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Identifying multiple influential spreaders, which relates to finding k (k > 1) nodes with the
most significant influence, is of great importance both in theoretical and practical
applications. It is usually formulated as a node-ranking problem and addressed by
sorting spreaders’ influence as measured based on the topological structure of
interactions or propagation process of spreaders. However, ranking-based algorithms
may not guarantee that the selected spreaders have the maximum influence, as these
nodes may be adjacent, and thus play redundant roles in the propagation process. We
propose three new algorithms to select multiple spreaders by taking into account the
dispersion of nodes in the following ways: (1) improving a well-performed local index rank
(LIR) algorithm by extending its key concept of the local index (an index measures how
many of a node’s neighbors have a higher degree) from first-to second-order neighbors; (2)
combining the LIR and independent set (IS) methods, which is a generalization of the
coloring problem for complex networks and can ensure the selected nodes are non-
adjacent if they have the same color; (3) combining the improved second-order LIR
method and IS method so as to make the selected spreaders more disperse. We evaluate
the proposedmethods against six baselinemethods on 10 synthetic networks and five real
networks based on the classic susceptible-infected-recovered (SIR) model. The
experimental results show that our proposed methods can identify nodes that are
more influential. This suggests that taking into account the distances between nodes
may aid in the identification of multiple influential spreaders.

Keywords: identification of multiple influential spreaders, dispersion of nodes, location index rank algorithm,
independent set algorithm, susceptible-infected-recovered model

1 INTRODUCTION

Many real-world problems involve the identification of multiple influential nodes in complex
networks, such as finding a few individuals who are critical to the spread of information on the
internet, or whomay speed up the transmission process of pestilence in crowds once infected [1]. The
problem of identifying multiple influential nodes differs from that of discovering the most influential
nodes. The latter refers to finding the k (k > 1) most influential spreaders, which is commonly
addressed by ranking the influence of individual nodes. The former involves the identification of a set
of k nodes with the maximum influence as a whole. That is, identifying multiple influential nodes
should take into account the different roles that nodes play in the propagation process rather than
just evaluating their individual influence [2].
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Methods to identify multiple influential spreaders fall in three
categories. The first regards this as an influence maximization
(IM) problem. Some well-known methods include the greedy [3],
new greedy [4], community-based greedy [5], k-medoid [6], two-
phase influence maximization [7], and collective influence [8]
algorithms. However, as the IM problem is NP-hard, these
algorithms are challenged by increasing network sizes, and
thus are not applicable to huge real networks.

Methods in the second category attempt to identify multiple
influential nodes by ranking their influences, which are calculated
according to various topology-based centrality measures: 1)
classic topological centrality metrics, such as degree centrality
[9], betweenness centrality [10], and closeness centrality [10]; 2)
centrality measures that take into account multiple (global or
local) network features, such as KED centrality [11], efficiency
centrality (EC) [12], composite centrality based on analytic
hierarchy process [13], and classified neighbors centrality [14];
and 3) local-information-based iterative algorithms such as
PageRank [15], LeaderRank [16], and VoteRank [17].
However, the ranking approach may not always find a set of
nodes with the maximum influence [18], possibly because they
separately measure the influence of each node, and thus omit
overlapping effects of topologically adjacent top-ranked nodes.

Algorithms in the third category consider the distance between
nodes when evaluating node importance. For instance, the local
index rank (LIR) algorithm [19] is based on the local index (LI)
value of a node, which represents the number of neighbors whose
degree exceeds that of the focus node. Spreaders are selected from
nodes whose LI values are 0 (i.e., 0-LI nodes). However, the LIR
method cannot avoid some adjacent 0-LI nodes, and sometimes
there are not enough 0-LI nodes to be selected as spreaders.
Another example is the independent set (IS) algorithm [20],
which divides nodes into independent sets by the Welsh-
Powell coloring algorithm and selects spreaders in the largest
independent set to ensure that selected nodes are non-adjacent.
However, special situations may occur, such as not enough
spreaders in the largest independent set; meanwhile directly
selecting rest spreaders in following independent sets may
derogate the advantages brought by independent set.

We propose three methods with different degrees of
dispersion to identify multiple spreaders. The first one is LIR-
2 method which extends the concept of the local index to second-
order neighbors and does not restrict the spreaders’ selection
from the 0-LI nodes. By doing so, this method enlarges the
distance between the 0-LI nodes and can guarantee to select
enough spreaders. The second one is IS-LIR method which
hybrids LIR and IS to ensure that nodes in the same
independent set are non-adjacent. The third one is IS-LIR-2
method, which hybrids the improved second-order LIR
method and IS method so that the selected spreaders are more
dispersed. Comparing the proposed three methods with
traditional methods for multiple spreader identification on 10
synthetic networks and five real networks based on the SIR
propagation model, we find our methods more effective in
maximizing the size of the spreading coverage, and that a
higher dispersion of the selected multiple spreaders helps to
amplify the spreading.

The rest of this paper is organized as follows.Sec. 2 introduces
work relating to the identification of multiple influential
spreaders. Sec. 3 formalizes the research problem and
proposes our method. Sec. 4 describes our experiments,
including baseline methods, the SIR propagation model,
evaluation metrics, parameter settings for experiments, and
datasets. Sec. 5 provides the experimental results and discusses
why diversity should be considered when we select a set of
influential spreaders. We summarize our work in Sec. 6.

2 RELATED WORK

Identifying a set of influential nodes in a network is important for
designing network immunization [21], system control strategy
[22] and improving the network robustness [23,24]. Work about
multiple spreader identification falls in three categories. The first
regards it as an influence maximization problem [3], and thus
utilizes optimization algorithms to directly identify a set of
spreaders. The greedy algorithm [3] is a classic example. These
algorithms are accurate but time-consuming, and thus do not suit
large-scale networks. Some researchers employ information
about network structures to reduce the time complexity while
maintaining the high accuracy of classic optimization algorithms.
The NewGreedy algorithm [4] removes edges that do not
contribute to propagation, so as to speed up the simulation
process. The community-based greedy algorithm (CGA) [5]
mines the top-k spreaders from detected communities so as to
reduce the running time. Another algorithm [6] constructs an
information transfer probability matrix and uses the k-medoid
clustering algorithm to find the most centrally located nodes in
clusters as spreaders. Two-phase influence maximization (TIM)
[7] includes the phases of parameter estimation and node
selection to reduce time complexity.

Methods in the second category select the top-ranked
spreaders, whose influence is calculated based on network
topological information. Classic indicators such as degree
centrality [9], betweenness centrality [10], closeness centrality
[10], and coreness centrality [25], have been utilized to estimate
the influence of spreaders. Some researchers take into account
multiple (global or local) network features when measuring the
importance of spreaders [26]. For instance, KED centrality [11]
combines the number and diversity of paths. Composite
centrality based on the analytic hierarchy process (AHP) [13]
combines degree, betweenness, and closeness centrality.
Classified neighbors centrality (CNC) [14] classifies the
neighbors of a focal node into four groups according to the
removal order in the process of k-shell decomposition, weights
each class differentially, and sums them to characterize the
spreading capacity of the node. PageRank [15], LeaderRank
[16], and VoteRank [17] all consider the importance of a node
itself and its connections with other nodes to identify influential
nodes. These rank-based algorithms often have simple forms
and low time complexity and can effectively mine a single
important node. However, they may not efficiently find
multiple important spreaders because they seldom consider
interactions between spreaders, i.e., they ignore the
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overlapping effects of top-ranked nodes if they are topologically
adjacent.

Algorithms in the third category attempt to minimize the
overlapping effects of spreaders during selection. The
SuperNode algorithm [27] uses the Blondel community
detection algorithm to get the community division in the
network, and selects important nodes from the communities
according to size so that the selected nodes have some
distance. An independent set (IS)-based partitioned ranking
algorithm [20] divides nodes into independent sets by the
Welsh-Powell coloring algorithm, then selects the top-ranked
nodes in the largest independent set based on certain
centrality indicators. The local index rank (LIR) algorithm
[19] selects spreaders from nodes with 0-LI values, i.e., those
whose direct neighbors have lower degrees than themselves.
However, there may not be enough 0-LI nodes to be selected as
spreaders in some cases, and the selection of adjacent nodes
cannot be avoided. We seek to overcome the above
deficiencies by extending LIR methods to two-layer
neighbors and integrating them with IS methods.

3 METHODS

We formalize the problem of multiple influential spreader
identification and propose the LIR-2, IS-LIR, and IS-LIR-2
algorithms, which consider the diversity of nodes to different
degrees.

3.1 Formulation of Research Problem
Given a graph G (V, E), where V � {v1, v2, . . . , vN} denotes the
node-set and whose size is N, and E � {e1, e2, . . . , eM} denotes the
edge-set, whose size is M. A method to address the problem of
multiple influential node identification can be regarded as a
function f (·) to select a node subset S ⊆ V with a given k (1 <
k < N) nodes, which should have the maximum influence on
graph G, i.e., S* � argmax

S
f(S, G).

3.2 LIR-2 Method
LIR-2 improves on LIR [19], where the local index (LI) of node vi
is the number of its first-order neighbors of greater degree,
i.e., LI(vi) � ∑vj∈N(vi)Q(dj − di), where di is the degree of
node vi, N(vi) � {vj|vj ∈ V (vj, vi) ∈ E} contains the neighbors
of vi, andQ(x) � 1 when x > 0, and otherwiseQ(x) � 0. Nodes with
LI values of zero (i.e., 0-LI nodes) are ranked by degree, and the
top-ranked nodes are selected as spreaders.

LIR-2 extends the neighbors of node vi from first to second
order. The second-order local index LI2 of node vi is defined as

LI2(vi) � ∑
vk∈{N(vi) ∪ N(N(vi))}

Q(dk − di), (1)

whereN(vi) andN (N(vi)) denote thefirst- and second-order neighbors,
respectively, of node vi, Q(x) � 1 when x > 0, and otherwise Q(x) � 0.
According to the definition, the LI2 value of node vi is the number of its
first- and second-order neighbors of greater degree.

The LIR-2 method sorts nodes by LI2 values within degrees,
and selects those of top rank as spreaders, as described in
Algorithm 1.

Algorithm 1. LIR-2

Figures 1A,B illustrate LIR and LIR-2, respectively, on a toy
network with 20 nodes and 41 edges. Figure 1C shows a single 0-
LI node (node 20). Therefore, 0-LI nodes are insufficient for the
selection of multiple spreaders. As LIR-2 is not limited to the
selection of top-ranked spreaders from nodes with 0 LI2 values,
they can select spreaders as required.

3.3 IS-LIR Method
The LIR method cannot avoid the selection of adjacent nodes.
We combine LIR with the IS method to ensure that nodes in the
same independent set are non-adjacent. The proposed IS-LIR
method uses the Welsh-Powell algorithm to divide nodes into
different independent sets, then calculates LI for nodes in
independent sets that are ranked in descending order. Nodes
are selected from the ranked independent sets, one by one, based
on the LIR method. The IS-LIR algorithm is outlined in
Algorithm 2.

Algorithm 2. IS-LIR

Figure 1D illustrates the IS-LIR method on a toy network as
an example, first using the Welsh-Powell algorithm to color all
nodes in four colors (blue, green, yellow, and pink). Nodes of the
same color constitute independent sets, which are sorted by
node size, and nodes are sorted by degree within each
independent set. We now have a node list, whose top
members are selected as the influential spreaders. For
instance, using the IS-SIR method, if we seek three effective
spreaders on the toy network, we will select nodes 20, 8, and 1 in
the blue set.

3.4 IS-LIR-2 Method
IS-LIR-2 combines IS and LIR-2 to select spreaders from more
dispersed candidates. Its process, as shown in Algorithm 3, is
similar to that of IS-LIR, but nodes in each independent set are
ranked based on LI2 values.
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Algorithm 3. IS-LIR-2

Figure 1E illustrates how IS-LIR-2 runs on the toy network.
Like the IS-LIR method (Figure 1D), nodes are colored with four
colors. Three spreaders, nodes 20, 8, and 4, are selected according
to their LI2 values, as shown in Figure 1F.

4 EXPERIMENT SETTINGS

We introduce the classic SIR model, which will be utilized to
simulate epidemic spreading, and present two evaluation metrics
to compare the performance of the proposed methods with eight
baseline methods: degree centrality ranking (DC) [9], LIR [19],
degree centrality ranking based independent set (IS-DC) [20],
eigenvector centrality ranking based independent set (IS-EV)
[20], neighborhood centrality ranking based independent set
(IS-ND) [20], and VoteRank [17]. We describe the synthetic

and real networks used in our experiments, and discuss
parameter settings.

4.1 SIR Model
The SIRmodel classifies each node in a propagation process into the
three states of susceptible, infected, and recovered. All nodes are
initially susceptible, except a few in infected states. In our
simulations, the infected nodes at time step t � 0 are those
identified as influential nodes by our proposed methods and the
baseline methods for comparisons. At each time step, infected nodes
at the end of the previous time step randomly select a neighbor node,
which, if susceptible, will be infected with probability μ. All infected
nodes recover with probability β. Recovered nodes cannot be
infected again, and cannot affect susceptible neighbor nodes.
Simulations end when there are no infected nodes in the network.

4.2 Evaluation Metrics
We use twomeasures to evaluate the performance of our methods
in identifying effective influential spreaders. The outbreak size
proportion [28] at time step T is

F(T) � nR(T) + nI(T)
N

, (2)

where nR(T) and nI(T) are the numbers of susceptible and infected
nodes, respectively, at the end of the time step T, andN is the total
number of nodes.

FIGURE 1 | Illustrations of LIR [subfigure (A)], LIR-2 [subfigure (B)], IS-LIR [subfigure (D)], and IS-LIR-2 [subfigure (E)] methods on a toy network with 20 nodes and
41 edges. The selected spreaders are highlighted in light blue color. Nodes with different colors in subfigures (D) and (E) belong to different independent sets, which are
generated by the Welsh-Powell algorithm. The values of index LI and LI2 of nodes are represented in subfigure (C) and subfigure (F).
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The average shortest path length of the identified spreaders
represents the dispersion among them [28], and is defined as

L � |S|(|S| − 1) 1
∑u,v∈S u≠v

1
l(u,v)

, (3)

where l (u, v) is the shortest path length between nodes u and v;
when |S| � 1, L � 0. A larger L indicates a smaller overlapping
neighbor area between nodes in the spreader set.

4.3 Synthetic and Real Networks
To evaluate the effectiveness of our proposed methods in
identifying influential spreaders on networks with different
topological structures, we compare them with benchmark
algorithms on 10 synthetic networks and four real networks.
The synthetic networks include three small-world networks
generated based on the Watts-Strogtaz (WS) small-world
network model [29], four scale-free networks generated based
on the Barab�asi-Albert scale-free network model [30], and three
networks with community structures generated by the LFR
community network model [31]. Table 1 presents key
parameter settings for the 10 synthetic networks, and Table 2
summarizes their basic topological features.

The five real networks used in this study include a football
network [32], a collaboration network [33] between jazz
musicians (referred to as jazz network), a contact network
between high school students (referred to as high-school
network) [34], an email network [35], and a power network
[29]. The football network includes United States college Division
I football games in 2000, where nodes represent teams, and edges
are regular-season games between two connected teams [32]. The
jazz network describes collaborations between jazz musicians,
where each node represents a jazz musician, and an edge denotes
that two musicians have played together in a band. The high-
school network shows contacts between high school students in
specific classes (called “classes préparatoires” in Lycée Thiers,
France). The email network presents email communications at
the University Rovira i Virgili in Tarragona, Spain, in 2003.
Nodes are users, and each edge represents that at least one

email was sent. The power network is a topological
representation of the Western States Power Grid in the
United States, where an edge denotes a power supply line and
a node can be a generator, transformer, or substation. Table 3
summarizes the basic topological features of the five real
networks.

4.4 Parameter Settings
Our experiments based on the SIR model explored the
proportion of final outbreak size F (tend) with respect to the
effective infected probability λ and proportion of spreaders p.
We set the parameter of the recovered probability β � 1

< k> used
by He et al. [27].

We also carried out a sensitivity analysis on the size of the
spreader set p, varying it between 0.01 and 0.15, i.e., p ∈ [0.01,
0.15], with a step of 0.01, and the effective infected probability λ
was fixed at 2.0.

In addition, we explored the final outbreak size proportion F
(tend) while varying the effective infected probability λ, where λ ∈
[1.5, 2.5] with a step of 0.1, and fixed the scales of spreaders at p �
0.08. Results were averaged over 1,000 independent runs.

5 RESULTS AND DISCUSSION

We present the experimental results evaluating the proposed
methods, and determine whether identified spreaders are
effective while varying the infection probability λ. We show

TABLE 1 | Key parameter settings in generating synthetic networks. N is the
number of nodes; p is a random reconnection probability; < k > is the average
degree;m is the number of new edges in every iteration; τ1 is the exponent of the
degree sequence; τ2 is the exponent of the community size distribution; μ is a
mixing parameter that is the average ratio of the external and total degrees;
MD is the maximum degree of the network.

Network N P <k > m τ1 τ2 μ MD

WS1 5,000 0.001 4 — — — — —

WS2 5,000 0.01 4 — — — —

WS3 5,000 0.1 4 — — — —

BA1 5,000 — — 1 — — — —

BA2 5,000 — — 2 — — — —

BA3 5,000 — — 3 — — — —

BA4 5,000 — — 4 — — — —

LFR1 5,000 — 6 — −2.5 −2.5 0.1 50
LFR2 5,000 — 6 — −2.5 −2.5 0.3 50
LFR3 5,000 — 6 — −2.5 −2.5 0.5 50

TABLE 2 | Topological features of synthetic networks. N is the number of nodes;
M is the number of edges; < k > is the average degree; L is the average
shortest path length; D is the network diameter; C is the average clustering
coefficient.

Network N M <k > L D C

WS1 5,000 10,000 4 192.677 536 0.498
WS2 5,000 10,000 4 43.25 117 0.487
WS3 5,000 10,000 4 11.295 22 0.37
BA1 5,000 4,999 2 7.756 20 0
BA2 5,000 9,996 3.998 4.768 8 0.008
BA3 5,000 14,991 5.996 4.502 7 0.01
BA4 5,000 19,984 7.994 3.663 6 0.0011
LFR1 5,000 14,535 5.841 7.47 21 0.575
LFR2 5,000 15,091 6.036 5.232 11 0.319
LFR3 5,000 14,613 5.845 4.769 9 0.116

TABLE 3 | Basic topological features of five real networks. N is the number of
nodes; M is the number of edges; < k > is the average degree; L is the average
shortest path length; D is the network diameter; C is the average clustering
coefficient.

Network N M <k > L D C

Football 115 613 10.661 2.508 4 0.403
arenas-jazz 198 2,742 27.679 2.235 6 0.633
hschool0 312 2,242 14.37 2 5 0.4
arenas-email 1,133 5,451 9.62 3.606 8 0.254
Power 4,941 6,594 2.669 18.989 46 0.107
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FIGURE 2 | Proportion of final outbreak size F (tend) with respect to different proportions p of selected spreaders with respect to nine algorithms on 10 synthetic
networks [subfigures (A–J)] and five real networks [subfigures (K–O)]. Infected probability in SIR model is λ � 2.0; SIR recovered probability β � 1

< k > and results are
averaged over 1,000 independent runs.
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FIGURE 3 | Final outbreak size proportion F (tend) at different effective infected probabilities λwith respect to nine algorithms on ten synthetic networks [subfigures
(A–J)] and five real networks [subfigures (K–O)]. SIR recovered probability β � 1

< k > , proportion of spreaders p � 0.08, and results are averaged over 1,000
independent runs.
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FIGURE 4 | Harmonic mean of average shortest path length L between any two nodes with respect to different proportions of multiple spreaders pwith respect to
nine algorithms on ten synthetic networks [subfigures (A–J)] and five real networks [subfigures (K–O)].
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the relationships between the dispersion and the effectiveness of
influential spreaders identified by our proposed methods and the
baseline methods.

Figure 2 displays the final outbreak size F (tend) for different
numbers of spreaders (denoted by the proportion of selected
spreaders p) identified by different methods based on SIR
simulations, and shows that our proposed methods
generally outperform the baseline methods on synthetic and
real networks. On WS networks, IS-LIR-2 has the largest final
outbreak scale on WS1. IS-LIR-2, IS-LIR, and VoteRank
perform similarly to or better than other algorithms on
WS2 and WS3. On BA networks, the performance of IS-
LIR-2 and LIR-2 is superior to the other methods, especially
on BA2, BA3, and BA4. On LFR networks, IS-LIR performs
better than the other methods, and IS-LIR-2 performs better
on LFR2 but not so well on LFR3. In experiments on real
networks, IS-LIR and IS-LIR2 could identify more influential
spreaders in most cases on almost all five real networks.
However, LIR-2 was not significantly superior on real
networks except the arenas-email network. LIR-2, IS-LIR,
and IS-LIR2 had obvious advantages selecting multiple
spreaders in most cases. This implies that to take into
account the dispersion of selected nodes can improve
performance.

As the infected probability in the SIR model is a key parameter
that may affect the final break size of infections, we explored the
performance (represented by the final outbreak size proportion F
(tend)) of our proposed methods with different values of the infected
probability λ. As shown in Figure 3, whether λ is small or large, IS-
LIR and IS-LIR-2 have significant advantages over baseline methods
on most of the synthetic and real networks. Specifically, on WS
networks, as the infected rate increases, the performance of IS-LIR-2
increases significantly on WS1 and WS2, and IS-LIR performs best
on WS2. On BA networks, IS-LIR-2 and LIR-2 are consistently
superior to other algorithms onmost BA networks. Focusing on LFR
networks, we can see that IS-LIR is always better than the baseline
methods except on the LFR2 network, where IS-LIR-2 performs
better. On real networks, we can see that IS-LIR and IS-LIR-2
maintain their advantages whether λ is small or large.

Figure 4 presents the structural characteristics of influential
nodes identified by LIR-2, IS-LIR, and IS-LIR2 and the baseline
methods, and shows that spreaders identified by IS-LIR-2, IS-LIR,
and LIR-2 have the largest harmonic mean of the average shortest
path length L between any two nodes in most cases, except the
LFR3 and football networks. On LFR3, multiple spreaders
identified by IS-LIR, IS-ND, and IS-EV have the top three
average shortest path lengths (as shown in Figure 4J). On the
football network, vote-rank and IS-DC identified spreaders with
larger average shortest path lengths than our proposedmethod in a
few cases (as shown in Figure 4K). These results may explain why
our proposed methods outperform the baseline methods in

identifying multiple influential spreaders (as shown in
Figure 2): if the identified spreaders have a larger mean
shortest path length, they may result in a more heavier
infection spreading. This implies that taking into account the
dispersion of nodes can help find the most influential spreaders.

6 CONCLUSION

To effectively identify a set of influential spreaders is important in
infectious disease prevention or information dissemination. To
address this problem, inspired by the LIR method [19] and IS
method [20], we proposed the LIR-2, IS-LIR, IS-LIR-2
algorithms, which take into account the dispersion of
selected spreaders in different ways. In evaluation
experiments on 10 synthetic networks and five real
networks, our proposed methods, especially IS-LIR and IS-
LIR-2, were more effective than six baseline methods at
identifying more influential spreaders. One potential reason
is that the spreaders found by our methods have a larger
average shortest path length, i.e., the selected spreaders are
more dispersed, so as to reduce the opportunity to infect the
same nodes in the propagation process. IS-LIR, LIR-2, and IS-
LIR-2 achieved a good balance between expanding the final
spreading range of the spreaders on the SIR model and
increasing the topological distance between them. However,
we merely studied static, undirected, and unweighted
networks. How to extend our methods to other types of
networks, and how to investigate their sensitivity to specific
network characteristics are two interesting questions to be
addressed in future work.
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