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Optical orbital angular momentum (OAM) has become a hot research topic because of its
unique properties due to its spiral distribution of phases. The production and transmission
of OAM has also become a necessary condition for effective use of OAM. As an optical
waveguide with good propagation properties, optical fibers are used in optical systems
supporting OAM. This paper introduces the OAM generation and transmission system
based on fiber, summarizes the current photonic crystal fiber, ring core fiber, fiber grating
and other all-fiber systems that can support OAMmodes, and explains some experimental
principles. Finally, an outlook on OAM generation or transmission devices for all-fiber
systems is presented, providing a useful reference for future related research.
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INTRODUCTION

Since Allen et al. [1] discovered the orbital angular momentum (OAM) contained in the vortex beam,
OAM has been widely used. Because the vortex beam has a phase factor of eilφ, its phase distribution
presents a spiral shape. Due to the unique properties, OAM beams have a wide range of applications
in microscopy [2, 3], micromanipulation [4, 5], optical tweezers [6, 7], nonlinear optics [8, 9],
quantum communication [10, 11], and so on. In the traditional optical communication, the
multiplexing technology improves the communication capacity by multiplexing the optical wave
from the aspects of wavelength, frequency and space, but the communication capacity is close to the
Shannon limit [12]. OAM has a spirally distributed phase, and different OAMmodes are orthogonal
to each other. Theoretically, it provides an infinite set of orthogonal bases, which provides a new
research direction for optical communication and information transmission [13–15]. Among them,
the OAM-based modular multiplexing communication technology has received widespread
attention. mode-division multiplexing (MDM) technology increases the efficiency of data
transmission by simultaneously transmitting beams of different modes in the same transmission
channel. The orthogonal property of OAM provides a degree of freedom for the multiplexing
technique, increasing the capacity of the transmitted data. Moreover, the experiments of multiple-
input multiple-output (MIMO) communication system based on OAMmultiplexing technology are
also gradually improved [16, 17]. In addition, OAM is also considered as a potential communication
method of 6G technology [18].

The effective use of the OAM beam cannot be achieved without the generation and stable
transmission of OAM. At present, OAM beam can be generated and propagated by optical fiber or
spatial optical device. Commonly used spatial optical devices include cylindrical lens [19], spatial
light modulator [20], Q plate [21], etc. Compared with spatial optical devices, optical fiber provides a
binding transmission medium for OAM transmission, which can reduce external interference and
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increase transmission distance and efficiency [22]. In recent years,
ring core fiber (RCF) and photonic crystal fiber (PCF) have
become the main optical fibers for transmitting OAM. At
present, the use of optical fiber transmission can achieve the
stable propagation of thousands of OAMmodes [23]. In addition,
as the eigensolution of the optical fiber, OAMmode is formed by
the coupling of the vector mode or scalar mode of the optical
fiber, so the phase purity of OAM generated by the optical fiber is
higher and the optical path complexity is lower. When OAM
beam is generated in optical fiber, the vector mode or scalar mode
of optical fiber is usually obtained first, and then the mode
coupling is carried out with stress action or polarization
controller (PC), etc. Therefore, fiber gratings and fiber mode
selective couplers (MSCs) have attracted attention in the
generation of OAM [24, 25]. The all-fiber OAM generation
and transmission system provides a good carrier for OAM,
which also provides a necessary condition for the effective use
of OAM beam.

This review article discusses the principle, transmission,
generation in optical fiber comprehensively, and introduces
application of OAM. It’s expected to be of great significance
for OAM fiber design and application.

THE PRINCIPLE OF OAM GENERATION

Vortex Beam
Optical vortex is divided into polarization vortex and phase
vortex. The former corresponds to the cylindrical vector beam
(CVB) with polarization vortex characteristics, and the latter
corresponds to the optical orbital angular momentum (OAM)
with phase vortex characteristics [26].

Polarization Vortex
CVB corresponds to the polarization characteristics of vortex
light. Polarized vortex light is generated by polarization
singularities, and is also called vector beam [27], which is the
solution of vector Maxwell’s equations. For general linearly
polarized light, circularly polarized light, and elliptically
polarized light, the polarization state is the same everywhere
in the cross section of the beam propagation, but for CVB, the
polarization state of the light changes as the azimuth angle [28].

For CVB, there are two mutually orthogonal modes, namely
radial polarization and angular polarization, which correspond
exactly to the TMmode and TEmode in the fiber vector mode. In
addtion, the two CVBs mentioned above live in a four
dimensional space spanned by the basis formed by the
Cartesian product of the mode bases and the polarization
vectors, this also means that in addition to the TM and TE
modes, there are two bases with different dimensions. By applying
a unitary transformation to TM and TEmodes, we can obtain two
other basis vectors. These two basis vectors correspond exactly to
the odd and even modes of HE21 in the fiber vector mode [29].
The intensity and polarization of these four basis vectors are
shown schematically in Figure 1.

Phase Vortex
Since the OAM has a phase factor of eilφ, the phase distribution of
the OAM is also related to the azimuth angle. l represents the
topological charge carried by the photon, the value is an integer,
and each photon carries the OAM of lZ. The positive and negative
values of lwill affect the vortex direction and phase distribution of
OAM beam respectively. According to the direction of the vortex,
the OAM beam is divided into left-handed vortex light ( l is
positive) and right-handed vortex light ( l is negative), and the
phase change of one circle is 2lπ on the cross section of the beam
propagation.

The Coupling Theory of OAM
The OAM beam can be formed by the coupling of the vector
mode or the scalar mode in the optical fiber. The OAM formed by
the two coupling methods contains different spin angular
momentum, so the polarization characteristics of the OAM
formed by the different coupling methods are different.

For OAM beam formed by vector mode coupling, its coupling
principle is as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ+OAM+l
σ−OAM−l
σ−OAM+l
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Among them, Fl,m represents the radial amplitude
distribution, even and odd represent even mode and odd

FIGURE 1 | Polarization and light intensity of the four basis vectors (A) TM mode (B) TE mode (C) HEeven
21 mode (D) HEodd

21 mode [29].
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mode. The positive and negative signs of σ indicate left-hand and
right-hand spin, correspondingly. l represents topological charge.
The spin of a photon is related to circular polarization, and the
OAM formed by vector mode coupling has spin angular
momentum, so it exhibits the characteristics of circular
polarization.

For the OAM beam formed by scalar mode coupling, the
corresponding relationship is [30]:

{ x̂L±l,m
ŷL±l,m

} � {LPc,x
l,m ± iLPs,x

l,m

LPc,y
l,m ± iLPs,y

l,m
} � Fl,m(r){ x̂e±ilφ

ŷe±ilφ
}, (l≥ 1) (2)

Among them, c and s represent the phase form of cosine or
sine contained in the scalar mode, and x̂ 、 ŷ represent the
polarization direction. At this time, the spin angular momentum
of the generated OAM is 0, and the beam exhibits linear
polarization.

For OAMwith different polarization states, they can be judged
by the phenomenon after the beam passes through the optical
element, as shown in Figure 2. A linearly polarized orbital
angular momentum (LP-OAM) can only pass through a
polarizer in the same direction as the light vector polarization.
However, when the circularly polarized orbital angular
momentum beam (CP-OAM) passes through the waveplate, it

can pass through any angle of polarization because of the
oscillating electromagnetic field at any angle of polarization,
and the intensity distribution of transmitted light is still
circular. When CP-OAM passes through the quarter-wave
plate (QWP), it becomes linear polarization mode, and when
it passes through the polarizer orthogonal to the light polarization
direction, the beam cannot pass through.

It is worth noting that both CP-OAM and LP-OAM are
formed by coupling after generating a phase difference of π/2
between the corresponding vector modes or between the scalar
modes. This also requires the system to be able to generate or
provide a suitable phase difference to form or support OAM.

OAM TRANSMISSION IN OPTICAL FIBER

The long-distance transmission of OAM and optical
communication multiplexing technology are inseparable from
the stable transmission of OAM. As an excellent optical
waveguide supporting beam transmission, optical fiber has
become a research hotspot for effective transmission of OAM,
but ordinary optical fiber is not suitable for OAM transmission
[32]. Optical fibers that can transmit OAM stably, such as PCFs

FIGURE 2 | (A) (B) Schematic diagram of the phenomenon of LP-OAM passing through the polarizer (C) (D) Schematic diagram of the phenomenon of CP-OAM
passing through the polarizer [31].
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[33], RCFs [34], and microstructure fibers (MSFs) [35, 36], have
received widespread attention.

Photonic Crystal Fiber
The PCF has attracted widespread attention due to its non-stop
single-mode transmission, large mode area, and adjustable
dispersion characteristics [37]. In 1996, Knight prepared the
world’s first photonic crystal fiber (PCF) and achieved the
property of having a single robust low-loss guiding mode over
a wide spectrum [38]. Yang et al. [39] first proposed the use of
PCF to transmit OAM. The proposed PCF supports two OAM
modes, but there are problems include a small number of

supported modes and large loss. Later, different structures of
PCFs, such as circular air holes PCF [40–48], rectangular air holes
PCF [49], and hybrid air hole PCF [50, 51], were proposed in
some studies, and the performance of the fiber was optimized by
changing the position and size of the air holes.

Circle Air-Hole Photonic Crystal Fiber
In 2015, Zhang et al. [40] proposed a four-ring cladding silicon
dioxide circular photonic crystal fiber (C-PCF). The fiber
supports 12 OAM modes. The cross-section structure,
dispersion curve and nonlinear coefficient of proposed fiber
are shown in Figure 3. It indicates the dispersion increases

FIGURE 3 | (A) Structure diagram of circular photonic crystal fiber made of silica material (B) Dispersion curve (C) Variation of the nonlinear coefficient with
wavelength [40].

FIGURE 4 | (A) and (B): Schematic diagram of some PCFs (A) Schematic diagram of spiral air pore arrangement [46] (B) Structure diagram of PCF with air holes of
different sizes [41] (C) and (D): Characteristic parameters of PCF with spiral air hole arrangement [46] (C) Nonlinear coefficients with wavelength (D) Dispersion curves.
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firstly and then decreases as wavelength, and the nonlinear
coefficient is too high. None of these features are conducive to
OAM lossless transmission.

In some studies, the properties of the circular air hole PCF
were changed by changing the position and size of holes [42–44],
as shown in Figures 4A,B. Nandam et al. [46] proposed a PCF
with spiral-shaped air holes and could support 14 OAM modes.
Some transmission characteristics are shown in Figures 4C,D. It
shows that the dispersion change is relatively gentle, and the
nonlinear coefficient is reduced by nearly one order of magnitude
compared with the C-PCF designed by Zhang et al. mentioned
above. Jia et al. [41] proposed a PCF with large round air holes,
whose diameter gradually increased. The fiber can transmit 38
OAM modes and has low confinement loss.

Non-circular Air-Hole Photonic Crystal Fiber
In recent years, with the improvement of optical fiber fabrication
technology, the design of PCF’s holes is not limited to be circular.
Several non-circular air-hole PCF are shown in Figure 5. Bai et al.
[49] proposed the PCF of rectangular air holes, which can support
up to 46 OAMmodes, and the effective refractive index difference
(ERID) between vector modes is all above 10−4. Figure 5B shows
two kinds of air hole whose shapes are Bessel polygon [52, 53],
which have very low confinement loss in the order of 10−10 dB/m.

Now some studies have proposed some PCF combining air
holes of different shapes [50, 51], which can support more OAM
modes and have excellent characteristics. Table 1 summarizes the

OAM transmission characteristics of several PCFs. Compared to
PCF with circular air holes, PCFs with new shaped air holes are
more complicated, but they provide a new direction for the study
of PCF.

In order to make the PCFmore suitable for transferring OAM,
the central air hole of the PCF is usually designed to be larger,
which allows the ring-shaped OAM to be transmitted outside the
central air hole. If the central air hole is too small, the number of
OAMs that PCF can support will decrease. In addition, the outer
air holes also need to be able to effectively restrict the light beam.
Too few air holes will cause beam leakage, resulting in higher loss.

At present, there are many research directions of OAM
propagation using PCF. Based on space division multiplexing,
some studies aim to improve the number of OAM mode in PCF
[54–56]. In terms of filling materials for PCF, Tao He [57] filled
the magnetic fluid into the large air hole of PCF. By changing the
intensity of the applied magnetic field, the refractive index of the
magnetic fluid changes correspondingly, and the nonlinear
coefficient of the PCF is also reduced compared to that with
no magnetic fluid.

Ring Core Fiber
In 2009, Ramachandran et al [58] demonstrated that the ERID is
maximum when there is a mirror relationship between the
refractive index distribution of the fiber and the intensity
distribution of the propagation mode. The high ERID between
modes will reduces the coupling, and different OAM mode

FIGURE 5 | (A) Schematic diagram of PCF structure with rectangular air holes [49] (B) Schematic diagram of PCF structures with Bessel polygon air holes [53].

TABLE 1 | OAM transmission characteristics of several PCFs.

Type Number of
OAM modes

Pulse width Nonlinear
coefficient

Confinement loss
(at 1550 nm)

Refs

Rectangular air holes 46 1.2∼2 μm <2.58 km−1 ·w−1 10−10∼10−8dB/m [49]
Circle air holes 30 1.5–1.6 μm <0.71 km−1 ·w−1 10−12∼10−10dB/m [43]

Mixed shape air holes 50 1.15–2.0 μm 0.6–1.5 km−1 · w−1 10−11∼10−9dB/m [51]
Polygon shaped air holes 38 0.8–1.2 μm 1.0444–4.3984 km−1 · w−1 10−8∼10−6dB/m [53]
Polygon shaped air holes 42 0.8–1.2 μm 1.5401–5.4390 km−1 · w−1 10−9∼10−6dB/m [53]

Circle air holes 50 + 30 1.52–1.58 μm <2.65 km−1 ·w−1 <3 × 10−8dB/m [54]
Circle air holes 30 1.25–1.9 μm <4.144 km−1 ·w−1 10−11∼10−8dB/m [45]
Circle air holes 38 1.25∼2 μm 250–600 km−1 ·w−1 1 × 10−9∼3 × 10−9dB/m [41]
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groups (MGs) can achieve good transmission. The ring structure
with high refractive index distribution restricts the OAM
transmission within the ring, and the fabrication process of
the RCF is simpler than that of other OAM fibers. By
changing the refractive index distribution and composition
materials of the fiber, the RCF can have different OAM
transmission properties. Typical RCF such as step-index ring
core fibers (SI-RCF) [59], graded index-ring core fiber (GI-RCF)
[60], refractive-index-profile-modulated RCF (RIPM-RCF) [61],
air core fiber(ACF) [62] are more widely used.

Step Index Ring Core Fiber
In 2014, Brunet et al. [63] conducted a theoretical analysis of the
vector and scalar modes of SI-RCF, and gave an analytical
expression for the cut-off conditions of SI-RCF. Based on this
theory, they designed a set of SI-RCFs [64]. The effective index
separation of the vector mode reaches above 10−4 and has a lower
dispersion parameter. The refractive index distribution of the SI-
RCF is shown in Figure 6. Wang et al. [65] has designed two SI-
RCF supporting |l| � 3 and |l| � 5 respectively. The ERID
between different modes reaches 10−3 magnitude, which
reduces cross-talk between groups. At the same time, the
transmission loss of the fiber is below 0.25 dB/km, which has
excellent transmission characteristics.

However, in the actual propagation process, high refractive
index materials will increase the transmission loss of the

propagation process [67], so it is particularly important to
balance the problem of mode degeneration and high refractive
index transmission loss. Huang et al. [66] improved the SI-RCF
by introducing a high refractive index material between the
cladding and the transmission layer. Since the high refractive
index material does not transmit OAM, the RCF can transmit the
OAM more effectively.

Graded Index Ring Core Fiber
In order to prevent the high loss caused by high refractive index
materials, it is effective to change the distribution pattern of
refractive index to enhance the transmission properties of OAM.
The graded index distribution of GI-RCF presents a gradual
change, as shown in Figure 7A. The GI-RCF designed by Zhu
et al. [68] supports 5 MGs with low coupling, and the average
attenuation any mode is about 1 dB/km. Zhu et al. [69] proposed
the GI-RCF, which suppressed the radial high-order mode
effectively. The ERID between the fourth and fifth order OAM
modes is 3.9 × 10−3, which greatly separates the high-order
OAM modes.

Refractive-Index-Profile-Modulated RCF
In the real multiplexing system of OAM, the coupling between
MGs can cause interference. In order to reduce the reference, Tan
et al. designed RIPM-RCF [70]. Its refractive index distribution is
shown in Figure 7B. The top of the ring core forms a numerical

FIGURE 6 | (A) Refractive index distribution of SI-RCF [65] (B) Refractive index distribution of modified SI-RCF [66].

FIGURE 7 | (A) Refractive index distribution of GI-RCF [69] (B) Refractive index distribution of RIPM-RCF [70].
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gap of effective refractive index. The optical fiber supports four
low-order MGs, and the ERID between the MGs is more than
0.8 × 10−3. Moreover, due to the large ERID between the mode
and the cladding and the presence of notch modulation, the mode
coupling from the guiding mode to the leaky cladding mode is
effectively suppressed with low fiber attenuation about 0.2 dB/
km. The RIPM-RCF proposed by Zhang et al. [71] can support
four low-orderMGs, and the ERID between the second and third-
order modules is 2.5 × 10−3. Group crosstalk is less than
−36 dB/km.

Air Core Fiber
Some studies proposedACF, one of which is shown in Figures 8A,B.
Due to the huge ERID between air and the annular transmission
layer, OAM can be confined to the transmission layer, so ACF has
received extensive attention [23, 72–76]. The ACF proposed by
Gregg et al. [72] can support up to three high-order MGs
(|l| � 7, 8, 9), and a large ERID is produced between different
OAM modes. To a certain extent, the multi-path interference is
reduced, and the purity of the transmission OAM is improved.
Brunet et al [73, 74] added a low refractive index layer to the
conventional ACF to increase the number of supported OAM
modes, which can support up to 28 OAM modes for transmission.

Wang et al. [23, 76] used As2S3 as the material of the ring
transmission layer in ACF, and the ERID between the
transmission ring and the air hole was higher than that of the
traditional ACF. Proposed fiber can support 1004 OAMmodes in
all O, E, S, C and L bands. The transmission characteristics of this

fiber is shown in Figures 8C,D. The ERIDs of high-order vector
modes keep is about 10−3 and the dispersion of the fiber changes
smoothly. By adjusting the radius of the air hole, a double-
frequency supercontinuum of 1,560–6,250 nm can be
generated for the OAM17,1 mode in the designed fiber.

In general, there are two design ideas that enable RCF to be
more suitable for transmitting OAM. One is to add a high
refractive index layer, and the other is to modulate the
refractive index. For the first idea, the higher the refractive
index and the smaller the width of the transmission layer
added to the fiber, the greater the number of OAMs supported
by the fiber. But this will cause higher losses. For the second idea,
modulating the refractive index of the fiber according to the
transmission characteristics can make the fiber obtain better
transmission properties. The next experiment can combine
idea one and idea two to modulate the refractive index of the
fiber doped with a high refractive index layer.

Other Vortex Fiber
By changing the refractive index distribution in the fiber, some
articles have also proposed other OAM fibers with good
transmission performance.

B. Ung [77] proposed the inverse-parabolic graded-index fiber
(IPGIF), and its refractive index profile is shown in Figure 9A. An
ERID of 2.1 × 10−4 is provided between the first-order mode, and
the propagation of the first-order OAM mode can reach 1.1 km.
Chen Yun [78] added a low refractive index layer between the
core and the cladding to increase the ERID. The refractive index

FIGURE 8 | (A) and (B): Refractive index distribution of several ACFs [23, 74] (C) and (D): Characteristic parameters of ACF proposed by Wang et al. [23] (C)
dispersion curve (D) effective refractive index variation curve with wavelength.
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distribution is shown in Figure 9B. The simulation proves that
the improved fiber can support the highest third-order OAM
mode for effective transmission. Zhang et al. [79] performed a
rotational twist on the designed IPGIF. Simulations show that the
twisted IPGIF requires an order of magnitude less twist than the
twisted air hole fiber. The twisted optical fiber can support 22
OAMmodes in the entire C-band, and has excellent transmission
characteristics with a small nonlinear coefficient.

The fibers mentioned above have different transmission
properties due to differences in fiber structure and refractive
index distribution. Taking into account the requirements of
existing fabrication technology, RCF and PCF are more suitable
for widespread production and use. From the perspective of optical
communications, Optical fiber needs to meet the characteristics of
low loss, large number of supported OAMs, and easy production.
Therefore, the RCFwithmultiple transmission rings is more suitable
for optical communications. The PCF is more suitable for
transmitting OAM with special properties, such as adjustable
dispersion and large mode field area. For the OAM fiber with a
high refractive layer, although the number of supported OAMs is
greatly increased, the loss is large. So this type of fiber is suitable for
fiber lasers that generate high-order OAM. In addition to RCF and
PCF, the manufacturing of some special structure optical fibers is
limited by the technological level, but they exhibit excellent
transmission characteristics, which provide a useful reference for
the design of special fibers transmitting OAM.

THE GENERATION OF OAM IN FIBER

OAMbeam can be generated by spatial optical devices and optical
fibers. Among them, OAM generated by spatial optical devices
can be generated by helical phase plate [85], spatial light
modulator [86], Q plate [87], etc. However, generating OAM
through a spatial optical device will increase the complexity of the
optical path. The vortex beam itself is an intrinsic solution of the
fiber, so the generation of the OAMmode in the fiber will simplify
the optical path and improve the phase purity of OAM [88]. The
main optical fibers used to generate OAMmodes in optical fibers
are fiber gratings [89, 90], fiber MSCs [91], and helically twisted
PCF (HT-PCF) [92–94].

Fiber Grating
Fiber gratings are divided into long-period fiber gratings and
short-period fiber gratings (Bragg gratings) according to the
length of their period. The fiber grating has a periodic
distribution of refractive index. When the input meets the
phase matching condition, mode coupling can be performed.

Long Period Fiber Grating
Long period fiber grating (LPFG) is a transmission grating [95].
The relationship between wavelength and grating period is [96]:

λ � (neff1 − neff2)Λ (3)

Among them, neff1 and neff2 are the effective indices of the
two coupled modes, respectively. λ represents the resonant
wavelength, and Λ represents the period of the fiber grating.
Due to the coupling and transmission characteristis of LPFG,
Modes that satisfy the coupling conditions can be coupled to form
LP modes or vector modes, thus further forming OAM. The
experimental device in Ref. [97] contains a fiber grating for mode
coupling, a vortex fiber for beam propagation, and a PC for
forming OAM. The positive and negative conversion of the
topological charge can be achieved by adjusting the pC. The
schematic diagram is shown in Figure 10. Mode coupling of the
input fundamental mode occurs within the fiber grating and
generate a high-order mode. However, since the effective
refractive index of the same order modes is approximately
equal, the distribution of the same order modes generated at
the same time is random and uneven. Therefore, PC or stress is
usually added to adjust the amplitude and phase distribution of
the same order mode, so the pure state vector mode or OAM
mode can be output [98, 99].

Zhao et al. [100] designed a tilted LPFG (T-LPFG). In the
T-LPFG, wave vector of the grating planes are tilted by angle θ
with the Z axis. Compared with uniform LPFG, the grating period
ΛT of T-LPFG is related to the tilt angle θ, and ΛT � Λ × cos θ is
the actual grating period. By changing θ, the grating period can be
changed, and it can be seen from Eq. 4 that the resonant
wavelength is related to the grating period, so the resonant
wavelength and other parameters of TLPFG are adjustable. In
the experiment, Zhao realized the mode coupling between LP01

FIGURE 9 | (A) Refractive index distribution of IPGIF [77] (B) Refractive index distribution of modified IPGIF [78].
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and LP11 by calculating the relationship between the effective
refractive index and the period of LP mode, and the coupling
efficiency was greater than 99%. After that, a first-order OAM
beam was generated by adjusting the PC in the optical path.

On the basis of the pattern coupling between LP01 and LP11,
some studies realized the pattern coupling between LP01 and LP21
by cascading two LPFGs with different cycles [101, 102], as shown
in Figure 11A. Through calculation, the designed two-stage
LPFG meets the phase matching conditions of LP01 and LP11,

LP11 and LP21 respectively, and the mode coupling is carried out.
At the output end of the second-order LPFG, by adjusting PC, the
vector mode of LP mode is degenerated and recombined to
generate the second-order OAM beam.

It is worth noting that the generation of OAM based on LPFG
above is all formed through the combination of vector modes. Some
studies use LPFG system to synthesize OAM through LP mode. Li
et al. [103] usedmechanical LPFG to couple the input LP01 into LP11,
and made the output of LP11 at an angle of 45° with the X-axis of

FIGURE 10 | Schematic diagram of the coupling process [98].

FIGURE 11 | (A) Schematic diagram of two-stage long-period grating cascade structure [102] (B) Schematic diagram of the LP mode formation process [103].
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optical fiber cross section by rotation. LP11 was decomposed into two
orthogonal LP11, and then the phase difference was generated
through the pressure action of the plate to form OAM, as shown
in Figure 11B. Wu et al. [104] used a four mode fiber-LPFG system
such that LP01 is coupled to form LP21 directly. Then, by rotating
LPFG, a phase difference of π∕2 was generated between the odd and
even modes of LP21 to produce a second-order OAM. Since the
phase difference of π∕2 is difficult to achieve in some cases, Li et al.
[105] proposed a scalar mode synthesis method and obtained OAM
by synthesizing multiple LP modes with phase differences much
smaller than π∕2. By distorting the few-mode fiber-LFPG (FMF-
LFPG), a series of LP11 modes with slight phase difference are
generated, and the mode conversion is finally achieved with a power
loss of 0.66 dB and a mode purity of 99%.

Both vector mode and LP mode coupling to OAM are based
on the idea of mode coupling. Some studies have shown that it is
possible to generate OAM patterns from a single CVB. Han et al.
[106] firstly coupled the input beam into a single first-order CVB
through the LPFG in tow mode fiber (TMF). After passing
through QWP and the polarizer, the first-order OAM beam is
generated by setting the angle of the polarizer. Compared to
OAM synthesized from beams of two modes, a single CVB
generates OAM with improved stability because it does not
require a specific phase relationship between the two modes.

Considering the helical phase properties of OAM beams,
helical long-period fiber gratings (HLPFG) are proposed
[107–109]. Due to the special structure of HLPFG, the vortex
phase can be directly excited without generating OAM beams
through PC, stress and other operations. Moreover, the resonant
wavelength of OAM can be adjusted when the HLPFG is twisted.
The introduction of HLPFG can reduce the complexity of optical
path, but the fabrication of grating is relatively complicated.

Fiber Bragg Grating
The fiber Bragg grating (FBG) is a reflective grating [95], and the
relationship between the Bragg wavelength and the grating period
is [96]:

λ � (neff1 + neff2)Λ (4)

Similar to LPFG, the research on FBG mainly focuses on
uniform period Bragg grating, tilted Bragg grating, and spiral
Bragg grating.

Wang et al. [110] used FBG to characterize OAM transmitted
in optical fibers. When the wavelength meets formula (4), the
OAM beam is reflected by the grating. Topological charge
reversal and circular polarization reversal can be observed.
Wang et al. also showed that the Bragg grating could be
applied to all fiber systems generating OAM.

Like TLPFG, the wavelength and period of the tilted FBG
are also related to the cosine of the tilt angle. By adjusting the
tilt angle, the resonant wavelength of the FBG can also be
changed. The FMF-TFBG designed by Zhao et al. [111]
realized the conversion of LP01 mode to LP11, LP21, LP02,
LP31 mode, and the conversion efficiency reached 90%. Then
by controlling the PC, a phase difference of π∕2 is generated
between the vector modes to form the corresponding OAM

mode. Yang [112] et al. designed a ring-shaped FMF system
containing TFBG. The ERID of the vector mode is very small,
and this method can form a stable LP-OAM (|l| � 1, 2, 3)
mode. When the four degenerate vector modes are reflected,
by adjusting the PC at the output end, the relative amplitude
and phase between the degenerate modes are changed to
generate a pure OAM mode.

The spiral FBG has the characteristic that the refractive index
of the spiral can be modulated, and the refractive index in the
lateral x direction and y direction has a phase shift of π∕2. Lin et al.
[113] fabricated a spiral FBG using a phase mask. Among them,
helical FBG is used for generating OAM beam, ytterbium-doped
fiber is used for beam gain amplification, and two FM-FBGs are
used to filter LP beams which cannot generate OAM mode.
Huang [114] believe that the mode propagation in ordinary
fiber will be degenerate, so they use RCF for transmission,
which improves the ERID of the vector modes and makes the
transmission of OAM more stable.

Mode Selective Coupler
The MSC is formed by splicing two kinds of fibers. The
principle is that the modes are coupled through the
evanescent wave between the fibers, and the fundamental
mode is transmitted in the single-mode fiber through the
MSC. High-order modes are coupled in the FMF. Similar to
the fiber grating, the fiber MSC also couples the low-order
mode to the high-order mode.

Due to the existence of degeneracy, at the output of some
mode selection couplers, PC or stress is usually added to change
the amplitude and phase relationship between high-order
degenerate modes to generate OAM beams [31, 115, 116].

The SMF-FMF mode selection coupler designed by Wang
et al. [115] realizes the coupling of LP01, LP11, and LP21, and
the principle is shown in Figure 12A. Based on this mode
selector, Wang et al. designed an all-fiber mode-locked fiber
femtosecond vortex beam laser, as shown in Figure 12B.
Zhang et al [31] demonstrated theoretically that the system
combined by SMF-FMF and squeezed PC can generate OAM
in arbitrary polarization states. They passed the resulting beam
through QWP and polarizing plates, demonstrating that the
system can selectively produce LP-OAM and CP-OAM. There
are other studies [116] that produced pure-state vector beams
by controlling the PC at the output of the SMF-FMF. The pure-
state vector beam was then passed through the QWP with the
polarizer and the OAM beam was output. Changing the
direction of the polarizer can obtain OAM with opposite
vortex direction.

There are also some studies that replace the FMF in the mode
selection coupler with other fibers which can generate the first-
order OAM directly at the output, such as SMF-ACF [117], SMF-
RCF [118], SMF-GIFMF [119] etc. The unique refractive index
distribution that these fibers have provides a high ERID.
Therefore it is possible to design MSCs so that the base mode
is coupled to generate OAM modes directly. The high-order
mode coupled out of the fundamental mode can be steadily
propagated in the fiber, and a higher purity OAM can be
produced without adding a PC at the output end.
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In terms of fiber splicing, there is also a different method
from the fiber splicing of the traditional mode selection
coupler. Jin et al. [120] used SMF spliced with lateral offset
to excite the HE21 mode in the RCF, and discussed the
relationship between the offset distance and the purity of
the mode. This method enables the first-order OAM beam
to be generated in a wide wavelength range of
1,540 nm–1580 nm. Li et al. [121] spliced SMF to TMF with
a specific offset and tilt angle, and realized high-order fiber
mode conversion through fundamental mode coupling.
However, the coupling efficiency of this splicing method is
only about 34%, and the structure needs to be optimized.

Helically Twisted PCF
Based on the three-dimensional structure of PCF, in 2012 Wong
et al. [122] proved for the first time that HT-PCF can excite OAM.
Due to the special structure of the helical twist, the loss, dispersion
and polarization state of the fiber can be controlled by changing
the twist rate and other parameters.

The HT-PCF designed by Fu et al. [93] stimulated OAM
modes with topological charges of +5 and +6 in the experiment.
They found that the leakage orbit resonance in the cladding is
closely related to the twist rate and length of the spiral PCF. The
fiber produced a high-quality OAM+6 at the resonant wavelength
with a coupling efficiency of −22.27 dB.

Yan et al. [123] designed HT-PCF for filtering. When the
distortion ratio reaches a certain value, the difference of
transmission loss between positive and negative OAM beams
will increase significantly. HT-PCF has the property of
transmitting vortex beams with the same chirality as the
hollow channels’, but dissipating vortex beams with opposite
chirality. They also implemented the filtering of OAMs with
different chirality in the experiment.

Acoustic-Induced Method
In 2006, Dashti et al. [124] studied the acousto-optic interaction
in optical fibers from the perspective of optical vortices and
acoustic vortices. The conversion of acoustic vortices and
optical vortices is:

AVnp + CVs
l−n,k5CVs

lm (5)

Among them, AV represents the OAM of the sound vortex. s
indicates the spin of the photon. l denotes the order of the
photon’s OAM. n indicates the order of the phonon’s OAM.
p,k and m indicate the radial mode order of the phonon or
photon. Based on this theory, Dashti conducted experiments to
generate AV∓ 1,0 by controlling the relative amplitude and phase
of the radio frequency. When the fundamental mode passes
through the acoustical driven generated AIFG, the
fundamental mode will couple into the first-order OAM mode
under acousto-optical conversion. However, due to the limitation
of the acoustic resonance frequency under the acousto-optic
phase matching, the device cannot generate high-order OAM
modes. Zhang et al. [125] completed the coupling of the
fundamental mode to the second-order OAM mode through
the cascaded sound drive method, as shown in Figure 13. Two
different frequencies of RF were used to induce two AIFGs
simultaneously in the fiber. when the fundamental mode
passed through, first-order and second-order OAM coupling
occurred in the first- and second-order AIFGs, respectively.

By changing the radio frequency, the mode conversion after
acousto-optic driving also shows wavelength tunability. Zhang
et al. [126] realized the generation of the first-order vortex beam
bymeans of acoustic drive in TMF, and achieved tunable wavelength
in the 1,540 nm–1560 nm wavelength range by changing the radio
frequency. In the entire wavelength tuning range, the mode
conversion efficiency is maintained at about 95%.

FIGURE 12 | (A) Schematic diagram of the LP mode coupling performed by MSC (B) The vortex beam laser designed by wang et al. [115].
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Multi-Coherent Beam Synthesis
Yan et al. [127, 128] proposed a method of synthesizing OAM using
input multiple coherent optical transmissions. As shown in
Figure 14A, the fiber coupler consists of a central ring and four
outer cores. The four coherent input lights pass through the four
outer cores and are coupled into OAMbeams, and the four coherent
lights need tomeet a certain phase difference.When the size of outer
core changes, the OAM mode will also change. The purity of the
OAM mode obtained by this coupling method is above 99%.

In the other way, multiple coherent Gaussian fundamental
modes are input to form OAM mode coupling, as shown in
Figure 14B. Yan et al. found that controlling the phase
relationship of multiple inputs can selectively generate OAM
modes of different states. Theoretically, it is proved that there is a
discrete Fourier transform relationship between the input
Gaussian mode channel and the output OAM channel, which
is suitable for OAM mode division multiplexing system.
However, this method of coherent optical coupling into OAM
mode requires high coherence for external light sources and
needs to meet the phase difference, so the practicality is less.

In addition to the methods mentioned above, there are some
other methods such as using a square-hole fiber to couple the
input fundamental mode into OAM [129], using a system
composed of a spiral symmetric fiber and a normal fiber to

generate OAM [130], and other special structured fibers.
However, the fabrication of these fibers is relatively
complicated, and therefore most of them are in the simulation
stage. Optical elements such as fiber gratings and MSCs can be
effective in generating OAM, and different studies have also
improved the ability of the system to generate OAM by
changing the properties of these optical elements. The existing
industrial level can manufacture fiber gratings and MSCs, and
both belong to fiber components, so they can be used to construct
fiber lasers for OAM. Besides, the acoustic-induced method
excites vortex light from the perspective of acousto-optical
interaction. The next experiment can start from the
perspective of acousto-optic conversion, cascading multiple
acoustic drivers to generate high-order OAM. In addition,
special optical fibers generating OAM usually has strict
requirements on fiber preparation and external light sources.
Although it is difficult to achieve, it provides a new idea for the
generation of OAM.

APPLICATION OF OAM

OAM has the characteristics of infinite orthogonal basis and
circular distribution of light intensity, which is different from

FIGURE 13 | (A) Schematic diagram of the principle of the secondary acoustic drive cascade (B) Schematic diagram of the experimental setup by Zhang
et al. [125].

FIGURE 14 | (A) Structure of the fiber coupler and the phase and polarization state of the input lights [127] (B) Generation of OAM modes of charge number l in a
ring fiber with N coherent Gaussian inputs [128].
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Gaussian beam. These characteristics make the OAM beam
closely related to cutting-edge disciplines, such as nonlinear
optics [131], optical communication [132, 133], particle
manipulation [134] and microscopic imaging [135].

Nonlinear Optics
The wavelength range of the OAM beam can be increased by
nonlinear frequency conversion, shifting the OAM carried by
fundamental frequency light to harmonics. In this process, both
the frequency and topological charge of the new OAM may
change [136]. Zhang et al. [8] proposed a method to generate
a high-order OAM vortex beam using relativistic harmonics on a
solid surface. And the first-order OAM beam was used to
irradiate and generate a high-intensity ninth-order vortex
beam. Wu [137] demonstrated theoretically and
experimentally that the OAM transformation is modulated by
a phase-matching mechanism for nonlinear effect. Fang et al
[138] demonstrated that the phase-matching conditions of the
OAM mode can be changed by varying the relative group
velocity, and proposed a new vortex fiber that can manipulate
the nonlinearity of the OAM beam.

In addition, Yang [139] proposed a novel OAM coding
technique. He used computational holography for the design
of nonlinear multiplexed holograms, which solved the multi-
channel multiplexing problem in nonlinear holography.

Optical Communication
The orthogonal basis contained in the OAM provides an
additional degree of freedom for communication coding, so
MIMO systems provide a suitable method for practical
information transmission. Based on MIMO, the transmission
capacity of OAM can be greatly increased by using multiplexing
methods such as space-division multiplexing (SDM) and wave-
division multiplexing (WDM).

During the transmission of SDM, inter-ring crosstalk affects
the transmission characteristics. Li et al. [140] designed an optical
fiber suitable for SDM transmission. This fiber consists of seven
uniformly arranged transmission rings, and each ring supports 18
OAM modes. The rings have high contrast ring structure, which
can not only improve the number of OAM support, but also well
limit the transmission of OAM crosstalk. The crosstalk between
rings is small to −30 dB through 100 km. Subsequently, Li et al.
[67] used a high contrast refractive index loop and groove design
to integrate 19 transmission rings in a single fiber and each ring
supports 18 OAM modes. The 100 km inter-ring crosstalk is less
than −45 dB. As with normal RCF, the high contrast refractive
index structure increases the ERID and constrains crosstalk, but
increases transmission loss.

During the MDM transmission process, inter-mode crosstalk
will occur, which will hinder the transmission of multi-mode
OAM. Using MIMO technology can solve the problem of inter-
mode crosstalk effectively [141]. By increasing the ERID between
mode groups, the cross-talk between modes and complexity of
MIMO technology can both be reduced. However, the use of
MIMO will further increase the complexity of the system.
Therefore, multiplexing systems without MIMO have become
a hot spot. By using optical fibers, the transmission of MDM

systems without MIMO can be realized, which simplifies the
complexity of the system [69, 142, 143].

Particle Manipulation
With a deeper understanding of the microscopic world, the
research on microorganism, single cell and other microscopic
levels requires the control technology of particles. The trapping
manipulation methods for particles include the traditional
mechanical tweezers and the modern optical tweezers.
Compared with mechanical tweezers, optical tweezers use non-
contact operation, and has the characteristics of small damage to
life and high repeatability. Gahagan et al. [144] used vortex beams
to trap and manipulate particles in a low refractive index
environment. Compared with traditional Gaussian beams,
vortex beams can support more kinds of particles to be
trapped and manipulated.

In the area of particle manipulation, there is also the optical
wrench technology that enables the rotation of particles. The
principle of conventional optical wrenches is to rotate the
particles by using the interactions that occur when the
particles absorb and reflect light and other processes. In
contrast, the OAM optical wrenches transfer spin angular
momentum and OAM to the captured particle directly,
enabling three-dimensional translation and one-dimensional
rotation of the particle [145]. Therefore, the OAM optical
tweezers are convenient to operate and suitable for more
particles. Gao et al. [146] realized the capture, translation and
rotation of particles using OAM beams. Lehmuskero et al. [147]
used a vortex beam to irradiate plasma gold particles, which
rotated rapidly along a circular orbit. It was measured that there
was a relationship between the particle rotation frequency and
OAM, and a transfer of both occurred during the action.

In addition, OAM exhibit unique quantum entanglement
properties due to the infinite dimensional Hilbert space
constituted by the orthogonal basis of the OAM. Therefore
OAM also has a wide range of applications in the quantum
field [148, 149]. OAM has an important role in the field of optical
microscopy because of its spiral phase feature that enhances the
imaging of objects and its unique interference fringes [150, 151].

CONCLUSION

There are many research directions of fiber-based OAM
transmission and generation systems, and some researches
continue to make changes in fiber structure and optical
devices to make the all-fiber system better support OAM
mode. At present, PCF and RCF have become the hotspots of
OAM fiber optic transmission system because of their good
transmission characteristics. The number of modes,
transmission efficiency and transmission distance of OAM
need to be further improved to meet the needs of the
information society.

For OAM fiber generation system, there are some
generation systems with high requirements for fiber
structure and external light source, which are not practical
due to insufficient preparation process. Therefore, the use of
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fiber grating, MSC and other fiber structures with relatively
mature preparation process is a hot research topic. The current
all-fiber OAM generation system still has some problems for
generating multiple OAM modes. A complete system for
generating multiple high-purity OAM modes is also
necessary to implement multiplexing technologies such as
MDM and SDM.

Overall, there is a lot of room for improvement in fiber-based
OAM transmission and generation systems. At the same time, the
fiber system has great potential for OAM mode support [80–84].
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