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In this paper, a landmark based approach, using five different interpolating polynomials (linear,
cubic convolution, cubic spline, PCHIP, and Makima) for modeling of lung field region in 2D
chest X-ray images have been presented. Japanese Society of Radiological Technology
(JSRT) database which is publicly available has been used for evaluation of the proposed
method. Selected radiographs are anatomically landmarked using 17 and 16 anatomical
landmark points to represent left and right lung field regions, respectively. Local, piecewise
polynomial interpolation is then employed to create additional semilandmark points to form the
lung contour. Jaccard similarity coefficients and Dice coefficients have been used to find
accuracy of the modeled shape through comparison with the prepared ground truth. With the
optimality condition of three intermediate semilandmark points, PCHIP interpolation method
with an execution time of 5.04873 s is found to be the most promising candidate for lung field
modeling with an average Dice coefficient (DC) of 98.20 and 98.54% (for the left and right lung
field, respectively) and with the average Jaccard similarity coefficient (JSC) of 96.47 and
97.13% for these two lung field regions. While performance of Makima and cubic convolution
is close to the PCHIP with the same optimality condition, i.e., three intermediate semilandmark
points, the optimality condition for the cubic spline method is of at least seven intermediate
semilandmark points which, however, does not result in better performance in terms of
accuracy or execution time.

Keywords: cubic convolution, cubic spline, Makima, PCHIP, piecewise polynomial, chest X-ray, linear interpolation,
lung shape modeling

1 INTRODUCTION

The chest X-ray imaging is still one of the most preferred techniques that radiologists and medical
practitioners use to diagnose the lung diseases in their daily routine checkups due to its low cost and
easy availability. Due to this reason, the accurate detection and segmentation of the lung field region
are of prime importance for any biomedical image analysis procedures [1–3]. Delineation of the lung
field is a prerequisite for any chest-image analysis procedure. However, delineation is a very tedious
and time-consuming procedure that may be prone to subjective bias. Therefore, an automated
solution for the lung field segmentation is needed [4]. The development of an automated solution for
the lung field segmentation is challenging due to intensity variations across the edges and
overlapping of the other anatomical structures. As chest X-rays are low contrast images, the
lung regions cannot be differentiated from the background and hence the classical approaches
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like thresholding and edge detection algorithms are not sufficient
enough for the lung field segmentation. The author in Ref. [5]
provided an intuitive method to solve this problem by
representing a shape as a set of discrete labeled points and
referred to these points as landmarks. Each labeled point
represents a particular part of the shape or its boundary and
captures certain distribution in the shape space. But in practice, it
is very time-consuming. Labeling a set of landmark points to
model a shape in the shape space is referred as point distribution
model (PDM) [6,7]. The modeled shape takes a considerable
amount of landmark points to form a curve. Thus, the point
distribution model inevitably reduces the number of points that
may use to represent a shape. Clearly, these labeled sets or the
number of landmark points do not represent any salient feature of
anatomical significance, but a part of the curve or boundary of the
anatomical shape. However, this method (PDM) has some
undesirable consequences. First, users are forced to put many
landmark points to smooth out the curve in every training
example. Second, the landmark points may lose their
characteristics as true landmark point as they do not represent
any salient feature of the object. The above said problem can be
minimized by taking only a few landmark points that must
characterize some anatomical significance of the lung field
region. These significant anatomical landmark points are then
interpolated to get a close approximation of the original lung field
shape. The accurate delineation of the lung field requires the
anatomical knowledge of chest radiography to incorporate the
expected shape that may work as a priori information in active
shape modeling (ASM).

To delineate the lung fields, the author in Ref. [8] used 50
landmark points for the left lung and 44 landmark points for the
right lung representation. They also used 26 landmark points for
the heart shape representation and a pair of 23 landmark points
for the left and right clavicle’s (left and right) representation. Each
object and landmark point was defined by manual annotation,
and no interpolation method was employed. The author in Ref.
[9] proposed a lung segmentation methodology by capturing
salient points around the lung fields by subsequent application of
simple intensity and edge feature extraction techniques. The
detected salient points are then interpolated using Bezier
curves to approximate the lung field boundaries. In Ref. [10],
Shao et al. presented a joint shape and appearance sparse learning
method to segment out lung field from the chest radiographs.
They used a total of 14 labeled points (6 for the right lung and 8
for the left lung) to get a rough idea of both the lung regions. They
termed these labeled sets as “landmarks.” Few more points were
also annotated between these landmark points, and they termed
these labeled sets as “points.” However, the authors did not
provide any information about the number of points they
used to represent the lung field regions. The author in Ref.
[11] presented a customized active shape model to extract the
lung regions from the chest X-ray images. They employed an
average active shape model, gray scale projection, and affine
registration to obtain the initial lung contours. After that, an
objective function is defined to push the vertices of the active
shapemodel to the real lung edges to get a more balanced distance
distribution of vertices. They used 44 and 50 landmark points to

represent the left and the right lung regions for the lung field
segmentation. The annotated set of landmark points was
manually defined and interpolation was not employed. The
author in Ref. [12] presented an automatic lung field
segmentation method using an improved statistical shape and
appearance model. They used 6 landmark points to locate each
lung region and then applied a gray-level intensity based method
to locate and initialize the lung shape model. They used the
intensity profile model to create boundary landmark points and
later these landmark points were interpolated by a cubic spline
interpolation method. In Ref. [13], the authors used the set of
labeled points to train their algorithm for the automatic lung field
segmentation using active shape modeling (ASM) in the single-
photon emission computerized tomography (SPECT) images and
validated this automatic SPECT segmentation against computed
tomography (CT) images as well as manually delineated SPECT
images. But the method does not explain the type of interpolation
mechanism that they used. In Ref. [14], the authors used 144
annotated boundary points (72 per left/right lung) to construct a
statistical shape model of the lung field. Specifically, they used six
manually annotated primary landmark points based on the
appearance of the lung field and then secondary landmarks
were estimated along the lung contour using interpolation
between the manually annotated primary landmarks. However,
it is noted that the other anatomical structures that overlap with
the lung field region were not excluded in their method, and the
type of the interpolation method was not defined. All these
authors used the landmark selection method to segment out
lung field regions from the chest radiographic images. However,
these authors could not explain the number of interpolating
points (secondary landmarks) that is needed to approximate
the lung field regions with the highest similarity index.

The landmarking method is also employed to delineate other
anatomical structures like the heart, liver, femur, etc., in CT,
SPECT, and other medical imaging techniques. The authors in
Ref. [15] reported a general multi-resolution framework for the
statistical modeling of multi-object structures. The authors in Ref.
[16] proposed a dual active shape model for the segmentation of
heart’s right ventricle (RV) boundary. The authors in Ref. [17]
presented an automatic liver segmentation method using the
shape modeling methods in computed tomography (CT) images.
The authors in Ref. [18] used landmark based method for
extracting prostate boundaries from the 2D transrectal
ultrasound (TRUS) images by using a partial active shape
model (PASM). The authors in Ref. [16] introduced an ASM-
based framework for motion correction of myocardial T1
mapping in magnetic resonance imaging (MRI). Clearly,
landmarking is the first stage of any automated computer
aided diagnostic (CAD) system that tries to identify the
anatomical region. The landmark based method’s major
strength is that it represents a shape as a set of discrete
labeled points. The landmark based method is highly
applicable for the cases where the visibility of the boundary is
obscured or cannot be differentiated from the background, which
is always the case of low contrast imaging like X-ray and
ultrasound imaging. The landmark based point distribution
model finds numerous applications in active shape modeling
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(ASM), active appearance modeling, deep learning (DL), and
machine learning (ML) models for the registration and
segmentation applications in medical imaging. However, there
are some limitations of this method that preclude their accurate
clinical application. The model based methods assume that the
shape information and intensity information between the
training images and the new image to be segmented are
similar to each other. Unfortunately, this assumption can often
be invalid due to the variability of the lung’s anatomy among the
individuals in the application stages.

In this paper, a set of landmark points based on the
anatomical properties of the left lung region and right lung
field regions are explored. Our contributions in this paper are
1) identification of the number of anatomical landmark points
in the thorax region for the left and right lung field modeling,
2) identification of the optimality condition of each of the
interpolating polynomial to model left and right lung field
region, and 3) identification of the most suited interpolating
polynomial that models the left and right lung field region with
highest similarity index by producing least number of
secondary landmark points. Exploring the optimality of
piecewise polynomials has an added advantage over
selecting a random number of semilandmark points. It
minimizes the number of interpolating points and hence
reduces the computational complexity of the processing
algorithm. Knowing the minimum number of interpolating
points is highly beneficial in real-time medical imaging
applications requiring less computational complexity.
However, one disadvantage of landmark based study is that
the number of available landmark points can sometimes be
insufficient to capture the shape of an object.

The remainder of this paper is organized as follows:
Section 2 provides the mathematical foundation of the
lung shape modeling and Section 3 discusses the
interpolation methods that mainly highlight the different
categories of piecewise cubic interpolating polynomial that
we have used in this literature. Section 4 discusses the
methods under which the images are landmarked, and,
finally, Section 5 and Section 6 discuss the simulation
results and conclusion, respectively.

2 LUNG SHAPE MODELING

Let each shape in the training set be represented by a set of K
number of landmark positions that must be consistent from one
shape to the next. Here, the consistency employs that each
particular landmark point must be placed on the same site as
it was on the first image. That means, each particular landmark
point represents a specific location of the lung field boundary.

To model a lung field shape, let each annotated landmark
point be represented by the coordinate position (xj, yj) in the two
dimensional space R2. If each shape is annotated by K number of
landmark points, then the modeled shape in terms of coordinate
positions for the ith shape is defined by [19]

Si � (xij, yij); where j � [1/K] (1)

These coordinate position Si � ((xi1, yi1), (xi2, yi2), . . . ,
(xik, yik)) in a shape vector form can be represented as

Si � xi1, yi1, xi2, yi2, . . . , xik , yik[ ] (2)

that is further rearranged as a set of 2K vector:

Si � xi1, xi2, . . . , xik , yi1, yi2, . . . , yik[ ]T (3)

or Si � Six, Siy[ ]T ∈ R2K×1 (4)

where

Six � [xi1, xi2, . . . , xik] ∈ RK×1 (5)

Siy � [yi1, yi2, . . . , yik] ∈ RK×1 (6)

If there are L number of training examples, then the
configuration matrix S ∈ R2K×L can be written as

S � [S1, S2, . . . , SL] ∈ R2K×L (7)

3 INTERPOLATION METHODS

Modeling or building a shape requires the function to be
continuous. This creates a real problem if the modeling
function consists of a set of discrete data points (landmark
points). Therefore, it requires to construct a continuous
function based on discrete data points. Here, an attempt is
made to examine different interpolation techniques that fit the
shape in a continuous manner from a set of discrete landmark
points. Interpolation helps to construct a continuous function
from a set of discrete data points. It is to be noted that, these
interpolation techniques [20] only provide the conditions
under which the lung field regions are modeled. The
methods do not provide any solution to the explained
techniques.

Given K number of landmark points (xj, yj) in the 2D-plane
R2, the interpolating polynomial is defined as

P(xj) � yj; j � (1, . . . , k) (8)

where x � (x1, . . . , xk) are the interpolation points and P(xj) is the
interpolating polynomial of the landmark point (x1, y1), (x2, y2),
. . ., (xk, yk). Solving a fitting polynomial P(xj) that fits the
landmark point (xj, yj) is equivalent to solving a system of
linear equation

ASix � Siy (9)

where A is a Vandermonde matrix.

3.1 Piecewise Polynomial Interpolation
A quite natural and different approach to approximate a function
on an interval is to first split the interval into subintervals and
then approximate the function by a polynomial of fairly low
degree on each subinterval.

Given K number of landmark point (xj, yj) ∈ R2 with the
condition x1 < x2 < / < xk, the one dimensional piecewise
interpolant in terms of piecewise function can be defined as
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P(x) � Pj(x), x ∈ xj, xj+1[ ] (10)

where Pj(x) is at least continuous everywhere in [xj, xj+1].
Continuity condition should hold at every data point,

Pj(xj+1) � Pj+1(xj+1) (11)

A piecewise polynomial function is defined as

Pj(x) � ∑k
r�1

ajr x − xj( )r (12)

Hence, the piecewise polynomial interpolation problem is to
determine the coefficients ajr for all of the intervals such that the
resulting interpolant has desirable properties.

3.2 Linear Interpolation
Piecewise linear interpolation [21] is by far the most popular
interpolation technique that finds numeral application in signal
and image processing due to its faster performance.

If t is the local variable given by t � x − xj, x ∈ [xj, xj+1], then
the divided difference δj is

δj � yj+1 − yj

xj+1 − xj
; j � 1/(k − 1) (13)

The piecewise linear interpolation is then piecewise straight
lines connecting two consecutive points of the interval (xj, xj+1).
The interpolant in the interval (xj, xj+1) is then

P(x) � yj + x − xj( )yj+1 − yj

xj+1 − xj
(14)

or

P(x) � yj + tδj (15)

clearly, this equation represents a function of straight line that
passes through the landmark positions (xj, yj) and (xj+1, yj+1).

3.3 Cubic Convolution Interpolation
The cubic convolution interpolation [22–24] function is obtained
by imposing certain conditions on the interpolation kernel. The
kernel is mainly composed of piecewise cubic polynomials
defined over the unit subintervals [−2, 2].

For equally spaced data, the interpolation function can be
defined as

P(xj) � ∑ cju
x − xj

h
( ); j � 1, 2, . . . , k (16)

where cj are the coefficients to be determined and depend on the
sampled data, uj is the kernel basis function, and h is the sampling
interval. The cubic convolution interpolation is obtained by
setting certain conditions on the kernel to maximize the
accuracy. Keys [22] defined the cubic convolution
interpolation kernel in terms of piecewise cubic polynomials
over the subintervals (−2, −1), (−1, 0), (0, 1), and (1, 2).
Outside this interval, the interpolation kernel is assumed to be
zero. By imposing this condition, the number of data samples that

evaluates the interpolation function is reduced to four. Therefore,
the kernel u will have the form:

u(s) �
(a + 2)|s3| − (a + 3)|s|2 + 1, 0≤ |s|≤ 1
a|s|3 − 5a|s|2 + 8a|s| − 4a, 1≤ |s|≤ 2

0, 2≤ |s|

⎧⎪⎨⎪⎩ (17)

with u(0) � 1 and u(n) � 0 where n is a nonzero integer. As h is the
sampling interval between two nodes, the difference between the
two interpolating nodes say xj and xr will be (j—r)h. Now, if x is
substituted by xj in Equation 16, then Eq. 16 will take the form:

P(xj) � ∑ cju(j − r); j � 1, 2, . . . , k (18)

Now, if xr � xj+1, then Eq. 19 will have the form:

P(xj) � ∑ cju(j − (j + 1)); j � 1, 2, . . . , k (19)

3.4 Cubic Spline Interpolation
Among the spline functions, the cubic spline functions [25–28]
are the most preferred functions. The cubic spline functions fit
the data very smoothly. More importantly, they do not have an
oscillatory behavior that is common for higher order degree
polynomials associated with interpolation, as the cubic
Lagrange interpolation polynomial produce. A cubic spline is
defined by

Q4(x) � aj + bjx + cjx
2 + djx

3 (20)

where xj−1 ≤ x ≤ xj for j � 1, 2, . . . , K.
Clearly, the above equation contains four unknowns for each

spline, aj, bj, cj, and dj, for a total of 4K unknowns over the whole
interval.

The cubic spline interpolation must have a second order
derivative and should satisfy the continuity condition

Pj″ xj+1( ) � Pj+1″ xj+1( ) (21)

over the interval [xj, xj+1]. This requires that P(xj), P′(xj), and
P′′(xj) are continuous over the interval [xj, xj+1]. To find the
interpolating function, the coefficients aj, bj, cj, and dj must be
determined for each of the cubic function. For K number of
landmark points, there will be ( −1) cubic functions and each
cubic function requires four coefficients. Hence, there is a total of
4(K−1) unknowns. So, to get all the coefficients 4(K−1),
independent equations are required. To get these coefficients,
certain conditions need to be assumed. The first two conditions
for each spline are as follows:
1) The piecewise cubic function Q(x) must intersect each and

every landmark data points (left and right). This requires

Q(xj) � yj, j � 1, . . . , (K − 1) (22)

2) Moreover, Q(x) must be continuous on the interval [x1, xk]
which conclude that each sub-function must join at the
landmark data points, i.e.,

Qj(xj) � Qj−1(xj), j � 1, . . . , (K − 1) (23)
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These two assumptions give 2(K−1) equations. As each cubic
function has to join smoothly to its nearest neighbors, the first
and second derivatives are constrain to be continuous.
3) Q′(x) must be continuous on the interval [x1, xk] to make the

curve smooth across the interval, i.e.,

Qj′(xj) � Qj−1′ (xj), j � 1, . . . , (K − 2) (24)

4) Q”(x) will be continuous on the interval [x1, xk]. Therefore,
Qj″(xj) � Qj+1″ (xj), j � 1, . . . , (K − 3) (25)

which gives us 2(K−2) equations. Hence, we get a total of (4K−2)
equations and is therefore under-determined. In order to get a
cubic spline function, two other conditions must be imposed to
get 4K equations.

As our purpose is to get a closed contour of the lung field, the
following periodic constraints are imposed (also known as
periodic conditions).
5)

Q1′(x1) � Qk−1′ (xk) (26)

6)

Q1″(x1) � Qk−1″ (x1) (27)

3.5 Piecewise Cubic Hermite Interpolation
Piecewise cubic Hermite interpolation polynomial (PCHIP)
[29,30] is a third order polynomial which has a shape
preserving characteristic by matching only the first order
derivatives at the data points with their neighbors (before and
after) [31]. This characteristic makes it differ from the cubic
spline function.

If hj is the length of jth subinterval given by

hj � xj+1 − xj (28)

then the divided difference δj will be

δj � yj+1 − yj

hj
(29)

If ζ j is the slope of the interpolant at xj, then

ζj � P′(xk) (30)

In shape preserving PCHIP function, the idea is to restrict the
overshoot locally by determining the slope dj.

It is to be noted that, if δj and δj−1 are of opposite signs or either
of the term is zero, then xj will be a discrete local minimum or
discrete local maximum. So, we constrain the ζ j to be zero, i.e., ζ j �
0, and, if δj and δj−1 are of the same sign and are of the same
interval size, then ζ j is calculated using harmonic mean

1
ζj

� 1
2

1
δj−1

+ 1
δj

( ) (31)

However, if δj and δj−1 are of the same sign but of different
interval lengths, the δj will be a weighted harmonic mean lead by
the expression

w1 + w2

ζk
� w1

δj−1
+ w2

δj
(32)

where w1 � 2hj + hj−1 and w2 � hj + 2hj−1.

3.6 Makima Piecewise Cubic Hermite
Interpolation
The Akima interpolation [32] between the interval [xj, xj+1]
mimimizes the wiggling by selecting the derivatives as a linear
combination of nearest slopes

ζj � |δj+1 − δj|δj−1 + |δj−1 − δj−2|δj
|δj+1 − δj| + |δj−1 − δj−2| (33)

where δj � yj+1−yj

xj+1−xj is the slope of the interval [xj, xj+1].
For any landmark point xj, the Akima takes five neighbors

landmark point xj−2, xj−1, xj, xj+1, and xj+2 to calculate the Akima
derivative. However, the Akima interpolant function suffers from
two major problems. First, if lower and upper slopes become
equal, i.e., δj−2 �, δj−1, and δj � δj+1, both the numerator and
denominator become zero and hence Akima derivative will have
no solution. Second, the Akima interpolant produces overshoot
or undershoot when the data are constant for the two consecutive
nodes. To overcome these two problems, a modified Makima
interpolation was introduced [33].

To avoid these two conditions, Eq. 33 is later modified to

ζj � w1

w1 + w2
δj−1 + w2

w1 + w2
δj (34)

where

w1 � |δj+1 − δj| + |δj+1 + δj|
2

(35)

and

w2 � |δj−1 − δj−2| + |δj−1 + δj−2|
2

(36)

Clearly, ζ j � 0 when δj � δj+1 � 0, i.e., ζ j � 0 when yj � yj+1 � yj+2
and hence the conditions prevent the equation from an overshoot
or undershoot in case of constant data for more than two
consecutive nodes [34].

4 METHODS

In our method, the radiographs which are anatomically
similar in all aspects are chosen to study the performance
of the different interpolating polynomials in modeling of the
lung field region. A publicly available JSRT dataset [35] has
been used to study performance of each interpolating
polynomial.

1) JSRT dataset: this dataset contains 247 posteroanterior (PA)
chest X-ray images compiled by the Japanese Society of
Radiological Technology (JSRT). Out of the 247 chest X-ray
images, set of 154 images has lung nodules (100 malignment
cases, 54 benign cases) and set of 93 images has no lung nodules.
These images are of the size of 2048 × 2048 pixels with a gray scale
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color depth of 12 bits and a pixel spacing of 0.175 mm in the
horizontal and vertical directions.

The selected posteroanterior (PA) chest X-ray images are first
downsampled to a pixel size of 512 × 512. A negative
transformation is then applied to highlight the lung field
regions. The images are then annotated using 17 anatomical
landmark points for the left lung and 16 landmark points for the
right lung field region, as shown in Figure 1. The ground truth of
the lung field regions are prepared for the selected set of images to
compare the performance of different interpolating polynomials.
The annotation of the ground truth is done by a clinical
radiologist using the Image Segmenter application present in
the Image Processing and Computer Vision toolbox in the
MATLAB R2018b. The annotation is done by tracing the
curve around the lung field regions in the Image Segmenter
application. The landmark points defined for the left lung
region are grouped into the set of left costal edge (1L–5L), left

apical region (5L, 6L, 8L, 9L, and 10L), descending aorta/aortic
arc (11L–14L), heart’s left ventricle boundary (14L–16L) and the
left hemidiaphragm (16L, 17L and 1L) for the left lung region.
Similarly, the landmark points defined for the right lung are
grouped into the set of right coastal edge (1R–6R), right apical
region (6R, 7R, 9R, 10R, and 11R), superior vena cava (11R–13R),
heart’s right ventricle boundary (13R–15R), and right
hemidiaphragm (15R, 16R, and 1R) for the right lung field
region. Here, the landmark points 7L and 9L are used to
represent the left clavicle in combination with the landmark
points 6L and 10L. Similarly, the landmark points 8R and 10R
in combination with 7R and 11R are used to represent the right
clavicle region. These two regions, the left clavicle and the right
clavicle (each of which includes four landmark points), are
included mainly for the study of landmark based post-
processing. It may be noted here that the region above the
lung apices, region below the hemidiaphragms, and the

FIGURE 1 | Selected images from JSRT dataset, ground truth of the left and right lung field regions, and the placement of manually annotated anatomical landmark
points after negative transformation.
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FIGURE 2 | Lungs region formation: ground truth (red) and the modeled shape (green) using different interpolating polynomials with 1, 3, and 10 intermediate
semilandmark point(s) of the selected image dataset JPCLN001.
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FIGURE 3 | Lungs region formation: ground truth (red) and the modeled shape (green) using different interpolating polynomials with 1, 3, and 10 intermediate
semilandmark point(s) of the selected image dataset JPCLN007.
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FIGURE 4 | Lungs region formation: ground truth (red) and the modeled shape (green) using different interpolating polynomials with 1, 3, and 10 intermediate
semilandmark point(s) of the selected image dataset JPCLN083.
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mediastinum that encloses the heart, superior vena cava,
descending aorta, etc., are not included in the present study. A
side by side comparison of one lung region to the other gives
important information about the shape dissimilarity like lung’s
contraction or expansion that helps to analyze different lung

diseases [36,37]. Subdividing these regions into different
segments may give a better analysis of the diseases. To make
these regions independent, the lung regions can be subdivided
into three different regions, namely, the apex and medial and
lower regions, by defining few co-linear landmark points at the

FIGURE 5 | Jaccard similarity coefficients of the modeled shape with different piecewise polynomial interpolation methods of the left and right lung field regions of
the image datasets JPCLN001, JPCLN007, and JPCLN083.

FIGURE 6 | Dice similarity coefficients of the modeled shape with different piecewise polynomial interpolation methods of the left and right lung field regions of the
image datasets JPCLN001, JPCLN007, and JPCLN083.
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coastal edges. To fulfil these criteria, the landmark points 2L,
3L, 4L, and 5L that belong to the left coastal edge are made co-
linear with the landmark points 16L, 15L, 14L, and 10L,
respectively. Similarly, the landmark points 2R, 3R, 4R, 5R,
and 6R that belonging to the right coastal edge are made co-
linear with the landmark points 15R, 14R, 13R, 12R, and 11R,
respectively.

4.1 Evaluation Metrics
In order to compare the different interpolation techniques, two
different performance measures, namely, Jaccard similarity
coefficient and Dice similarity coefficient [38], are used that
evaluate the quality of delineation and interpolation.

1) Jaccard similarity coefficient (JSC): the Jaccard similarity
coefficient or Jaccard index (J) between the ground truth
shape and the interpolated shape is defined as

J � |SIS ∩ SGT|
|SIS ∪ SGT| (37)

2) Dice coefficient (DC): the Dice coefficient between the ground
truth shape and interpolated shape is defined as

D � 2
|SIS ∩ SGT|
|SIS| + |SGT| (38)

where SGT is the region enclosed by the ground truth shape and
SIS is the region enclosed by the interpolated shape. The Jaccard
coefficient and Dice coefficient between the two shape instances
give us an idea of how similar the two sets are. The JSC and DC
take a value between [0, 1]. The zero indicates that the two shape
instances do not coincide with each other, whereas one indicates
that the two shape instances completely coincide with each other.

3) Execution time: estimating the execution time often
becomes mandatory when evaluating the performance of
an algorithm. Knowledge about the execution time of
program is of utmost importance in selecting an
appropriate method that models the lung field shape
within a specified amount of time. The polynomials that
take a longer time than the specified amount of time cannot
be preferred for the lung field modeling.

5 SIMULATION RESULT

In this work, five different interpolating polynomials are
studied for the left and right lung field modeling using a set
of discrete labeled points called anatomical landmark
points. For this purpose, three similar radiographs from
the publicly available JSRT dataset are selected. We
identified and selected 17 anatomical landmark points for
the left lung region and 16 anatomical landmark points for
the right lung region in the selected set of images, as shown
in Figure 1. As the selected landmark points are not
sufficient to form the lung contour, piecewise
interpolating polynomials are used to create additional
intermediate semilandmark points between each pair of
the consecutive landmark points. Our intention is to get a
shape of highest similarity index by interpolating minimum
number of the secondary landmark points (i.e., intermediate
semilandmarks). Hence, an analysis is made to find a shape

TABLE 1 | Jaccard’s and Dice’s coefficients of different interpolation schemes with their optimality condition.

Sl.
No.

Interpolation
type

No. of intermediate
semilandmarks to
meet optimality

condition

Image dataset

JPCLN001 JPCLN007 JPCLN083

Left lung Right lung Left lung Right lung Left lung Right lung

JSC DC JSC DC JSC DC JSC DC JSC DC JSC DC

1 Linear NA 0.9396 0.9689 0.9581 0.9786 0.9528 0.9758 0.9601 0.9796 0.9685 0.9840 0.9513 0.9751
2 Cubic

Convolution
3 0.9471 0.9728 0.9645 0.9819 0.9590 0.9790 0.9728 0.9862 0.9755 0.9876 0.9635 0.9814

3 Cubic Spline ≥7 0.9400 0.9691 0.9695 0.9845 0.9493 0.9740 0.9765 0.9881 0.9683 0.9839 0.9632 0.9812
4 PCHIP 3 0.9514 0.9751 0.9694 0.9845 0.9675 0.9835 0.9742 0.9869 0.9753 0.9875 0.9702 0.9849
5 Makima 3 0.9478 0.9732 0.9671 0.9833 0.9640 0.9817 0.9729 0.9863 0.9763 0.9880 0.9666 0.9830

FIGURE 7 | Simulation time of different interpolating polynomials.
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of highest similarity index by interpolating a minimum
number of intermediate semilandmark points. For this
purpose, the piecewise interpolating polynomials are used
for obtaining 1–15 intermediate semilandmark points
between each pair of the consecutive landmark points.
Performance of each interpolating polynomial is
evaluated for intermediate semilandmarks—varying in
number from 1 to 15—formed between each pair of the
consecutive landmark points. Figure 2 shows the lung shape
modeling of the image data set JPCLN001 using selected
interpolating polynomials with linear, cubic convolution,
cubic spline, PCHIP, and Makima interpolation methods,
respectively, using one, three, and ten intermediate
semilandmark point(s). A similar attempt is also made to
represent two other sets of images in Figures 3, 4 with the
selected interpolating polynomials using one, three, and ten
secondary landmark point(s). Here, red and green contours
are used to represent ground truths and lung field
boundaries obtained using different interpolating
polynomials, respectively. Performance of each
interpolation method is evaluated, for the left and right
lung field modeling, against the number of intermediate
semilandmark points, in terms of Jaccard similarity
coefficient and Dice coefficient. Figure 5 shows the
performance of each interpolating polynomial in terms of
Jaccard similarity coefficient and Figure 6 is used to
represent their performance in terms of Dice coefficient.
A tabular form of the different interpolating polynomials for
which Jaccard’s and Dice’s coefficients remain optimal with
the minimum required condition is shown in Table 1. Here,
optimality refers to a situation in which JSC and DC attain
the best or most favorable value beyond which no such
significant change is sought. The optimality condition
refers to a condition that is required (in terms of the
minimum number of intermediate semilandmark points
between each consecutive anatomical landmark pair) for
the JSC and DC to attain the best or most favorable value.
The execution time of these interpolating polynomials is
evaluated for the three intermediate semilandmark points
and is shown and compared in Figure 7. The simulation
work is carried out using MATLAB R2018b installed under
the Fedora Linux kernel version 5.6.13-300.fc32.x86_64 in
HP ENVY 15-k004tx Notebook PC with the configuration of
1.7 GHz Intel Core i5-4210U processor having Intel HD
Graphics 4400 and 8 GB of RAM.

6 CONCLUSION

Here, we have presented an effective method of anatomical
landmark point selection and their minimization and modeling
of the lung field shape using five different interpolation
techniques, namely, linear, cubic convolution, cubic spline,
PCHIP, and Makima. Each interpolation method is applied
locally with a certain number of intermediate semilandmark
point(s) between each consecutive anatomical landmark pair.
We measured and compared the modeling performance of each

interpolation technique with the prepared ground truth in terms
of Jaccard similarity coefficient (JSC) and Dice coefficient (DC).
The modeled shape using linear interpolation method with an
execution time of 4.97954 s ensures a shape of minimum
similarity index (with an average JSC of 95.36 and 95.65%
and with an average DC of 97.62 and 97.78% for the left and
right lung fields, respectively) and has no impact of increasing
the number of intermediate semilandmark points. Therefore,
optimality condition for the linear interpolation method cannot
be defined. However, for PCHIP and Makima interpolation
methods, an incremental change in JSC and DC is observed as
the number of intermediate semilandmark points between each
consecutive anatomical landmark pair increases from one to
three intermediate semilandmark point(s). As soon as the
number of intermediate semilandmark points increases
beyond three, no significant change in JSC and DC is
observed. Hence, with a minimum of three intermediate
semilandmark points, the JSC and DC reach the optimal
value in case of PCHIP and Makima interpolation methods
with an execution time of 5.04873 and 5.07105 s, respectively.
The case with cubic convolution is no exception to this and here
also the optimal values of JSC and DC are attained with a
minimum of three intermediate semilandmark points with an
execution time of 5.05548 s irrespective of the incremental or
decremental change between one and three intermediate
semilandmark point(s). The cubic spline method, however,
does not follow the same trend and a gradual decrease or
damping is observed in JSC and DC when the number of
intermediate semilandmark points is below seven. The cubic
spline method takes at least seven intermediate semilandmark
points to produce an optimum result. From the
experimentation, it is concluded that the PCHIP
interpolation method is the most promising candidate for
shape modeling of the lung field region with an average JSC
of 96.47 and 97.13% and with an average DC of 98.20 and
98.54% for the left and right lung fields, respectively, with the
optimality condition of three intermediate semilandmark
points. The Makima interpolation method is not far behind
and it modeled the shape with an average JSC of 96.27 and
96.87% and with an average DC of 98.10 and 98.42% for the left
and right lung fields, respectively, with the optimality condition
of three intermediate semilandmark points. The cubic
convolution interpolation method takes an average JSC of
96.05 and 96.69% and average DC of 97.98 and 98.32% for
the left and right lung field modeling, respectively, with the
optimality condition of three intermediate semilandmark
points. In contrary to the above stated methods that have the
optimality condition of three intermediate semilandmark
points, the cubic spline method takes an average JSC of 95.25
and 96.97% and an average DC of 97.56 and 98.46% for the left
and right lung field modeling, respectively, with the optimality
condition of at least seven intermediate semilandmark points.
The cubic spline method remains the weakest candidate for the
lung field modeling due to longer execution time of 5.22529 s for
the three intermediate semilandmark points and the high
optimality condition of at least seven intermediate
semilandmark points.
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