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The influence maximization problem over social networks has become a popular research
problem, since it has many important practical applications such as online advertising,
virtual market, and so on. General influence maximization problem is defined over the
whole network, whose intuitive aim is to find a seed node set with size at most k in order to
affect as many as nodes in the network. However, in real applications, it is commonly
required that only special nodes (target) in the network are expected to be influenced,
which can use the same cost of placing seed nodes but influence more targeted nodes
really needed. Some research efforts have provided solutions for the corresponding
targeted influence maximization problem (TIM for short). However, there are two main
drawbacks of previous works focusing on the TIM problem. First, some works focusing on
the case the targets are given arbitrarily make it hard to achieve efficient performance
guarantee required by real applications. Second, some previous works studying the TIM
problems by specifying the target set in a probabilistic way is not proper for the case that
only exact target set is required. In this paper, we study the Multidimensional Selection
based Targeted Influence Maximization problem, MSTIM for short. First, the formal
definition of the problem is given based on a brief and expressive fragment of general
multi-dimensional queries. Then, a formal theoretical analysis about the computational
hardness of the MSTIM problem shows that even for a very simple case that the target set
specified is 1 larger than the seed node set, the MSTIM problem is still NP-hard. Then, the
basic framework of RIS (short for Reverse Influence Sampling) is extended and shown to
have a 1 − 1/e − ϵ approximation ratio when a sampling size is satisfied. To satisfy the
efficiency requirements, an index-based method for the MSTIM problem is proposed,
which utilizes the ideas of reusing previous results, exploits the covering relationship
between queries and achieves an efficient solution for MSTIM. Finally, the experimental
results on real datasets show that the proposed method is indeed rather efficient.
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1 INTRODUCTION

As the social applications and graph structured data becomemore
and more popular, many fundamental research problems over
social networks have increased the interests of researchers.
Influence maximization problem is a typical one of such
problems, which aims to find a set of nodes with enough
influential abilities over the whole network. One typical
application of influence maximization problem is virtual
marketing, which utilizes the method of pushing
advertisements to special users and encourages them to
propagate the advertisements to more users by their social
relationships. Recently, the problem has been focused by lots
of research works, which spreads over several areas such as
network, information management and so on. Also, in
different applications, the corresponding variants of the
influence maximization problem have been proposed and
studied.

One important variant of the general influence maximization
problem is called targeted influence maximization, TIM for
short. In the general definition, given a network G, the
influence maximization problem is to compute a set S of k
seed nodes such that S can influence the most nodes in G.
Different from the general one, the aim of targeted influence
maximization problem is to influence the nodes in a special

subset T ⊆ VG (target set) as many as possible but not the whole
node set of G. Obviously, in the definition of TIM, how to define
the target set T is a key step. In [1,2], the target set is chosen
arbitrarily, whose definition is independent from the application
settings and in the most general way. In Li et al. (2015), it is
given by a topic-aware way, where each node is associated with
several topics and the target is specified by a topic list. Given the
topic list (query), a measure about the closeness between each
node and the query can be computed. As a consequence, the
optimizing goal of TIM can be defined by a weighted sum of all
nodes in G. In fact, the definition used by [3] assigns each node a
probability of appearing in the target set and solves the
corresponding influence maximization problem by using a
modified optimizing goal.

There are two main drawbacks of previous works focusing
on the TIM problem. First, providing abilities of quick feedback
for the influence maximization applications [2,3] is very
important, however, the general definition of TIM taken by
previous works like [1] makes it hard to improve the
performance of TIM algorithms by utilizing previous efforts
on computing for other target sets, since the targets are usually
given randomly and independent and caching the related
information will cause huge costs. Second, previous works
like [3] study the TIM problems by specifying the target set
by topic-ware queries, query based specification of target sets

FIGURE 1 | A motivated example of multidimensional selection based targeted influence maximization.
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make it possible to index relatively less information and answer
an arbitrary TIM problem defined on topics efficiently by
reusing the information indexed. However, as shown by the
following example, in many applications, users may expect the
target set can be specified in a more exact way, and the
definition used in [3] will be not proper.

Example 1. As shown in Figure 1, there is a social network
whose relationships can be represented by the graph structure.
The node labelled by “a” maintains the information about a man
aged 20 lived in “NY” whose salary is 5,000 per month. Also, the
information associated with other nodes in the graph can be
explained similarly. Each directed edge between two nodes u and
v means that u can influence v. The edge between a and f is
labelled by 0.8, it means that when receiving a message from a the
probability that f will accept and transform the message is 0.8.
That is, the value in the middle of each edge is the corresponding
influence probability.

Let us consider a simple example. Suppose there is only one
seed node b during the information propagation, since there is
only one path between b and d, the probability that d will be
influenced at last will be pb,d � 0.5 × 0.7 � 0.35. The general
influence maximization problem is to find a seed node set such
that after the information propagation procedure the expected
number of nodes influenced is maximized.

Now, consider a case that the user want to select some nodes to
help him to make an advertisement of an expensive razor. In this
application, the target set may be naturally expected to be the
male persons with high salary (no less than 15,000). That is, only
the seed nodes with high influences to the nodes in {d, e, f, h}
should be considered. Moreover, to specify the target set exactly
and briefly, multi-dimensional range query is a proper choice,
which can express the above requirements by a statement q:
(gender � “M”) ∧ (income ≥ 15000).

As far as known by us, there are no previous works focusing on
the targeted influence maximization problem based on multi-
dimensional queries. To provided quick response to the targeted
influence maximization problem based on multi-dimensional
queries, there are at least two challenges. 1) Different from
previous methods, since the target set is specified in a non-
trivial way, efficient techniques for collecting the exact target set
for an ad-hoc query must be developed. 2) To return the seed
node set efficiently, the idea of using previously cached results
should be well exploited. Although in the area of topic aware
influence maximization [3] has investigated suchmethod, it is not
proper for the cases when the target set is specified by multi-
dimensional queries.

Therefore, in this paper, we address the problem of
Multidimensional Selection based Targeted Influence
Maximization, MSTIM for short. To support efficient
evaluation of queries specifying the target set, an index based
solution is utilized to reuse the previous query results. While to
compute the corresponding influence maximization problem
efficiently, a sample based method is developed based on
previous works, and it is extended to an index based solution
which can reuse the samples obtained before and improve the
performance significantly. The main contributions of this paper
can be summarized as follows.

1. We identify the effects of multi-dimensional queries to specify
the target set in the influence maximization problem, and
propose the formal problem definition of Multidimensional
Selection based Targeted Influence Maximization (MSTIM for
short) based on a brief and expressive fragment of general
multi-dimensional queries.

2. We show the computational hardness of the MSTIM problem,
in fact, even if a very simple case that the target set specified is 1
larger than the seed node set, the MSTIM problem is still NP-
hard.

3. Based on the Reverse Influence Sampling (RIS for short)
method previously proposed, for the MSTIM problem, the
basic framework of RIS is extended and shown to have a 1 − 1/
e − ϵ approximation ratio when a sampling size is satisfied.

4. The index-based solution for the MSTIM problem is
proposed. Using indexes of queries previously maintained,
the performance of evaluating multi-dimensional queries are
improved by reusing the results computed before.
Sophisticated techniques for handling searching query
predicates are designed and well studied. By the help of
indexes of previous samples and the inverted index between
nodes and samples, the MSTIM problem can be solved
efficiently.

5. The experimental results on real datasets show that the
proposed method is indeed rather efficient.

The rest parts of the paper are organized as follows. In section
2, some background information are introduced. Then, in section
3, the theoretical analysis of theMSTIM problem is given. Section
4 provides the basic framework of the sampling based
approximation solution for the MSTIM problem. In section 5,
the index version is proposed and introduced in details. Section 6
shows the experimental results. Related works are discussed in
section 7, and the final part is the conclusion.

2 RELATED WORK

The influence maximization is an important and classical
problem in the research area of online social networking,
which has many applications such as viral marketing,
computational advertising and so on. It is firstly studied by
Domingo and Richardson [4,5], and the formalized definitions
and comprehensive theoretical analysis are given in [6]. Different
models have been formally defined to simulate the information
propagation processes with different characteristics, the two most
popular models are the Independent Cascade (IC for short) and
Linear Threshold (LT for short) models. In [6], the influence
maximization problems under both IC and LT models are shown
to be NP-hard problems and the problem of computing the exact
influence of given nodes set is shown to be YP-hard
problem in [7].

After the problem is proposed, many research efforts have
been made to find the node set with maximum influence [6].
Proposed an algorithm for influence maximization based on
greedy ideas which has constant approximation ratio (1 − 1/e),
whose time cost is usually expensive for large networks. To
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overcome the shortcomings of greedy based algorithms [8],
proposed CELF (Cost-Effective Lazy-Forward) algorithm,
which can improve the performance of greedy based
algorithms for influence maximization by reducing the times
of evaluations of influence set of given seed set [9]. Proposed
SIMPATH algorithm in LT model which improve the
performance of greedy based influence maximization
algorithm in LT model. Similar works focusing on improve
the performance of influence maximization algorithms can be
found also, such as [10–12] and so on. Recently, a series of
sampling based influence maximization algorithms such as
[13–15] are proposed and well developed, which have
improved the practical performance greatly by involving a tiny
loss on the approximation ratio. However, as shown by [16,17],
the efficiency problem is still challenging for applying influence
maximization algorithms in real applications.

The work most related with ours is [3], which focuses on the
topic aware targeted influence maximization problem. In the
topic aware setting, each node is associated with a list of
interesting topics and the query is specified in the form of
topic list. After calculating the similarities between users and
the query, a weight can be assigned to the node such that the
general optimizing goal of IM problem is extended to the
weighted case. A sampling based solution under the help of
indexes are given in [3]. Indexes are built for each keyword
refereed in the topic setting. When a random query is given,
the topic list associated with the query will be weighted and the
computations of the similarities will be assigned to each
keyword, and finally the samples are collected by combining
the samples maintained for each keyword. Different from this
paper, the work is not proper for the case that an exact subset
of the whole network is expected to be the target set.
Considering the case that the target set can be specified in
an arbitrary way [1,2] studies the most general targeted
influence maximization problems and provides efficient
solutions. However, the general method adopted by them
makes it almost impossible to provide efficient solutions
using previous results with acceptable space cost. While this
paper considers a more specific case that the target set can be
described by a multi-dimensional query and utilizes the
characteristics of those queries to develop sophisticated
index based solutions. Therefore, the paper studies a variant
of targeted influence maximization problem which is different
from previous works.

There are also many works which try to extend the classic
influence maximization methods to other application settings
[18]. Studies the problem of influence maximization under
location based social networks. In those networks, one node
can be influenced by the other node if and only if they are
neighbours according to their location informations, and [18]
focus on the problem of finding k users which can affect
maximum users in the location based social network [19].
Identifies the relation types during propagating the
information and formally defines the problem of influence
maximization by considering different types of relationships
between nodes. A key idea is that given certain information
which needs to be propagate the influence set of some node

set can be computed more efficiently by reducing those edges
belonging to some certain types [20]. Studies the problem of
influence maximization under topic-aware applications. As
shown by [21], the influence probabilities between users with
special triangle structures are obviously higher than others. The
above research efforts focus on totally different problems,
compared with this paper, but their ideas on developing
efficient influence maximization algorithms are helpful for us.

3 PRELIMINARY

3.1 Classical Influence Maximization
The general description of information diffusion can be explained
to be a propagating procedure of information over some special
network. A network is denoted by a graph G(V, E). Given an
information diffusion model M, the model will describe how the
nodes influences others in network. In an instant state of the
network, nodes in the network will be labelled by active or
inactive. According to the model M, the inactive nodes may
become active because of the existence of special active
neighbours, whose rule is defined by M.

There are two classical methods to define the information
propagation model, linear threshold and independent cascade
model. This paper focuses on the independent cascade model (IC
for short). In this model, for each edge (u, v) a probability puv is
given to describe that u can activate v with probability puv. After
initializing an active node set S0, in the ith step, every node will try
to activate their neighbours. In detail, for each node u ∈ Si−1 and
node v ∈ V \ Si−1, if (u, v) ∈ E, v will be activated once in
probability puv. If v indeed becomes active, it will be added to Si
and not be further considered in current step. Repeat this
procedure until that no new nodes are added. Obviously,
under a specific information propagation model, given an
initial active set S over a network G, we can obtain a node set
IS which can be activated when the propagation procedure is
finished. Therefore, an expected value E[IS] can be defined
according to the probabilistic distributions of the possible
information propagation graphs, whose details can be
found in [6].

Definition 1 (Influence Maximization, IM for short). Given a
propagation graph G � (V, E) such that there is an associated
probability puv for each edge (u, v) ∈ E, and an integer k > 0, the
goal is to compute a node set S such that E[IS] is maximum.

3.2 Multidimentional Selection
To support multidimensional selections over social networks, it is
necessary to consider an extended model of the general network
for information propagation.

For each node v ∈ VG, there are m attributes A �
{A1, A2, . . . , Am} (m ∈ N) associated. Let Ni be the number of
distinct values in the attribute Ai. For ordered attributes, wlog, it
can be assumed that the domain of Ai is Dom(Ai) � {1, 2, . . . , Ni}.
While, for general attributes, we can represent the values of Ai as
Dom(Ai) � {a1, a2, . . . , ai}. In practical applications, most of
semantic information related to nodes in the network can be
represented by the associated attributes. For example, in social
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networks, the vertex related information such as age, birthplace,
interests, and so on can be represented by the attributes associated
with vertices. Specially, we use v.Ai to represent the value of node
v on attribute Ai. Formally, such a network can be represented by
G � (V, E, A), where for each node v there is v.Ai ∈ Dom(Ai) for
every attribute Ai ∈ A.

Then, we can define some basic concepts of multidimensional
selection queries.

Definition 2 (1-Dimension Set). A 1-dimension set of a general
attribute Ai is a set s � {v1, v2, . . . , vl} satisfying vj ∈ Dom(Ai) for
each j between 1 and l.

Definition 3 (1-Dimension Range). A 1-dimensional range r �
[li, ui] satisfying the constraint li < ui of an ordered attribute Ai

defines a 1-dimensional set [li, ui] � {li, li + 1, . . . , ui}.
Similarly, we can define the 1-dimension range (li, ui), (li, ui]

and [li, ui), where the round bracket means that it excludes the
boundary value.

Then, a 1-dimensional selection query q can be represented by
(Ai, p) where p is a 1-dimension set s or a 1-dimension range r, the
predict p essentially defines a function p: Dom(Ai)1{0, 1}. For a
node v ∈ V, v satisfies a 1-dimensional query q � (Ai, s) or
q � (Ai, r), represented by v ∈ q(V), if and only if v.Ai ∈ s or
v.Ai ∈ r. It should be noted that a 1-dimensional selection query q
defines a function q: V1{0, 1}.

To be more general, we can define k-dimensional selection
based on the definitions above.

Definition 4 (k-Dimensional Selection Query). A k-
dimensional selection query Q, which defines a function
V1(0, 1), is composed of a set of k 1-dimensional query {q1,
. . . , qk}. For each node v ∈V,Q(v) � 1 or v ∈Q(V) if and only if we
have qi(v) � 1 for all qi (1 ≤ i ≤ k).

Here, given a k-dimensional selection query Q, let Q be the
vector which includes all associated 1-dimensional selection
queries of Q and for each i ∈ (1, k) the query qi is stored in
Qi. Then, the condition ofQ(v) � 1 will be equivalent with the fact
thatQi(v) � 1 for all i ∈ (1, k). In the followings, to be convenient,
we will use k-dimensional query and 1-dimensional query to
denote k-dimensional selection query and 1-dimensional query,
respectively.

Then, based on the concepts above, for a specific node set V,
we can give a formal definition of the selection result of queryQ as
Q(V) � [v|v ∈ V and Q(v) � 1], which is used in an informal way
before.

Example 2. Continue with Example 1, the network shown in
Figure 1 can be transformed into the form shown in Figure 2,
where each node in the network is associated with four attributes
which are listed on the left. For each node, the corresponding
values are shown on the right in the form of a table. Given a 2-
dimensional query Q: [A1 � M, A2 ∈ (20, 40)], the query result
Q(V) will include the nodes a, d, e, and f.

3.3 Multidimensional Selection Based
Targeted Influence Maximization
Given a k-dimensional query Q representing the target users, it
can be used to determine whether a node v is interested by
checking whether Q(v) � 1. For a node set S ⊆ V, after a specific
information propagation procedure, only the nodes activated
which belong to the result of query Q are really interested by
the users. Then, we can define the selection query based targeted
influence as follows.

Definition 5 (Multidimensional Selection based Targeted
Influence). Given a network graph G � (V, E, A), a k-
dimensional query Q and a node set S ⊆ V, if the influence of
S in classic influence maximization model is denoted by IS, the
targeted influence based on Q can be represented by FS �
IS ∩ Q(V).

Similarly, we can define the expected targeted influence E[FS]
based on the probabilistic distributions generated by the
information diffusing procedures, and the formal definition of
targeted influence maximization problem can be given as follows.

Definition 6 (Multidimensional Selection based Targeted
Influence Maximization, MSTIM for short). Given a network
graphG � (V, E,A), a k-dimensional queryQ and an integer k, the
problem is to find a subset S ⊆ V satisfying |S| ≤ k such that the
expected size of E[FS] is maximized.

4 THE COMPUTATIONAL COMPLEXITY OF
MSTIM

Obviously, the general influence maximization problem is a
special case of the MSTIM problem. Therefore, it can be
known that the MSTIM problem is NP-hard when the query
Q simply returns all nodes in V. Then, we can have the following
result without detailed proofs.

FIGURE 2 | An example of network with attributes.
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Proposition 4.1. The MSTIM problem is NP-hard.
Of course, the above general case is very special and our

interesting point is whether the MSTIM problem can be solved
more efficiently when a practical query Q is met.

Intuitively, the definition of MSTIM is based on limiting the
nodes influenced within a range defined by the query Q. An
extreme case is that the result size of Q(V) is very small, and it is
interested to study whether or not there exists an efficient
algorithm for such cases. Obviously, when |Q(V)| ≤ k, the
MSTIM problem can be solved efficiently simply by choosing
the nodes inQ(V) into S, since the query resultQ(V) can be solved
by scanning every node v ∈ V and checking the dimensional
predicates which will produce an algorithm in linear time. Then,
it is meaningful to study whether such an algorithm can be
extended to solve more cases for the MSTIM problem.

Next, we can prove that even for very limited but not trivial
cases, it is still hard to solve the MSTIM problem efficiently.

Theorem 1. Given a network graph G � (V, E, A), a k-
dimensional query Q and an integer k, the MSTIM problem is
still NP-hard even for the case |Q(V)| � k + 1.

Proof. Consider an instance of the Set Cover problem, which is
a well-known NP-complete problem, whose input includes a
collection of subsets S1, S2, . . ., Sm of a ground set U � {u1, u2,
. . . , un}. The question is whether there exist k of the subsets
whose union is equal to U.

In [6], the Set Cover problem is shown to be a special case of the
classical influence maximization problem, whose following results is
that the classical influence maximization problem is NP-hard.While,
in this paper, by the following reduction, it can be utilized to show
that theMSTIM problem is NP-hard even for the case |Q(V)| � k + 1.

Given an arbitrary instance of the Set Cover problem, we first
define a corresponding directed bipartite graph with n + m nodes
like done in the proof of [6]. Suppose the bipartite graph constructed
isG1 � (V1, E1). For each set Si, there is a corresponding node vi, and
there is a node vj′ for each element uj. If uj ∈ Si, there is an edge
(vi, vj′ ) with activation probability pvivj′ � 1. Then, G2 is built based
on G1 by adding k nodes {w1, w2, . . . , wk} into G1 and building an
edge (vi, wj) with activation probability pviwj � c for each i ∈ (1, m)
and j ∈ (1, k), where c is a constant between 0 and 1. Then,G3 is built
based on G2 by adding one node w0 and inserting an edge (vj′ , w0)
with activation probability c for each j ∈ (1, n). Then, we will build
the associated attributes for the graphG3 as follows. Let the attribute

setA � (A1). For each node v ofG3, if v ∈ {w0, w1, . . . , wk}, set v.A1 �
1, otherwise, set v.A1 � 2. Let Q � (q1) where q1: A1 � 1. Finally, we
require that the constant c used above is larger than k−1

k . An example
of the reduction can be found in Figure 3.

The following facts are essential for verifying the correctness of
the reduction above.

• For the query Q, we have |Q(V)| � k + 1, and we can obtain
an easy lower bound by selecting arbitrary k nodes from {w0,
. . . , wk}. Observing that there are no output edges of the
nodes in (w0, . . . , wk), such a method can produce a seeding
node set with expected influence k exactly.

• Obviously, S should not choose nodes in {vj′} (j ∈ [1, n]). In
that case, an alternative node in (vi) [i ∈ (1, m)] can be used
to replace those nodes without decreasing the influence.

• Suppose S contains nodes in both (wi) and (vj) and there
exists a set cover (St) of size k, we can always increase the
influence by utilizing nodes in (vj) to replace nodes in (wi).
Assume that there are x nodes of {vj} and y > 0 nodes of {wi}
in S, and the x nodes can cover n − 1 nodes in {vl′} which is
the best situation. The expected influence in (w1, . . . , wk)
obtained by S can be calculated by the following formula.

E S[ ] � y + k − y( ) 1 − 1 − c( )n−1( ) (1)

Let S′ be the nodes of {vi} corresponding to the cover {St}.

E S′[ ] � k 1 − 1 − c( )n( ) (2)

Then, we have the following results.

E S[ ]≤E S′[ ] (3)

5y + k − y( ) 1 − 1 − c( )n−1( )≤ k 1 − 1 − c( )n( ) (4)

5 k − y( ) 1 − c( )n−1 ≥ k 1 − c( )n (5)

5 c≥
y

k
(6)

5
k − 1
k

≥
y

k
(7)

5 k − 1≥y (8)

Obviously, we have E[S]≤E[S′] always. Moreover, consider the
nodew0, it can only increase its influencewhen choosingmore nodes
in {vi}. Therefore, if there exists a set cover {St} of size k, an optimal
solution can be built by choosing the corresponding k nodes in {vi}.

Then, according to the facts above, it is easy to check that there
exists a solution of the set cover problem if and only if we can find
k seeding nodes such that the influence obtained is at least k + 1 −
k(1 − c)n − (1 − c)k.

Finally, the MSTIM problem is NP-hard even for the case
|Q(V)| � k + 1.

5 THE BASIC SAMPLING ALGORITHM FOR
MSTIM

5.1 Reverse Influence Sampling
RIS (Reverse Influence Sampling) based methods are the state-of-
the-art techniques for approximately solving influence

FIGURE 3 | An example of the reduction, where the edge with activation
probability 1 is in red and the other edges have probability c.
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maximization problem. In this part, we introduce this kind of
methods first. First, we introduce the concept of Reverse
Reachable (RR) Set and Random RR Set.

Definition 7 (Reverse Reachable Set, [22]). Let v be a node inG,
and Ĝ be a graph obtained by removing each edge e in G with 1 −
p(e) probability. The reverse reachable (RR) set for v in Ĝ is the set
of nodes in Ĝ that can reach v. (That is, for each node u in the RR
set, there is a directed path from u to v in Ĝ).

Definition 8 (Random RR Set, [22]). Let G be the distribution
of Ĝ induced by the randomness in edge removals from G. A
random RR set is an RR set generated on an instance of Ĝ randomly
sampled from G, for a node selected uniformly at random from Ĝ.

Based on the two definitions above, a typical RIS basedmethod
can be described as follows.

• Generate multiple random RR sets based on G.
• Utilize the greedy based algorithm for max-coverage
problem shown in [23] to find a node set A satisfying |A|
≤ k such that as many random RR sets can be covered by A
as possible. The solution is a (1 − 1/e)-approximation result.

Obviously, since the second step is just a standard method for
solving maximum coverage problem, to guarantee the (1 − 1/e)
approximation ratio, enough samples should be gathered in the
first round of the algorithm. As shown in [24], there have been
several research works providing such sampling based influence
maximization algorithm with 1 − 1/e − ϵ approximation ratio
within time cost O(k(|E|+|V|)log|V|ϵ2 ).

Here, assuming that the sample size is presented by θ, a result
shown in [22] is utilized to explain the principles of our method.
Since there have been always research efforts focusing on improving
the sampling size, it is easy to check that the improved version can
be easily applied to the method proposed by us.

Theorem 2 [22]. If θ is at least (8 + 2ϵ) · |V| · ln 1
δ+ln(|V|k )+ln 2
OPTk ·ϵ2 , the

typical RIS method will return a solution with 1 − 1/e − ϵ
approximation ratio with high probability 1 − δ.

5.2 RIS Based Algorithm for MSTIM
As shown in Figure 1, a conceptual algorithm is given to solve the
MSTIM problem. Compared with the original version of RIS
method, the random RR set is not generated by starting from an
arbitrary node in G, but from a node in Q(V), where Q(V) is the
nodes in the selection result of query Q.

Algorithm 1. RIS-MSTIM.

Obviously, the verify the correctness of the above algorithm,
it is only needed to show that the random RR set obtained is a

proper estimator of E[FS] and θ can take a large enough size
such that the quality of the final seeding node set can be
guaranteed.

Theorem 3. Given a set S ⊆ V, for a random RR set e of Q(V),
we have Pr[e ∩ S ≠ ∅] � E[FS]

|Q(V)|.
Proof. According to the definition of E[FS], given a special

possible graph Ĝ let FĜ
S be the influenced node size of S, then we

have

E FS[ ] � ∑̂
G∼G

Pr Ĝ[ ] · FĜ
S( ) (9)

� ∑̂
G∼G

Pr Ĝ[ ] · ∑
v∈Q V( )

I v ∈ IS[ ]⎛⎝ ⎞⎠ (10)

� ∑̂
G∼G

Pr Ĝ[ ] · ∑
v∈Q V( )

I ev ∩ S ≠ ∅[ ]⎛⎝ ⎞⎠ (11)

� ∑
v∈Q V( )

∑̂
G∼G

Pr Ĝ[ ] · I ev ∩ S ≠ ∅[ ]( ) (12)

� ∑
v∈Q V( )

Pr ev ∩ S ≠ ∅[ ] (13)

� |Q V( )| ∑
v∈Q V( )

Pr ev ∩ S ≠ ∅[ ]
|Q V( )| . (14)

Since the starting node v of Q(V) is randomly selected, for each of
them the probability of being selected is 1

|Q(V)|. In addition, the
selection of S and v is independent from each other. Therefore, we
have Pr[e ∩ S ≠ ∅] � ∑v∈Q(V)

Pr[ev ∩ S ≠ ∅]
|Q(V)| . Finally, we have

Pr[e ∩ S ≠ ∅] � E[FS]
|Q(V)|.

Theorem 4. If θ is at least (8 + 2ϵ) · |Q(V)| · ln 1
δ+ln(|V|k )+ln 2
OPTQ

k
·ϵ2 , the

RIS-MSTIM method will return a solution with 1 − 1/e − ϵ
approximation ratio with high probability 1 − δ, where OPTQ

k is
the largest influence of k seeding set in the MSTIM problem.

Proof. Let ρ be the probability Pr[e ∩ S ≠ ∅] and Xi be a
Bernoulli variable defined based on ρ, considering the sum of all
Xis corresponding to the generated RR sets, we only need to
guarantee the following condition.

Pr Xi · |Q V( )| − E FS[ ]| |≥ ϵ
2
· OPTQ

k[ ]≤ δ
|V|
k( ) (15)

5Pr ∑θ
i�1

Xi − ρθ

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣≥ ϵ

2
· OPTQ

k · θ

|Q V( )|⎡⎣ ⎤⎦≤ δ
|V|
k( ) (16)

Then, similar with the analysis in [22], it can be shown that when

θ ≥ (8 + 2ϵ) · |Q(V)| · ln 1
δ+ln(|V|k )+ln 2
OPTQ

k
·ϵ2 , the RIS-MSTIM method will

return a solution with 1 − 1/e − ϵ approximation ratio with high
probability 1 − δ.

6 INDEX-BASED SOLUTION FOR MSTIM

6.1 Indexing for the Range Query
Since the query Q required is holistic, the result Q(V) cannot be
predicated well. For the step 2 of the conceptual level algorithm
RIS-MSTIM, the query result T � Q(V) is extracted to help the
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following sampling steps, however, evaluating the queryQmay be
an expensive procedure because of the multi-selection
predicates [25].

A possible solution is to utilize sophisticated index to improve
the query performance, such as R-Tree [26], k-d Tree [27] and so
on. However, the above indexes will cause large storage overhead
and usually the selection time cost using the index will increase as
storage cost increases, especially when the data distribution is
seriously skewed. For the worst cases, even the scanning method
may become more time and space efficient [28].

Since the evaluation of the range queries is a preprocess of the
whole RIS-MSTIM algorithm and most space cost will be
expected to be improve the sampling performance as shown
by the follows, inspired by the method used by [28], an adaptive
indexing method for the range queries are utilized here to
improve the performance of evaluating range queries.

There are mainly two index structures, resultPool and
queryPool, utilized to improve the performance of the range
query evaluation.

6.1.1 The ResultPool Index Structure
The resultPool index maintains the information about the query
results of the queries processed previously, whose function is to
provide a physical cache for the results such that the queries
selecting a subset of some previous query can be processed
efficiently. Assuming that each query can be identified by an
unique queryID, as shown in Figure 4, for each qi, four parts of
information are maintained in resultPool.

a) The query statement is the formal representation of the
query qi.

b) The query results are the IDs of the nodes in V which belong
to the set qi(V), and the nodes are listed in the ascending order
of their IDs. Furthermore, the node set V can be stored in an
array indexed by the nodeIDs, such that the attribute values of
some node v can be accessed in constant time cost using the
ID of v.

c) The dimension size k represents how many predicates are
utilized in qi.

d) The result size is the size of qi(V).

The queries stored in resultPool come from two parts. One
part includes the queries processed before, and the other part
includes some queries maintained in previous, which are
represented by qis and qpi s, respectively. Intuitively, since the
queries appear in an ad-hoc way, if only qis are maintained, a
totally new query will cause poor performance, therefore, some
typical queries which can improve the performance of more
general queries are also maintained. The details of how to
choose the queries q*i s will be introduced in the following.

Example 3. Continue with Example 2, given the graph shown
in Figure 2, as shown in Figure 4, the index structure related
with a special query history {q1, q2, . . . } contains two parts, qis
and q*i s. The query q1 is requested by the users before, according
to resultPool, it can be known that 1) q1 is a 2-dimensional range
query whose statement is (A2 � NY) ∧ (20 ≤ A3 ≤ 30), and 2) the
result is q1(V) � {a}. The query q*1 do not need to be requested by

the previous users, but the related information is still maintained.
According to resultPool, it can be know that 1) q*1 is a 1-
dimensional range query with statement 0 ≤ A1 ≤ 20, and 2)
the result set q*1(V) is of size 1 and only contains the node a.

6.1.2 The QueryPool Index Structure

Algorithm 2. IndexOperations.

The resultPool makes it possible to utilize previous query
answers to accelerate the evaluation of current query. To make it
work, given a special query q, it still needs to support efficient
extraction of helpful queries of q from all queries maintained by
resultPool. Before introducing the index structure queryPool with
the above abilities, the concepts of query covering and redundant
queries are explained first.

Given two range queries q1 and q2, q1 is contained by q2,
denoted by q1 ⊆ q2, if for every data instance D there is q1(D) ⊆
q2(D). Specially, if q1 ⊆ q2 and q2 is a 1-dimensional range query,
a.k.a. a predicate, we say q2 covers q1. For a set of queries {q1, . . . ,
qn}, if there is qi ⊆ qj (i ≠ j), qj is called to be a redundant one in the
following.

The queryPool index maintains the relations between keys and
queries, where a key is some predicate utilized in the queries.
For all queries qis previously processed, queryPool organizes
those predicates into groups by the dimension size. Each key is
assigned with an unique keyid. For each special key p, qlist
maintains the queryIDs of the queries which contain p.
Moreover, the queryIDs are sorted into the ascending order and
stored, which will facilitate the process of searching queries. The
following example will explain how to search the related queries
utilizing queryPool.

Example 4. Continue with Example 3, the corresponding
queryPool index is shown in Figure 5B. The rows with k � 2
maintains the information about the 2-dimensional queries
previously used. For the predicate with statement A2 � NY, its
keyid is k2 and the corresponding qlist contains two queries q1
and q3, which are sorted in the ascending order. For the predicate
A3 ∈ [20, 30], although it appears in both q1 and q5, its
corresponding qlist only contains q1, because q1 is a 2-
dimensional query but q5 is not. The related information for
the queries q*i s are stored in the group with k � 0 of queryPool.
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6.1.3 The SearchQueryPool Procedure
Next, the principles of using the two index structures to improve
the performance of range query evaluation are introduced.

The SEARCHQUERYPOOL function is shown in Algorithm 2,
which will return a query Q′ for given a query Q such that the
result Q(V) can be obtained efficiently based on Q′(V). First, a
set candidate is initialized to be empty (line 2), which will be
used to store the candidates of Q′. Then, an iteration from the
group with k � |Q| to the one with k � 1 is done to generate the
queries in candidate (line 3–21). For each fixed i ∈ [1, |Q|], a
merge-style method is used to extract the queries containing Q
efficiently by the following steps. (a) The keys covering some
predicate of Q are collected, and a pointer is initialized at the
front of the corresponding qlist for each key found (line 4–7).
The details of obtaining keys covering some predicate will be
introduced later. (b) Using the pointers initialized above, the
merge-style method works by counting the appearing times of
the current smallest queryID and inserting the query
appearing no less than i times to the candidate set (line
8–19). At the end of each iteration, if the candidate is not
empty, the iterations will stop. Finally, after the iterations, if
the candidate set is not empty, an arbitrary non-redundant
query in candidate is returned (line 22–24). Otherwise, null is
returned (line 26).

As shown in Figure 5B, to efficiently search the keys covering
some predicate, for the numerical attribute we can use a tree
based search structure to achieve a O(log n) time cost for search
operation where n is the number of distinct values appearing in
the query predicates, and for the category values a hash table can
be utilized to achieve an expected O(1) time cost.

• For each numerical attribute A, a standard binary search
tree is built. The search keys are chosen from the set of all
distinct values appearing in the queries. In each leaf node
with search key m, the keyID of each predicate qA over A
satisfying m ∈ qA is stored. For example, as shown in

Figure 5B, the leaf node with search key 25 includes K4
and K5 whose corresponding predicates in the queryPool are
A3 ∈ [20, 30] and A3 ∈ [25, 50] respectively. Then, given a
predicate with range [lbound, rbound], the leaf node lnode is
obtained by finding the smallest search key no less than
lbound, and the leaf node rnode is obtained by finding the
largest search key no larger than rbound. Finally, the
intersection of the two keyID sets associated with lnode
and rnode is returned.

• For each category attribute A, a standard hash map is built
by using the values as the hashing keys. Similarly, each item
x obtained by the hash map is associated the keyIDs of the
predicates in the form A � x. For example, as shown in
Figure 5B, the hashed item of “NY” is associated with K2
and K3, which are keyIDs of predicates A2 � NY and A2 ∈
{NY, GA}.

Example 5. Continue with Example 4, given a query Q: (A2 �
NY) ∧ (25 ≤ A3 ≤ 40), the candidate queries which contain Q can
be found as follows. First, Q can be divided into two predicates
q1: A3 ∈ [25, 40] and q2: A2 � NY. Then, for the group of keys
with k � 2 in the queryPool index, as shown in Figure 5B, q1
can be processed in the search tree structure with keys 25
and 40, and the query obtained is {K4,K5}∩{K5} � {K5}.
Similarly, the queries obtained for q2 are {K2K3} using the
hash map structure. After that, the corresponding qlists of
{K2,K3,K5} in queryPool are extracted and merged as the
following steps.

q1 q3{ } q2{ } q3 q4{ }0 q3{ } q2{ } q3 q4{ }0 q3{ } q3 q4{ }
0{} q4{ }0{}{}{} (17)

Here, the underline indicates the position of the related pointer
for each list. During the merge procedure, the query q3 will be
inserted into the candidate set, since in the third step q3 appears at
the front of two lists. To verify the correctness, it can be found

FIGURE 4 | Index structure resultPool of queries.
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that the statement of q3 is (A3 ∈ [25, 50]) ∧ (A2 � NY) and
obviously we have Q ⊆ q3.

6.1.4 Index Based Range Query Evaluation

Algorithm 3. IndexRQE (Index Based Range Query Evaluation).

Now, we will show how to obtain the exact result of a given
query based on the techniques shown above. As shown in
Algorithm 3, given a k − dimensional query Q, the function
SEARCHQUERYPOOL is first invoked to search a candidate query set q
whose item will contain the query Q (line 2). The structure qres is
utilized to maintain a superset ofQ(V) and initialized to be empty
(line 3). If q is not null, the results of q will be collected into qres
(line 5), otherwise, qres will be built based on the queries q*i s as
follows (line 7–12). The selectivity δA of each attribute A involved
in Q is calculated based on the assumption that all appearing
values of A are chosen in an uniform random way. Here, δA is
defined to be |rbound−lbound|

|DomA| , where lbound and rbound is the range

ofA inQ andDomA is the domain size of A. Intuitively, δA can tell
us how many items can be filtered using the predicate of A in Q.
The attribute Xwith the smallest δXwill be chosen (line 8), since it
is expected to filter the largest part of the data. Then, the
predicates of X maintained in the group with k � 0 in
queryPool will be scanned, and the results of the predicates
having intersections with Q will be collected together into qres
(line 9–12). Then, the items in qres will be checked one by one to
obtain S � Q(V) (line 13–16). Finally, if |S|

|qres| is smaller than a
predefined threshold α, the queryQwill be inserted into the index
resultPool and queryPool (line 17–18), where the details are
omitted here since it can be implemented trivially. Essentially,
the value |S|

|qres| can represent the ratio of truly useful items in the
set pres, and a smaller value means that more useless items are
collected in the previous step.

Example 6. Continue with Example 5, suppose the query Q′:
A3 ∈ [10, 40] is given. Obviously, there are no predicates covering
Q′, therefore, the function SearchQueryPool(Q′) will return null.
Then, according to the function IndexRQE, the results of q*1 and
q*2 maintained in resultPool will be collected into qres. Finally,
only the nodes a, c, d, e and f will be checked, but not all
nodes in V.

6.2 Indexing for the Random RR Sets
6.2.1 The Indexing Structures
To maintain the related information of random RR sets, three
index structures are utilized, NodeToRR, RRSet, and
RRInvertedList.

In the RRSet, for each random RR set rri, there is an unique
RRid, and all nodes contained in rri are stored as nodeList. Within
RRSet, the items are maintained in the ascending order of RRid.
In the NodeToRR, for each node v ∈ V, the nodeID of v is stored
and the corresponding rrList includes the list of RRids of the
random RR sets which are obtained by sampling from node v. In

FIGURE 5 | Index structures for the range queries.
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the RRInvertedList, for each node v ∈ V, the nodeID of v is stored
and the corresponding rrCoverList maintains the list of RRids of
the random RR sets which cover the node v.

Example 7. As shown in Figure 6B, a set of samples are listed
in the RRSet, where there are 9 samples in total and the first
random RR set is rr1 � {a, b}. According to the information in
RRSet, as shown in Figure 6A, the NodeToRR structure maintains
the list of samples beginning from some special node. There are
totally two samples rr1 and rr2 in RRSet beginning from the node a,
then, the corresponding rrList of nodeID a includes rr1 and rr2. In
the RRInvertedList structure, the rrCoverList of nodeID a includes
5 items rr1, rr2, rr4, rr7 and rr9, each of them contains the nodeID a
in the corresponding nodeList.

6.2.2 Adaptive Sampling Using Index

Algorithm 4. AdaptiveSampling.

In this part, we will explain how to sample the random RR sets
adaptively under the help of indexes introduced above. As shown
in Algorithm 4, the inputs of ADAPTIVESAMPLING include the
network graph G, a target node set T and a sampling size θ,
and the output R is a sample set of random RR sets. For each node
v ∈ T, a variable cntv will be used to record the number of samples
needed starting from v and initialized to be 0 (line 3–4). Then, θ
nodes are randomly selected from T with replacement, different
from the commonly used sampling methods this step does not
start the random walking but just increases the counter variable

cntv to remember that one sample is needed (line 5–7). After that,
we will know the number of samples needed for each node, all left
we need to do is to reuse the samples maintained in RRSet to build
R and collect more samples adaptively by random walking when
there are no enough samples in RRSet. The details can be
explained as follows. For each node v ∈ T, if NodeToRR
[v].rrList.size() is as large as cntv, the samples maintained in
RRSet is enough and no further real sampling operations are
needed (line 9–10). Otherwise, we use Δv to represent the
difference between NodeToRR[v].rrList.size() and cntv (line
12), and Δv times random walking will be executed to collect
extra samples needed which will be inserted into NodeToRR at
the same time (line 13). After updating the RRInvertedList (line
14), those new samples will be inserted into R (line 15). Since the
RRInvertedList is a commonly used inverted list, the update can
be implemented in a natural way whose details are omitted here.

Example 8. Let us consider the case that cntg and cntf are
assigned to be 1 and 2, respectively, when running
AdaptiveSampling. As shown in Figure 6, the information
shown in black is the index structures before invoking
AdaptiveSampling. Since cntg � 1 and there are no items with
nodeID � g, one random walking will be made to obtain a new
sample rr10. Then, the parts in Figure 6 shown in red will be
added. For the node f, since cntf � 2 and there are three RRids in
the rrList of the item with nodeID � f in NodeToRR, no more
random walking are needed, AdaptiveSampling will choose two
samples from {rr7, rr8, rr9}.

6.3 RIS-MSTIM-Index Algorithm
Finally, we introduce the main procedure of index based solution
for theMSTIM problem. As shown inAlgorithm 5, the RIS-MSTIM-

FIGURE 6 | Index structures for the random RR sets.

TABLE 1 | Statistics of graph datasets.

Dataset Type #Vertices #Edges

google Social network 23,628 39,242
wikivote Social network 7,115 103,689
twitter Social network 465,017 834,797
youtube Social network 1,138,499 4,942,297
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INDEX function is the index version of Algorithm 1. Different
from Algorithm 1, RIS-MSTIM-INDEX utilizes the INDEXRQE method
to collect the results of Q(V) (line 1). Then, during the sampling
procedure, ADAPTIVESAMPLING is invoked to obtain the sample set
with enough random RR sets (line 4). After that, to utilize the
RRInvertedList structure to compute the greedy based
approximation solution of the optimal k seeds, for each node
v maintained in RRInvertedList(nodeID), a list structure
rrTmpListv is used to store the random RR sets during the
computation (line 7–13). There are k round in total (line
7–12), each of them chooses the current node with maximum
RR sets covered. Within one round, for each node v, the size of its
rrCoverList canmeasure howmany RR sets it can cover in the left,
therefore, the one with largest rrCoverList.size() is chosen to be
the seed node in that round (line 8, 12). Since the rrCoverList
needs to be maintained dynamically to show the number of RR
sets each node can cover, within each round, if some node vi is
chosen, the RR sets it covers should be removed from the
rrCoverList and maintained temporally in rrTmpList (line
9–11). Finally, before returning the final seed set (line 14),
the RRInvertedList is restored by merging with rrTmpList
(line 13).

Algorithm 5. RIS-MSTIM-Index.

7 EXPERIMENTAL EVALUATION

In this part, experiments on real datasets are conducted to
evaluate the efficiency and performance of the targeted
influence maximization algorithm defined based on
multidimensional queries.

7.1 Experiment Setup
We ran our experiments on four real datasets, Google, Youtube,
Twitter, and WikiVote, which are collected from Konect (http://
konect.uni-koblenz.de/) and SNAP (http://snap.stanford.edu/
data/) respectively. All of them are social network datasets.
Typically, the characteristic information of the four datasets
are shown in Table 1. In these four social networks, nodes
represent users and edges represent friendships between users.
All experiments were executed on a PC with 3.40 GHz Intel Core
i7 CPU and 32 GB of DDR3 RAM, running Ubuntu 20.04.

We compare two versions of the influence maximization
algorithm proposed. For RIS algorithm, it means that the
baseline method shown in Algorithm 1, where a trivial
method is utilized to obtain the query result first and the

commonly used RIS method is utilized to solve the
corresponding targeted influence maximization problem.
While, for RIS-MSTIM-Index algorithm, it means that the
index version of Algorithm 1, which utilizes the resultPool to
improve the performance of query evaluation and the RRSet
index to save the sampling costs. There have been several
sophisticated influence maximization algorithms (such as
[1,13,22,29]) within the framework of RIS. In this paper, we
implement the method in [13] and use it as the standard RIS
algorithm. In fact, the method proposed by [1] is the state of the
art, which is denoted by BCT here. There are two reasons that we
choose [13] as the standard RIS method. First, the method in [13]
is simple and easy to be integrated to the framework of selection
based targeted influence maximization. Second, the cost of
computing seed nodes for targeted influence maximization is
highly dominated by the cost of evaluating multi-dimensional
queries, choosing different RIS methods does not produce a
significant impact on the total cost, as verified by the
following experimental results.

For each dataset, the dimensions and values of the nodes are
generated randomly. For each node, 5 category dimensions and
10 numerical dimension are associated and the corresponding
values are randomly selected in an uniform way within the value
domain. To evaluate the query based targeted influence
maximization algorithm, multidimensional range queries are
generated in the following way. For each dataset, 10 group of
queries are generated randomly, within each group, there are 50
queries in total. The dimension number of each query is chosen
between 1 and 5 according to a normal distribution, most of the
queries have three or four predicates. A query is only allowed to
contain at most one predicate on each dimension. The range
predicates are also randomly generated by controlling the
selectivities to be about 20%. Usually, to be simple, we use the
number of queries and random RR sets to control the index size.
It should be remarked that the controlling method is not an
accurate way since the size of each query or sample is not known,
but it can avoid complex calculating the index size which may
affect the performance of the main algorithm.

7.2 Experimental Results and Analysis
The experimental results are conducted to verify the efficiencies
of the influence maximization algorithm proposed from several
aspects.

7.2.1 Efficiency of RIS-MSTIM Algorithm
To study the efficiencies of the RIS-MSTIM algorithm proposed,
for each real dataset, both the RIS-MSTIM algorithms with and
without indexes are executed to solve the targeted influence
maximization problem. To measure the performance of RIS-
MSTIM fairly when considering different queries, 10 range query
groups, each of which contain 50 queries, are generated
randomly. For each group of queries, RIS-MSTIM algorithm is
invoked to solve the corresponding targeted influence
maximization problem. Within each group, the performance
of RIS-MSTIM will become better as the increase of the
number of queries processed, assuming that there are enough
space costs to maintain the corresponding indexes. For each same
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setting, the algorithm is ran 5 times and the average time costs are
recorded.

As shown in Figure 7, executing the RIS-MSTIM algorithms
with and without indexes over the four datasets, when the seed
size k is increased from 5 to 80, the average time costs for
evaluating each group of queries generated are reported. Here,
for the previous three datasets, the average time cost of 10 group
of queries are reported, while for the youtube dataset the average
time cost of 3 group of queries are reported since it will take much
longer time than other datasets. Based on the above results, we

have two observations. The first one is that as the seed size
increases in an exponential speed both the index and no-index
versions of RIS-MSTIM can scale well, where it should be noted
that the seed size is enlarged twice each time. The second one is
that using the indexes the RIS-MSTIM algorithm performances
much better, where the indexes can help the reduce the time costs
to about 50% for all datasets. It is verified that the index based idea
of improving the performance of RIS-MSTIM is effective and can
be utilized in rather diverse settings for which within the
experiments there are about 500 queries and five different seed

FIGURE 7 | The average time cost of targeted influence maximization algorithm for evaluating the randomly generated query groups over four datasets.

FIGURE 8 | The average time cost of BCT based targeted influence maximization algorithm for evaluating the randomly generated query groups over two datasets.
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sizes. Moreover, since the datasets used here have different
characteristics, it has been also verified that our index based
method is proper for different types of data.

Also, it is verified that the index based solution can be applied
to other sophisticated method within RIS framework also. As
shown in Figure 8, using BCT method in [1] which is the state of
the art and the same setting, for wiki-vote and google datasets, the
average time costs of BCT methods with and without index are
compared. It can be observed that the index solution proposed by
this paper can improve the performance of BCT based method

significantly also. The second key observation is that, although
BCT is better than the standard RIS method, the total time costs
caused by BCT and RIS methods are nearly same. The reason is
that the cost of performing targeted influence maximization is
highly dominated by the cost of evaluating multi-dimensional
queries.

As shown in Figure 9, fixing the seed size to be 20, the time
costs for evaluating each query group are reported. In Figure 9A,
over the wiki-vote dataset, the results for 10 groups of queries are
shown, where as discussed above each of the group contains 50

FIGURE 9 | The time costs of each query group over wiki-vote and google datasets.

FIGURE 10 | The effects of adjusting the index sizes.
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queries and the label n of x-axis means the group id. Similarly, the
experimental results over google dataset is shown in Figure 9B. It
can be observed that over those two datasets the performance of
RIS-MSTIMmethod can be improved by using indexes for all the
query group randomly generated.

7.2.2 Effectiveness of Adjusting Index Sizes
To evaluate the effects of index sizes, the memory size used by the
indexes are controlled by limiting the total number of queries and
random RR sets cached by the indexes. The total size is changed
between 1 and 1000 K, where each time it is increased by 10 times.
For each dataset, the average time costs of evaluating the targeted
influence maximization algorithm for the 10 groups of queries
generated are recorded. As shown in Figure 10, when increasing
the index size, the time costs over all four datasets are reduced.
Since increasing the index size can enlarge the probability that a
random chosen query share random RR sets with previous
queries, such an observation is just what are expected.
Therefore, it can be verified that the indexes using by the
algorithm is the essential part for improving the performance
of RIS-MSTIM, and when being allowed, the threshold for

controlling index size should be assigned to a value as large as
possible.

7.2.3 The Space Cost of Indexes
Intuitively, to let the index based method more general and
usable, the space cost of the indexes used should be well
controlled. Intuitively, when it is assumed that the memory is
enough large to contain all possible index items, without
considering the maintaining and searching costs of the
indexes, the performance of the influence maximization
algorithms can only become better when more items are
indexed. Although, the maintaining and searching costs are
relatively small comparing with the total time cost of RIS-
MSTIM, it still needs huge space cost to store the sampled
random RR sets temporally. If the indexes consume too many
space costs, there may be only few space to store the new samples
needed and the algorithm will perform very bad because of no
enoughmemory space. In this part, fixing the index control size as
1000 K, for the four datasets, we run RIS-MSTIM algorithm over
them for the parameter settings k ∈ {5, 10, 20, 40, 80}. Then, the
sizes of indexes for query results and random RR sets are
reported. As shown in Table 2, the space cost of RIS-MSTIM
with index over the youtube dataset is the largest and the cost over
the wiki-vote dataset is the smallest, which is expected based on
the observation about the execution time costs. Generally
speaking, when the seed size becomes larger, the space cost
increases also. For the google and wiki-vote datasets, when the
seed size is rather smaller, because that the space cost of all
samples generated is still smaller than the threshold, the cost
labelled by random-RR is significantly smaller than the case
with larger k value. Moreover, it can be observed that the cost of
query-result is much smaller than the cost of random-RR,
which is as expected since each random RR set is essentially
a node set.

7.2.4 Comparison of Influence Obtained
Since the two versions of the RIS-MSTIM algorithm are the same
one in principle, the effects of solving targeted influence
maximization problem should be the same also. However, the
key idea utilized in the index version is to reuse the samples
obtained before, therefore, the detailed execution of the two RIS-
MSTIM algorithms may be different. In this part, we should verify
that the difference discussed above is very tiny such that we can
ignore themwhen considering the qualities of the solutions obtained.

TABLE 2 | Space costs of indexes.

Index type k = 5 k = 10 k = 20 k = 40 k = 80 Dataset

query-result 1.54 MB 1.96 MB 1.54 MB 1.68 MB 1.69 MB google
random-RR 134 MB 163 MB 182 MB 183 MB 184 MB
query-result 448 KB 565 KB 639 KB 538 KB 537 KB wiki-vote
random-RR 29.5 MB 64.5 MB 164 MB 163 MB 169 MB
query-result 101 MB 104 MB 105 MB 106 MB 115 MB twitter
random-RR 434 MB 437 MB 432 MB 445 MB 434 MB
query-result 307 MB 312 MB 310 MB 340 MB 320 MB youtube
random-RR 6.0 GB 5.8 GB 5.9 GB 5.9 GB 6.1 GB

TABLE 3 | Influence of the seeds.

Dataset SeedSize RIS-MSTIM + index RIS-MSTIM QueryID

wiki-vote 5 20 20 q26
10 22 22 q24
20 133 134 q44
40 78 79 q17
80 195 193 q16

google 5 2302 2305 q21
10 3275 3273 q6
20 2609 2618 q35
40 4050 4063 q45
80 4075 4039 q9

twitter 5 17832 17824 q1
10 18484 18456 q18
20 3856 3883 q14
40 53494 53430 q1
80 23690 23708 q47

youtube 5 4833 4824 q9
10 11246 11263 q26
20 6038 6097 q32
40 24179 24185 q4
80 8816 8834 q4
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Since for each parameter setting, 50 queries in total are ran, we
randomly select one query for each setting, record the seed node
set, evaluate and compare their corresponding influence
obtained. The results are shown in Table 3. It can be observed
that there are tiny differences between the influence values
obtained by RIS-MSTIM with and without indexes. This is as
expected since the algorithm is a randomized one which only
makes sure that a (1 − 1/e − ϵ) approximation solution is obtained
with at least (1 − δ) probability. Also, it can be observed that the
differences are acceptable for each dataset when considering the
total dataset sizes.

8 CONCLUSION

In this paper, the problem of multidimensional selection based
Targeted Influence Maximization is studied. The MSTIM problem
is shown to be NP-hard even when the target set is rather small.
The RIS framework is extended to the MSTIM case, based on a
careful analysis of the sampling size, it is shown that the MSTIM
problem admits a 1 − 1/e − ϵ approximation algorithm based on
reverse influence sampling. To answer the MSTIM problem
efficiently, an index based solution is proposed. To improve the
performance of evaluating multi-selection queries, an inverted list
style index for query predicates is presented, and efficient index
based query evaluation method is developed. To improve the
performance of the sampling procedure, using the idea of

sharing samples as much as possible, an adaptive sampling
strategy based on index is introduced and the corresponding
influence maximization algorithm is designed. The experimental
results show that the method proposed is efficient.
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