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We report on the fabrication of optical ridge waveguide in barium fluoride (BaF2) crystal by
15 MeV C5+ ions irradiation with femtosecond laser ablation. The near-field modal profile
and propagation loss of the waveguide at mid-infrared wavelength 4 µm are investigated
by using end-face coupling system. We implement a series of annealing treatment and it
efficiently reduces the propagation loss of the waveguide. The confocal Raman spectra
demonstrate that the lattice structure of BaF2 crystal does not change largely after C5

+ ion
irradiation.
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INTRODUCTION

Mid-infrared (MIR) is usually defined as the electromagnetic wave with wavelength of
2.5–25 μm, which can not only be used for detection of molecular content and molecular
type identification but also to achieve molecular imaging, so it has a wide range of applications
in the fields of military, environmental monitoring, medical treatment, and basic research. BaF2
is an alkaline earth fluoride crystal, belonging to cubic crystal system. BaF2 crystal has the
characteristics of good moisture resistance, high operating temperature, and wide light
transmittance range that can reach more than 90% in the wavelength range of 0.2–10 μm
[1, 2]. BaF2 crystal is an ideal material for making various optical windows, prisms, lenses, and
other optical components. It can be used for infrared power distribution cabinet windows,
Fourier gas analysis windows, oil and gas detection, high power laser, optical instruments,
etc. [3, 4].

Optical waveguide structure can limit beam transmission in a relatively small area to increase
the optical density and enhance the optical phenomenon, which can be used as the basis of
integrated optoelectronic devices [5–7]. According to the dimensions of the waveguide, it can be
categorized as one-dimensional waveguide, two-dimensional waveguide, and three-dimensional
waveguide [8, 9]. People have been exploring effective methods to prepare optical waveguides.
The commonly used waveguide preparation methods include ion implantation/irradiation, ion
exchange, and laser direct writing [10–17]. As two-dimensional optical waveguide has
advantages of higher optical density and better connection efficiency than one-dimensional
optical waveguide, it has attracted more and more attention. Up to now, two-dimensional ridge
waveguides have been constructed by technique of ion irradiation combined with diamond blade
dicing or femtosecond laser ablation [18–20].

In our work, we first time constructed ridge waveguide on BaF2 crystal by using the method of ion
irradiation with femtosecond laser ablation and investigated optical transmission characteristics of
waveguides at mid-infrared 4 µmwavelength and the lattice damage of crystal after ion irradiation by
using Raman spectrum.
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EXPERIMENTS

We prepared a BaF2 crystal with size of 10 × 10 × 3 mm3 which
was optically polished. We utilized a 3 MV tandem accelerator to
irradiate C5+ ions onto the sample surface (10 × 10 mm2) at
Helmholtz-Zentrum Dresden-Rossendorf, Germany. The
irradiation energy was 15 MeV and the ion dose was 1.5 ×
1015 ions/cm2. In order to reduce the channel effect, an angle
of 7° was maintained between the incident ion beam and the
normal direction of the sample surface. In this way, a planar
waveguide with depth of 11 µm was generated beneath the BaF2
crystal surface.

Then, we used a Ti:sapphire laser system at the University of
Salamanca, Spain, to generate a femtosecond laser (central
wavelength of 800 nm, maximum pulse energy of 9 mJ, pulse
width of 120 fs, and repetition rate of 1 kHz) to ablate grooves on
the sample surface. The pulse energy of the laser was set to 2.1 μJ
by using a half-wave plate, a linear polarizing plate, and a neutral
density filter. The femtosecond laser was used to scan the sample
surface at speed of 20 μm/s, and two parallel grooves were ablated
with separation of 30 μm. With femtosecond laser ablation
method, the minimum separation distance that can be
achieved in ridge waveguide structure is 10 µm. Finally, a ridge
waveguide with width of 30 μm and depth of 11 μmwas prepared
on BaF2 crystal.

We utilized an end-face coupling system to investigate the
guiding characteristics of the BaF2 waveguide. We employed a
laser source (MIR™ 8025, Daylight Solutions) to generate mid-
infrared light at 4 μm wavelength. The light passed through a
polarizer and it was coupled into and out of the waveguide by a
pair of MIR objective lens (ZnSe, LFO-5-12-3.75, N.A. � 0.13).
Finally, it was recorded by an MIR camera (Tigris-640, Xenics) to
record the near-filed modal profile and an MIR power meter
(PM125D, Thorlabs) to measure the output power of the

waveguide. The propagation loss comes out of the defects and
color centers in BaF2 crystal by ion irradiation. As heat treatment
can reduce the defects and color centers caused by ion irradiation
and the propagation loss of waveguide, we implemented a series
of thermal annealing treatments at 210, 240, 270, 300, and 330°C
in sequence and calculated the propagation loss of the waveguide
before and after each annealing.

In order to study the lattice structure damage to the BaF2
crystal after C5+ ion irradiation, we used a confocal Raman
spectrometer (Horiba/Jobin Yvon HR800) to measure the
Raman spectrum of the waveguide and substrate region. We
chose the Raman laser wavelength at 473 nm and set the wave
number range 100–1,000 cm−1.

RESULTS AND DISCUSSION

We used SRIM-2010 software to simulate the energy deposition
process of 15 MeV C5+ ion irradiation, as shown in Figure 1 [21].
As we can see, from the depth range of 0–10 μm, the electronic
blocking energy Se is obviously higher than nuclear blocking
energy Sn, and Se goes for a maximum of 1.6 keV/nm at depth of
7 μm. Meanwhile, within the depth range of 0–9 μm, the nuclear
blocking energy Sn remains 0 and increases very slowly reaching
the maximum of 0.1 keV/nm at depth of 10.8 μm. This result
shows that compared with nuclear blocking ability, the electronic
blocking energy plays a dominant role in the mechanism of
waveguide formation.

Because the waveguide fabricated by C5+ ion irradiation has
high irradiation energy and deep buried layer, the refractive index
distribution cannot be measured by dark mode spectroscopy
directly. To obtain the refractive index profile of the
waveguide at 4 µm wavelength, we measured the maximum
refractive variation Δn by using the formula [22],

FIGURE 1 | Electronic (red line) and nuclear (blue line) stopping powers
as function of penetrate depth from the surface of the 15 MeV C5+ ion
irradiated BaF2 crystal.

FIGURE 2 | Refractive index profile on TE (red line) and TM (blue line)
modes at 4 μm wavelength of the 15 MeV C5+ ion irradiated BaF2 crystal.
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Δn � sin2Θm

2n
, (1)

where n � 1.4568 is the refractive index of BaF2 crystal at 4 µm
wavelength; Θm is the maximum deflection angle when the
transmitted power is unchanged. Due to the uncertainty of the
measured maximum incident angle deflection, the estimated error is
30%. Based on themeasuredΘm � 9.3° (TE) andΘm � 8.2° (TM), we

obtain Δn � +0.009 (TE) and Δn � +0.007 (TM), which indicates
that the waveguide’s confining light ability at TE mode is stronger
than that on TMmode. By combing the simulated Se profile andΔn,
we reconstructed the refractive index profile at 4 µm along TE and
TM polarizations, as shown in Figure 2.

Figures 3A–C depict the measured near-field modal profile of
the ridge waveguide at 4 µm wavelength along TE and TM
polarizations, respectively. As we can see, the near-field modal
profiles exhibit single-mode guidance on TE mode and multi-
mode guidance on TM mode. It shows that the guiding
characteristic at 4 µm wavelength on TE mode is superior
compared to TM mode, which conforms to the measured Δn
(TE) > Δn (TM). According to the reconstructed refractive index
profile of the waveguide at 4 μm, we simulated the near-field
modal profile of the waveguide using Rsoft software through
finite difference beam propagation method (FD-BPM) on TE and
TM modes, respectively, as shown in Figures 3B–D, which is in
good agreement with the experimental results [23].

Figure 4 depicts the measured propagation losses of the ridge
waveguide at 4 µmwavelength onTE andTMmodes before and after
each annealing treatment. As we can see, for TE mode, the
propagation loss is 5.1 dB/cm before annealing. After 5 steps of
annealing, the propagation loss decreases to 4.0 dB/cm (step 1,
210°C), 2.6 dB/cm (step 2, 240°C), 1.1 dB/cm (step 3, 270°C),
0.5 dB/cm (step 4, 300°C), and 0.5 dB/cm (step 5, 330°C). For TM
mode, the propagation loss is 6.0 dB/cm before annealing. After 5
steps of annealing, the propagation loss decreases to 4.7 dB/cm (step
1, 210°C), 3.2 dB/cm (step 2, 240°C), 2.1 dB/cm (step 3, 270°C),
0.9 dB/cm (step 4, 300°C), and 0.9 dB/cm (step 5, 330°C). We can
conclude that a series of annealing treatment (step 1–4, 210–330°C)
can eliminate the color center and point defect of the waveguide
region which can decrease the propagation loss of the waveguide.
After step 5 annealing, the propagation loss of the waveguide remains
unchanged and it shows the temperature range of 330–360°C is the
thermal stability region of the waveguide. We can find that under the

FIGURE 3 | Measured near-field modal profiles (A) (C) and simulated
modal profiles by using FD-BMP code (B) (D) of the ridge waveguide at 4 μm
wavelength.

FIGURE 4 | Propagation losses of BaF2 ridge waveguide at 4 μm
wavelength on TE (blue line) and TM (red line) modes before and after each
annealing step (1–5).

FIGURE 5 | Raman spectra of 15 MeV C5+ ion irradiated BaF2 crystal in
the waveguide region (blue line) and substrate region (red line).
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same annealing condition, the propagation loss of the waveguide at
TE mode is lower than that at TM mode.

Figure 5 depicts the Raman spectrum of the waveguide and
substrate of BaF2 crystal. As we can see, the Raman spectrum of
the waveguide coincides with that of the substrate very well. It
indicates that ion irradiation does not significantly damage the
lattice of the crystal.

CONCLUSION

We used technique of 15MeVC5+ ions irradiation with
femtosecond laser ablation to construct a ridge waveguide in
BaF2 crystal and investigated the guiding properties at 4 µm
wavelength. We simulated the energy deposition process of ion
irradiation and reconstructed the refractive index profile of the
waveguide. By using end-face coupling arrangement, we
measured the near-field modal profile showing single-mode at TE
and multi-mode at TM. After a series of annealing treatment, the
propagation loss of the waveguide is reduced as low as 0.5 dB/cm on
TEmode and 0.9 dB/cm on TMmode. The Raman spectrum shows
that ion irradiation process does not damage the lattice of the crystal.
Our work suggests an effective method to fabricate low-loss ridge
waveguide structure in BaF2 crystal, which shows a prospective
application in MIR integrated optical chips. In the further work, we
consider to construct waveguides with more complex geometries.
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