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We obtain eigenstates of interacting disorder Hamiltonians using unitary displacement
transformations that rotate the state of the system. The method generates excited states if
the strength of these transformations is chosen to optimize the energy, while decreasing
the energy variance. We apply the method to analyse the localization properties of one-
dimensional spinless fermions with short range interactions, reaching relatively large
system sizes. We quantify the degree of localization through the size and disorder
dependence of the inverse participation ratio.
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1 INTRODUCTION

In strongly disordered interacting systems, particles are localized, a phenomenon known as many-
body localization (MBL) [1–6]. MBL can be understood through the existence of an extensive
number of exponentially localized integrals of motion (IOM) [7–10]. A practical computational
approach to obtain the IOM and diagonalize interacting fermionic Hamiltonians was developed with
the help of displacement transformations [11, 12], a type of unitary transformation (see Eq. 2). A
similar method to diagonalize these Hamiltonians [13] had been previously introduced in a different
context.

In a previous publication [14], two of us together with Louk Rademaker improved the
numerical efficiency of the displacement transformations technique by focusing on a specific
reference state and considering only those transformations that affect the energy of this state. In
the present work, the spotlight is again on a reference state, but instead of diagonalising the
Hamiltonian, we rotate the state of the system. As we will see, this further increases the efficiency
of the method. One of the reasons for this increase is that storing a state is less expensive than
storing a transformed Hamiltonian. We focus on the effect of the most influential displacement
transformations to gain information on the localization properties of the state. The method
proposed in this work is quite general, fairly easy to implement and it may be of interest in
different fields, such as quantum chemistry, nuclear physics, Rydberg atoms and molecules,
quantum spins, etc.

The flow equation method [15–21] is a continuous versions of our model, in which a set of
differential equations is solved to implement the displacement transformations. Continuous
transformations have the advantage of commuting one with each other for infinitesimal
strengths, while discrete implementations take into account the term to be transformed at all
orders in a single step. Besides, discrete transformations can handle better the storage of the states,
which can be done in a sparse representation. This opens the possibility of reaching larger
system sizes.

The remainder of the paper is set up as follows. In section 2 we present the Hamiltonian
considered and briefly review the definition and main property of displacement transformations. In
section 3 we deduce the equations to minimize the energy with displacement transformations for a
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general state. We then describe how to obtain excited states in
section 4 and analyse their localization properties in 5. In section
6 we discuss possible applications and extract some conclusions.

2 MODEL HAMILTONIAN AND
DISPLACEMENT TRANSFORMATIONS

Although our method applies to any fermionic quantum
Hermitian Hamiltonian, we concentrate on the one-
dimensional tight-binding Anderson interacting Hamiltonian

H � ∑
i

ϕini − t ∑
〈i,j〉

cic
†
j + cjc

†
i( ) +∑

i<j
Ui,jninj (1)

where c†i (ci) is the fermionic creation (annihilation) operator of
state i and ni � c†i ci is the number operator. ϕi are the site
energies, distributed uniformly in the interval (−W/2, W/2), t
is the hopping energy, 〈i, j〉 refers to nearest neighbours, and Ui,j
the interaction. The method works for any type of interaction,
and here we will only consider a nearest neighbour interactionUi,j
� U0δi,i+1.

For an operator X containing the same number of creation and
annihilation operators we can define the following unitary
transformation

DX(λ) � exp λ X† −X( ){ }. (2)

This is called a displacement transformation of strength λ for
the operator X. And the total number of creation and
annihilation operators in X is called the order of the
transformation. The Hamiltonian given by Eq. 1 can be
diagonalized by products of displacement transformations
[11], ending up of the form

~H � ∑
i

ϵi~ni +∑
i<j

ϵi,j~ni~nj + ∑
i<j<k

ϵi,j,k~ni~nj~nk +/ (3)

~n is the transform of the density operator under the same
transformation performed on the Hamiltonian.

It is trivial to show that displacement transformations can be
summed up, given that X3 � X, in the following compact way

DX(λ) � 1 + sin(λ) X† −X( ) + (cos(λ) − 1) X†X +XX†( ), (4)

where 1 is the unit operator.

3 ENERGY MINIMIZATION

As we have mentioned, one can in principle diagonalize the
Hamiltonian by the application of successive displacement
transformations [11, 12], but in this process high order terms
in the Hamiltonian are generated and to store them for large sizes
is a real challenge. An alternative approach is to focus on a given
state |Φ〉 and perform only those transformations that affect the
expectation value or the variance of the Hamiltonian with respect
to this state. The expectation value of the energy after a
transformation DX(λ) is [14].

〈Φ|D†
X(λ)HDX(λ)|Φ〉

� 〈H〉+ sinλ〈[H,A]〉−(cosλ−1)〈HA2 +A2H〉
− sinλ(cosλ−1)〈A2HA−AHA2〉
− sin2 λ〈AHA〉+(cosλ−1)2〈A2HA2〉

(5)

where A ≡ X† − X and expectation values are computed with
respect to state |Φ〉. In a previous work [14], we optimized the
expectation value of the energy by applying the displacement
transformations to the Hamiltonian, while keeping the state fixed.
In the present study we keep the Hamiltonian fixed and apply the
transformations to the state. The final state will be

| ~Φ〉 � ∏
X

DX(λ)|Φ〉. (6)

When the state is kept fixed, it is normal to consider a single
component state (possibly in the complex basis defined by the
integrals of motion), and the only transformations that affect the
energy expectation value satisfy 〈A2〉 � − 1. In the general case,
we can no longer assume this condition and Eq. 5 can be
written as:

〈Φ|D†
X(λ)HDX(λ)|Φ〉 � 〈H〉 + ΔEX sin2 λ − VX sin(2λ)

+ V1 sin λ + V2(cos λ − 1) (7)

where

ΔEX � −〈AHA〉 − 〈A2HA2〉 (8)

VX � 1
2

〈A2HA〉 + 〈AHA2〉( ) (9)

V1 � 〈 1 + A2( )HA〉 + 〈AH 1 + A2( )〉 (10)

V2 � −〈 1 + A2( )HA2〉 − 〈A2H 1 + A2( )〉 (11)

To obtain these quantities for a given X, we compute the auxiliary
states |Φ1〉 � A|Φ〉 and |Φ2〉 � A2|Φ〉 and from them we evaluate
the action of the Hamiltonian operator on them, H|Φ1〉 and
H|Φ2〉. All quantities appearing in Eqs 8–11 are scalar products
of the four states just mentioned. The task that requires most of
the CPU time is the evaluation of H|Φ1〉 and H|Φ2〉.

The function given by Eq. 7 has period π, and there is always
an extreme of the energy between − π/2 and π/2. To get excited
states, we choose the extreme corresponding to the minimum
value of |λ|, since this is the most effective strategy to get as many
excited states as possible, as we will see. Once we have the value of
λ, the calculation of the transformed state is straight forward

| ~Φ〉 � DX(λ)|Φ〉 � |Φ〉 + sin(λ)|Φ1〉 + (1 − cos(λ))|Φ2〉, (12)

The energy is an extreme for all eigenvalues, but not
necessarily a minimum, except for the ground state. So, to
avoid stability problems for excited states, we reject
transformations that increase the variance of the energy. This
quantity is calculated from its definition.

σ2 ≡ 〈Φ|H2|Φ〉 − 〈Φ|H|Φ〉2. (13)

The two expectation values on the right hand side of this
equation are evaluated according to Eq. 7.
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The previous procedure can be implemented for any one-
electron basis. The twomost obvious choices are the site basis and
the solution of the one-electron problem. In the site basis, the
Hamiltonian takes a very simple form and it is very efficient to
evaluate its action on a wavefunction. On the other hand,
wavefunctions always have a very large number of
components. The second possibility, the solution of the one-
electron problem, involves a more complicated form of the
Hamiltonian and wavefunctions whose effective number of
components varies drastically between the localized and the
extended regime. We will call this basis the non-interacting
basis and we will work with it for the reasons given later on.
To avoid confusion, we refer to states in the non interacting basis
with greek letters. In this basis the Hamiltonian is

H � ∑
α

ϵαnα + ∑
α<β,c<η

Vα,β,c,ηc
†
αc

†
βcccη. (14)

4 EXCITED STATES

Our main aim is to obtain excite states with as little bias as
possible and study their localization properties. To get these states
is not a trivial task and, for example, starting from a canonical
basis in the site occupation a large proportion of the final states
coalesce in a few states. We have tested several different strategies
to obtain as many excited states as possible. The best we have
found is the following:

1. The initial state is a single component state on the non-
interacting basis. Up to system size L � 16 we run over all
possible initial states. For larger systems, we choose initial
states at random.

2. Successive displacement transformations are applied to the
state, choosing the minimum absolute value of the strength λ
that minimizes or maximizes the energy. Transformations that
increase the variance of the energy are rejected.

As the calculation of λ, for a given X, involves a CPU time
similar to the transformation of the state, it is convenient to
choose first the operators X that we think are likely to be more
important, i.e., that correspond to larger values of |λ|. We order
the operators X according to |Vα,β,c,η/ΔE|, whereΔE is the internal
energy change, i.e., the energy of the states corresponding to
creation operators in X minus the energy of the states
corresponding to annihilation operators:

ΔE � ϵα + ϵβ − ϵc − ϵη + Vα,β,α,β − Vc,η,c,η for X � c†αc
†
βcccη.

(15)

We have only considered fourth order X operators. after all
displacement transformations for fourth order operators has
been performed, we consider again the same set of operators,
which now produce displacement transformations with much
smaller values of the strength λ. The whole procedure is repeated
three times and we have checked that after this, convergence is
basically achieved.

The displacement transformations that increase the energy
variance and so are rejected depend on the state considered. They
appear at late stages, when the rotations of the corresponding
operators have already been performed at least once.

We can express a general state |Ψ〉 as a linear combination of
configurations (Slater determinants) |ΦΘ〉 in a given basis:

|Ψ〉 � ∑
Θ
aΘ|ΦΘ〉. (16)

Each configuration is represented by an integer, whose 0’s and 1’s
in its binary form corresponds to the empty and occupied states of
the configuration. A state is represented by a set of configurations
and the corresponding weights aΘ.

In the rest of the paper, we consider a nearest neighbour
interaction with U � 1, which sets our unit of energy, a transfer
energy t � 1/2. We fix the total number of particles to half the
number of sites. For this model, the ground state is always
localized, while we expect to have a delocalization transition at
infinite temperature for a critical disorder aroundWc ≈ 4 [22–25]
in our units, although it could be a larger value [26–28].

For small system sizes, we can generate all the final states
starting from a complete initial standard basis and compare the
results with exact diagonalization. We start from a single
component state in the non-interacting basis, i.e., a Slater
determinant for a given set of one-particle states. We then
apply displacement transformations following the strategy
described above and store the final energy of this evolved
state. We arrange these energies E in ascending order and
compare them with the exact energies, Eexact. The results are
shown in Figure 1A for two values of the disorder W � 5 (blue)
and W � 3 (orange) and system size L � 10. The larger disorder
corresponds to the localized regime, while the smaller disorder to
the extended regime. The black dashed line represents E � Eexact
and both blue and orange curves are pretty close to it. We do not
appreciate large horizontal steps, which would indicate that many
initial states have collapsed into the same final state. The steps
seen in Figure 1A involve a few states, while with other
approaches there are large proportions of states coalescing in
the same final one. In the lower part of the figure, we plot E −
Eexact as a function of Eexact to appreciate better the precision of
our method. Similar results to those in Figure 1A are obtained
when working in the site basis. But starting from wavefunctions
corresponding to Slater determinants of non interacting
wavefunctions. The problem with this approach is the very
large size of the wavefunction even at the very beginning of
the calculation.

In order to check the quality of the wavefunctions obtained,
rather than of the energy, we have calculated the inverse
participation ratio (IPR) in the site basis, Is. The IPR is
defined as

Is � ∑
Θ
|aΘ|4⎡⎣ ⎤⎦−1. (17)

where aΘ are the components of the state, see Eq. 16. In this case,
|ΦΘ〉 correspond to a real space configuration, i.e., the set of
occupied and empty sites. In Figure 1B, we compare the IPR
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of the states obtained in panel (a) for the exact procedure and
our algorithm. The agreement for most states is good, but
a few ones, mainly the least localized, present appreciable
differences.

We have studied the level spacing distribution for system
size L � 10. We have normalized the data to the average spacing,
but not to the energy dependent average spacing, since we are
only interested in its behaviour at small values. The results are
presented in Figure 1C forW � 5 (blue) andW � 3 (orange) on
a semilogarithmic scale. As high order displacements have not
been considered, we expect the distribution to be Poisson like,

independently of whether we are in the localized or in the
extended regime. This is not in contradiction with Figure 1A,
since very small deviations in the energies can cause an
appreciable change in the level spacing. If several states were
to collapse in one, we would see a peak in the level spacing
distribution at small spacings [14]. No such peak can be
observed in Figure 1C. To analyse this question more
quantitatively, we have fitted from the second to the fifth
points by a straight line, shown as a dashed line in the
figure, and we see that the first point does no deviate
upwards from the fitted line.

FIGURE 1 | (A) Energy obtained for the different states generated with our method versus the exact energy Eexact for two values of the disorder and L � 10. Lower
panel: E − Eexact versus Eexact. (B) IPR of the states in panel (A) for disorder 3 for the exact calculation and for our algorithm. (C) Energy level spacing distribution for the
same parameters as in (A).

FIGURE 2 | Energy as a function of the number of displacement transformations performed for several states for a disorderW � 5, panel (A), andW � 3, panel (B).
The width of the shaded area is equal to the standard deviation of the energy. (C) Energy level spacing distribution for W � 5 (blue) and 3 (orange) and L � 20.
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We have also analysed the behaviour of our algorithm for a
larger system, L � 20. For a realization of the disorder, we
consider many different initial states, i.e., Slater determinants
constructed from different one-electron states, and monitor the
evolution of their energy E and their energy standard deviation σ
in terms of the number of displacement transformations
performed. In Figure 2A we plot the evolution of the energy
E for a few states as a function of the number of displacement
transformations for a disorder W � 5. The shaded area around
each line corresponds to E ± σ/2, and the final energy should be
within this interval. The energy uncertainty in the extended
regime (W � 3) is much larger than in the localized regime
(W � 5), but in neither case we observe a tendency for states to
merge together, at least, at a significant rate. To quantify this
question, we analyse the energy level spacing as we did for L � 10.
The results are shown in Figure 2C, and as before we do not
appreciate a peak at very low energy spacings above the standard
tendency for a Poisson distribution.

5 LOCALIZATION

To study localization, we start from a single configuration state in
the non-interacting basis and transform it with displacement
transformations as described before. At each step, we monitor the
energy variance and the IPR in the non-interacting basis, Ini. The
IPR is defined as in Eq. 17, but now configurations refer to
occupied and empty non-interacting states. Ini quantifies the
spread of the wavefunction due to interactions. To compare
our results with the IPR in the site basis, we will have to take
into account the increase of the single-particle wavefunction with
decreasing disorder, which is a smooth dependence.

In Figure 3A, we plot in a log-log scale the evolution of Ini
for several states as displacement transformations are
performed on them. In the horizontal axis we represent the
energy variance of the system normalized to its initial value.
Each line corresponds to the evolution of a state, and each dot

to the coordinates of the state after a number of displacement
transformations has been performed. Curves in orange are for
W � 5 and in blue to W � 3. System size is L � 20. As
displacement transformations are performed, curves evolve
from right to left. The program stops when 500
transformations have been attempted (at the beginning not
all transformations succeed in changing the state). In order to
speed up the process, only terms larger (in absolute value) than
its maximum component multiplied by 10−4 have been kept for
both the Hamiltonian and the wavefunction. We note that
while orange curves have basically reached an asymptotic
value, most of the blue curves are still far from saturation.

In Figure 3B, we plot the median of Ini over 1,000 states for
each of the disorders shown in the legend as a function of the
normalized energy variance for size L � 20. The shaded region
ranges between the 25% and the 75% of the IPR. The tendency is
clear, as disorder decreases states become more extended and
their IPR’s increase.

To quantify the tendency of a state to become extended, we
have calculated the slope of the curves of Ini versus the normalized
variance in double logarithmic scale, as those shown in
Figure 3A, at different positions and have kept the maximum
(absolute) value, which we denote as δ. In Figure 4A we show the
histogram of this maximum slope δ for several values of W and
size L � 20. Each histogram is calculated considering 600 disorder
realizations and one random initial state for each realization.
These histograms present a peak that increases in height and
decreases in position as disorder increases. The evolution of the
histograms with system size may be an adequate tool to
characterize localization.

In Figure 4B we plot the average value of δ as a function of
disorder for several system sizes. For disorders 2 and 3, δ
drastically increases with system size, as can be seen in
Figure 4C, where we represent the system size dependence of
δ for the four values of the disorder considered. This is a
promising tool, but we have to improve it in order to get
quantitative results for the MBL transition. We are currently

FIGURE 3 | (A) Evolution of the IPR versus the normalized energy variance as displacement transformations are performed for several states in a double logarithmic
scale for L � 20. Orange curves correspond toW � 5 and blue curves toW � 3. (B) Average IPR versus normalize energy variance for several values of the disorder. The
width of the shaded region is equal to the IPR standard deviation.
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working on the size dependence of δ and on the relationship
between the action of the displacement transformations and the
dynamics.

We have also explored the effect of a cutoff in the
nondiagonal terms included in the Hamiltonian on the IPR.
We order these terms according to |Vα,β,c,η/ΔE| and only keep
terms with this quantity larger than a cutoff Vc. The results are
presented in Figure 5A, where we plot the median of the
distribution of Ini as a function of the cutoff for several
disorders and for L � 20. We use the median of the
distribution to avoid the bias in the most delocalized states.
We note that for cutoffs smaller than 0.1 the IPR remains
constant. So, as long as the IPR is concerned, a cutoff of Vc �
0.1 does not affect the results, while it drastically reduces
computing time.

We have calculated the IPR for several system sizes and values
of the disorder using the previous cutoffVc � 0.1. In Figure 5Bwe
represent the results as a function of the Hilbert space, as
previously done in Ref. [23], on a double logarithmic scale.
Our results are consistent with those in Ref. [23] (A precise
comparison is not possible, since boundary conditions are
different.) We note that, within our approximations, we can
reach larger system sizes.

6 DISCUSSION AND OUTLOOK

Displacement transformations are useful to diagonalize
interacting Hamiltonians. We have explored their application
in two different procedures. When displacement transformations

FIGURE 4 | (A) Histogram of δ for several values of the disorder and L � 20. (B) Average δ versusW for several values of L. (C) Average value of δ as a function of L
for the different amounts of disorder considered.

FIGURE 5 | (A)Median of the IPR as a function of the cutoff in the potentials considered for several values of the disorder and system size L � 20. (B)Median of the
IPR versus the size of the Hilbert space on a double logarithmic scale for several values of the disorder and L � 20.
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rotate the state of the system, the basis employed remain fixed
along the whole process, while when one rotates the Hamiltonian,
the basis is updated self-consistently at every step [14]. Rotating
the Hamiltonian also has the advantage of being specially suited
for renormalization techniques, but these two advantages have to
be confronted with the more efficient storage of the states when
these are rotated, instead of the Hamiltonian. The present
implementation of the method also has the advantage of
degradating its performance less with increasing system size.
We believe this is due to the fact that the necessary cutoffs in
the present implementation are more under control than the
cutoffs in the previous one.

With the current procedure, we can reach system sizes much
larger than with exact diagonalization. In this work, we have
calculated up to L � 32 and we expect to reach larger sizes in the
near future, at least for strong disorders,W > 4. DMRG and other
approximate methods can reach large system sizes, but our
approach produces large fractions of relatively unbias excited
states as shown in a previous work [14]. We have checked that in
the present implementation (rotating the wave-function instead
of the Hamiltonian) we still reach most of the excited states.

Storing the displacement transformations utilised to get one
state, DX(λ), one can construct an approximation to the IOM

c̃†i � ∏
X

DX(λ)⎛⎝ ⎞⎠†

c†i ∏
X

DX(λ). (18)

and rewrite the final state in terms of them. This is clearly an
approximation, since we are only including transformations for a
single state. It can be improved by considering other states.

In the site basis, the Hamiltonian takes a very simple
form, but the size of the wavefunction, even the non
interacting one, grows drastically with system size and
renders the problem in practical for large sizes. For the
calculation of the ground state, this approach is similar to
that based in the ARPACK library.

Our procedure can be directly extended to any number of
dimensions or to random geometries. It can also be applied to
long-range interactions, and we intend to study MBL in this case.
The method should be suited for molecular orbital calculations,

nuclear structure determination [29], Rydberg atoms [30] and
excited states in molecules [31, 32]. In the future, we would like to
study the possibility of determining the localization properties
from the evolution with system size of the distribution of δ.

Our method is equivalent to the Hartree-Fock approximation
when displacement transformations involving only a single pair
of creation and annihilation operators are performed. Including
more complex transformations represents the natural extension
of Hartree-Fock for the construction of non-gaussian states.

Displacement transformations constitute an excellent tool to
study quantum interacting systems. In this paper, we have shown
that they can be used to obtain excited states and to study their
localisation properties in an efficient way.
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