRAM devices. Following the stochastic method
mentioned in the flowchart, it is able to judge the particle drift
behaviors and simulate the evolution of a device. A cycle contains
two processes, the SET, and the RESET operation. The traditional
RRAM structure possesses three layers, a material that has
properties that can be altered sandwiched between two layers
that serve as electrodes. A gate tunable oxide-based RRAM on the
other side possesses graphene and an oxide layer in addition to
the three aforementioned layers. Figure 1A show the structure of
a basic device of this type. The graphene layer is inserted above
the bottom electrode between the resistive layer and a SiO2 layer.
In our simulation, the graphene is modeled as a single metal atom
layer. The gate bias is applied to the back gate, from which the
electric field penetrates through the oxide and the graphene layer
and influences the generation and the recombination probability
inside the resistive layer. Figure 1B shows the growth of set
process.

The gate bias can help control the drift velocity of oxide ions
and the generation barrier during the SET operation and the
RESET operation. Based on the gate-tunable RRAM device, we
establish a simulation method to simulate the behaviors of the
device. Figure 1C shows the different steps that compose a
simulation.

The Evolution Model of Oxide-based RRAM
During the SET operation, the generation of oxygen ions and
vacancies are dominating. During the RESET operation, the
recombination process is dominating. Both of the processes
are related to the electric field present in the switching
material. As the electric field and the vacancy
distributions, the generation and recombination are
updated every step. The generation and the recombination
formulas are the followings

Pg � f0 exp( − (Ea − cqE)
kBT

) (1)

Pr � βCionf0 exp( − Ea

kBT
) (2)

where Ea is the migration barrier, c is the enhancement factor to
the local electric field, Cion is the concentration of oxygen ions,
and the E is the electric field which includes the gate electric field
and the local electric field. During a DC sweep, Pg and Pr are
calculated in all the mesh cells and at every step. They are then
compared with a random number. If Pg is higher than the
random number, a vacancy can be generated. Similarly, a
vacancy can be recombined if Pr is higher than the random
number generated. The vacancy distribution is updated this way
for the next step. We can see from the Pg formula that the electric
field can control the migration barrier.

The Model of Gate Tunable Oxide-based
RRAM
The resistance of the device can be divided into two main parts,
the resistive layer, and the gate oxide layer. The graphene layer
and top/bottom electrode are assumed to be perfect conductors.
Due to the uniformity of the gate bias in the dielectric layer, the
gate electric field is added to the original electric field in this layer.
The formulas that describe the electric fields in the devices are

E � Eres−g + Eres−d (3)

Eres−g �
Vg − Iρins

l

S
dres

(4)

Eres−d � −∇V (5)

where Eres−g and Eres−d represents the electric field in resistive
layer generated by the gate bias and the RRAM bias respectively,
ρins is the resistivity of the insulator in the gate oxide layer, dres is
the thickness of the resistive layer, V is the updated electric
potential calculated using the Poisson equation, and Vg is the
gate bias.

The technique used in this study consist in regarding the
whole resistive material as a network of resistors, and using a
Kirchhoff model to compute the electric field and the potential
in all the cell of the aforementioned network. Techniques using
Kirchhoff’s Law fit well with conductive bridge random access
memory experimental data [14]. In contrast to classical two
terminals RRAM devices, our gate tunable oxide-based RRAM
possesses three terminals. The leakage current from the back
gate has to be considered. However, because of the high
resistivity of the SiO2, the leak current is far less than the
outflow current from the bottom electrode, and can therefore
be omitted [12].

SIMULATION RESULTS AND DISCUSSION

After applying voltage bias at the gate electrode, the positive or
negative gate electric field have different influences on the I-V
characteristics. The generation rate is balanced with the
recombination rate under the original condition without
bias. When a positive electric field penetrates the resistive
layer, the set voltage is increased. In this case, the generation
probability is reduced while the recombination rate remains
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FIGURE 2 |Characteristics of gate tunable oxide-based RRAM. (A) The IV curve of a single device without gate bias (B) The IV curve of the SET process of different
devices with different gate biases. (C,D) display the distribution of the SET voltages and the On/Off ratios when the gate bias is set at −20 , −10, 0, and 10 V.

FIGURE 3 | Simulated current distribution and reset process. (A) Read current distribution under different gate bias. (B) Set current distribution under different gate
bias. (C) Oxygen ions distribution at different times. (D) The relationship of reset time (the time that oxygen ions move to another interface) and E-field.

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 7776914

Shen et al. Gate Tunable Synaptic RRAM

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


the same, and vice versa when the electric field is negative.
Figure 2A presents the simulated DC sweep results without
gate bias. The set voltage is around 1.255 V. Based on Eq. 1, it
can be deduced that the reset time is inversely proportional to
the drift velocity of the oxygen ions. Figure 2B shows the I-V
results during the SET process with different gate biases after
setting a compliance current of 10–5 A. To present the
variances of the device performance, a device-to-device
simulation was conducted for 10 cycles and for every single
gate bias. The results are shown in Figures 2C,D. Overall, both
the set voltage and the On/Off ratio have an increasing trend as
the applied gate bias is swept from negative to positive, which
corresponds with the aforementioned results. Therefore, the
increase of set voltage and On/Off ratio can be attributed to the
filament evolution process. As Figure 1B shows, the increase of
E-field in the resistive layer will result in the decrease of reset
time. The exponential reduction trend mean that the reset time
can be tuned by gate bias exponentially if we adopt the model
in this work.

The read current and set current shown in Figures 3A,B have
similar trend that negative or smaller positive gate bias cause the
current shifting to larger magnitude of level and increase the
distribution range. This’s can be explained that generation
probability is threatened and the stochastic property is

enhanced under strong E-field. On the other hand, to simulate
the reset process, oxygen ions transport equation was numerically
solved. As the E-field value increase, it can be seen that reset time
would be decreased exponentially.

GATE TUNABLE OXIDE-BASED RRAM FOR
NEUROMORPHIC COMPUTING

A Ideal NVM device should be totally linear during potentiation
and depression, and the conductance states would increase or
decrease at a fixed step after applying positive pulse or negative
pulse with identical magnitude. The other impact factors include
On/Off ratio, cycle-to-cycle variations and device-to-device
variations, all of which can deteriorate analog RRAM-based
neuromorphic computing hardware towards application [15].
Moreover, the number of states can also determine the weight
update precision. There are some efforts to improve the number
of immediate states, and even 256 analogue states has been
realized [16,17].

In this work, the gate tunable RRAMhas been used to establish
a neural network to investigate the gate tunable linearity and on/
off ratio. In neuromorphic computing, the device characteristic
highly determines the accuracy of the neural network. Figure 4

FIGURE 4 | The RRAM-based neuromorphic computing circuit. (A) The two layer MLP neural network including 400 neurons in input layer, 100 neurons in hidden
layer and 10 neurons in output layer. (B) Neural structure consists of matrix-vector multiplication unit and activation function unit, while the sigmoid is used in back
propagation and relu is used in feed forward. (C) RRAM-based 1T1R crossbar array for realizing synapse in neural network. With the same circuit, the first part illustrates
the work mechanism of multiplication and summation, while the second part represents the weight update in BP.
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illustrated the whole circuit to implement two-layer
perceptron (MLP) using RRAM crossbar arrays as core
component. The adopted neural network consists of 400
neurons in input layer, 100 neurons in hidden layer and
10 neurons in output layer, as Figure 4A shows. The neurons
are CMOS circuits to implement activation function. The
training process use back propagation algorithm and
stochastic gradient descent to update weight (Figure 4B).
The adopted circuit system is based on a typical RRAM-based
neural system [5].

In Figure 4C, the bit line (BL) is for applying input voltage or
pulse voltage to calculate output in feed forward (FF) process or
change the conductance state in back propagation (BP). The
word line (WL) is used to set the gate voltage controlling on-off
of transistor to determine the selected row which can implement
weight update. According to the scheme, a simple and compact
crossbar array structure is used as weight matrix to implement
vector-matrix multiplication and weight update if pulse is
applied.

Figure 5A shows the conductance versus pulse curve for
different gate voltages. The highlighted data is the data that will
be used for training the neural networks. For this experiment,
we selected data that possess a linear coefficient larger than 0.9.
The selected data has demonstrated that the additional gate in
RRAM can further control the growth of the filament, which
also improves the linearity and On/Off ratio of the linear
segment of the conductance-pulse data. The device
characteristics for neuromorphic computing gradually get
better when the gate bias decrease from 5 to −10 V. Most
notably, when −10 V is applied to the gate, the linearity of
the devices can reach 0.9821. The Modified National Institute of
Standards and Technology (MNIST) database has been used to
train the network. The training result has been shown in
Figure 5B, the array of devices possessing better linearity
and On/Off ratio shows an improved recognition accuracy.
With the 5 V back gate voltage, the devices have a lower On/
Off ratio and lower linearity leading to poor results in accuracy.
The optimized recognition accuracy can reach 94.8% under
−10 V gate voltage. This result demonstrates that the optimized
devices indeed improve the recognition accuracy when used in a
neuromorphic application.

CONCLUSION

This work proposed an effective method to simulate gate tunable
RRAMdevices. We employed a physics-based stochastic model to
investigate the internal mechanism of the devices. The
controllability of the parameters has a stable trend and is
promising in practical applications. Furthermore, devices
under appropriate bias have been used to compose a neural
network for handwritten digit classification. This application
of the simulated device into a real-world example has been
done to authenticate the effectiveness of our framework for
modeling circuit and neuromorphic systems. This work reveals
the tunable mechanism of the gate tunable oxide-based RRAM
and promotes the application of the device for neuromorphic
computing.
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FIGURE 5 | Gate tunable RRAM-based neural network. (A) Gradual switching behavior using 1 V amplitudes and 10 ns width constant pulses. (B) The online
learning accuracy based on the RRAM device and our stochastic simulation method under different gate bias after 125 epochs.
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