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Node classification, as a central task in the graph data analysis, has been studied
extensively with network embedding technique for single-layer graph network.
However, there are some obstacles when extending the single-layer network
embedding technique to the attributed multiplex network. The classification of a given
node in the attributed multiplex network must consider the network structure in different
dimensions, as well as rich node attributes, and correlations among the different
dimensions. Moreover, the distance node context information of a given node in each
dimension will also affect the classification of the given node. In this study, a novel network
embedding approach for the node classification of attributed multiplex networks using
random walk and graph convolutional networks (AMRG) is proposed. A random walk
network embedding technique was used to extract distant node information and the
results are considered as pre-trained node features to be concatenated with the original
node features inputted into the graph convolutional networks (GCNs) to learn node
representations for each dimension. Besides, the consensus regularization is
introduced to capture the similarities among different dimensions, and the learnable
neural network parameters of GCNs for different dimensions are also constrained by
the regularization mechanism to improve the correlations. As well as an attention
mechanism is explored to infer the importance for a given node in different
dimensions. Extensive experiments demonstrated that our proposed technique
outperformsmany competitive baselines on several real-world multiplex network datasets.
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1 INTRODUCTION

Node classification [1,2] is a basic and central task in the graph data analysis, such as the user
division in social networks [3], the paper classification in citation network [4]. Network
embedding techniques (or network representation learning or graph embedding) utilize a
dense low-dimensional vector to represent nodes [5–7]. This provides an efficient way to
solve various graph analytic problems, including node classification [5–7], recommendation
[8,9], link prediction [10,11]. Most existing network embedding techniques for node
classification are designed for standard single-layer graph networks [1,2,5,12–14], such as
DeepWalk [13], node2vec [10], LINE [12], and classical graph neural networks (GNNs)
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such as graph convolutional networks (GCNs) [5], GAT
Veličković and Cucurull [15], and GraphSAGE [14].
However, most real-world complex interacting systems [16]
are modeled as multilayer graph networks, including social
networks [3], citation-collaboration networks [4], which are
formed by several layers describing interactions of various
types. For example, two users could be connected to each other
across multiple social networks (e.g., Twitter, Facebook, and
LinkedIn). Using multilayer graph networks can provide more
comprehensive and accurate description about these two users.
When the same set of nodes are connected in the way of
multiple link types or relationship types, the resulting
multilayer graph network is also called multiplex graph
network or multiplex network [17,18] 1 If the nodes in
multiplex graph network contain attributes, such network is
called attributed multiplex graph network. The attributes can
provide useful guidance to perform node classification graph
data analysis. For example, if two users in a social network
share hobbies or interests, these two users may belong to the
same cluster.

Several studies have been conducted on multiplex network
representation learning. However, some issues remain that
require further consideration. For instance, previous
techniques such as PMNE [19], MELL [20], MVE [21] and
MNE [11] have learned to integrate node embedding
information from different dimensions in multiplex
network representations. However, these techniques have
mostly overlooked node attributes. Other models that
consider node attributes (e.g., mGCN [22], MGCN [23],
DMGI [24], and HAN [25]) have either failed to consider
interactions among diverse dimensions (mGCN) or focus on
multiplex graphs with explicit adjacency links among
different dimensions (MGCN [23]). DMGI and HAN
consider heterogeneous graphs constructed based on the
meta-path between different node, which differs from the
multiplex network. MGAT [26] introduces a constrained
regularization term in GAT [15] to learn the interactions
between different dimensions, that is learnable parameters
constraint of GAT. However, MGAT fails to consider the node
embedding matrices similarity [27] among different
relationships. Furthermore, while GAT can be calculated in
parallel with multi-head attention, the memory complexity
for parameter storage is higher than that of the GCN model
[5]. In addition, MGAT utilizes a two-layer GAT to integrate
node information from its neighbors, which only captures
information from 2-hop nodes. Including more than two
layers in a GNN often results in over-smoothing [7].
However, the node2vec network embedding [10], which is
based on random walk technique, can be used to search for 10-
hop contextual information [10] and to capture the structural
equivalence (i.e. two nodes are far apart each other but have
the same structural roles). This suggests that information
from a larger receptive domain helps to capture more

comprehensive node representations, which can be used to
improve the results of node classification.

Recently, the Graph Neural Network (GNN) deep nonlinear
network embedding framework represented by GCN [5],
which can encode node attributes and network structure
simultaneously, has achieved great success on the node
classification graph data analysis task for attributed single-
layer network. The direct method about node classification of
the attributed multiplex network is to extend the GCN [5] to
multiplex network. However, some obstacles are existed. First,
different dimensions of an given attributed multiplex network
share the same node set and node attributes. Hence, different
dimensions are typically similarities or may have some
characteristics in common [28]. For instance, citation
networks represent citations between papers. Similarly,
paper similarity networks represent the commonality among
papers as articles that cite each other typically share a common
research topic. Therefore, the citation and paper similarity
dimensional networks exhibit a certain degree of overlap.
Second, different dimensions of multiplex networks are
related [17]. For example, in social networks, friend
relationship dimensional network can determine the
topology of a message forwarding dimensional network.
Besides, the degree of importance differs in dimensional
networks as the significance of a given node may vary in
different dimensions. Third, two nodes may share similar
structure roles but are far apart each other (i.e. structural
equivalence [10]). These two distance nodes may belong to the
same cluster. Therefore, the primary challenge for node
classification of multiplex network is then designing a
model to extract the node information, oriented by the
downstream node classification task, capable of generating a
comprehensive embedding (consensus) that considers node
attributes, their interaction and similarities among different
dimensions, the corresponding degree of importance in
diverse dimension networks, and the distance node context
information.

In this paper, we propose a novel graph embedding framework
for the node classification of attributed multiplex graph to solve
the above mentioned problems. At first, a random walk network
embedding technique was included to address the over-
smoothing problem [7] that occurs in GCNs, which is unable
to capture distance node context information (more than 2-hop).
We use the node2vec random walk network embedding to learn
distance node context information for each dimension, and the
obtained node embeddings are considered as pre-trained node
features, which learn the distance node neighborhood to capture
the structural equivalence. Then, pre-trained node features are
concatenated with the original node attributes to form new node
attributes inputted into the two-layer GCNs [5] to learn each
dimensional graph network respectively. At the same time, a
regularized consistency constraint was then introduced to node
embeddings from different dimension to learn similarities [28]
between nodes and their counterparts in others dimension. And
the learnable weight parameters of different GCNs for different
dimensional graph networks were then constrained using a
regularization term [26]. Finally, the attention mechanism is

1In this paper, we use the terminology graph network, network, graph
interchangeably.
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used to adaptively learn the importance weights of a given node in
different dimensional, prior to integrating the node embedding
results from different dimensions to generate global consensus
node representations. This model can be trained end-to-end
oriented by the downstream node classification task. In this
way, a more comprehensive, informative, and high-quality
node representation for the node classification can be achieved
using these strategies discussed above. The primary contributions
of the proposed technique can be summarized as follows.

• We provide a novel node classification methodology for
attributed multiplex networks using random walk network
embedding and graph convolutional networks (AMRG),
which can fuse the node attributes and capture distant
node context information.

• We use regularized constraints to learn cross dimensional
similarities and correlations among different dimensions.
Then, the integration of node embeddings from different
dimensional is performed based on an attention
mechanism.

• Extensive experiments were conducted to evaluate the
effectiveness and efficiency of this approach, by
comparing it with some competitive baselines on real-
world attributed multiplex networks.

The remainder of this paper is organized as follows. First, we
summarize related work in Section 2 and then introduce our
approach in Section 3. Section 4 provides experimental
conditions and results. Finally, conclusions are discussed in
Section 5.

2 RELATED WORK

This section summarizes related studies on network embedding
for single-layer networks (Figure 1A) and multiplex networks
(Figure 1B). The acquired node embeddings can be used to
perform node classification tasks.

2.1 Single-Layer Network Embedding
Network embedding methods [1,5,10,12,13] are used to learn
low-dimensional and dense vector representations for nodes in
real graph networks, while preserving network structure and
facilitating further analysis of graph networks. Various
network embedding techniques have been proposed based on
deep learning, inspired by word2vec models such as Skip-Gram
[29], including DeepWalk [13] and node2vec [10]. DeepWalk
[13] first performs a random walk on a network to generate an
unbiased random sequence composed of nodes. The neural
network (Skip-Gram) is subsequently used to train network
node representations by treating nodes as words and node
sequences as sentences. Node2vec [10] extends DeepWalk by
introducing two parameters (p and q) used to improve the
random walk strategy (i.e. BFS and DFS) exploring a more
comprehensive graph structure (a biased random walk). Other
network embedding models have focused on mining and analysis
for specific network structures. For example, LINE [12] is a classic
approach that learns node embedding information by preserving
both first-order and second-order proximities in the graph.
Similarly, SDNE [30] utilizes a semi-supervised deep
autoencoder model to capture first-order and second-order
proximities. NetMF [31] unifies DeepWalk, LINE, and
node2vec into a single matrix factorization framework.

The techniques discussed above focus on mining graph
structure, without considering node attribute information.
However, nodes in real-world networks often contain rich
attribute data, such as abstract text in a publication network
and user profiles in social networks (called attributed networks).
Considering node attribute information in the learning process
has been shown to improve the quality of network representation
learning and provide a more comprehensive node embedding
strategy to facilitate downstream tasks [5,32–34]. TADW [32] has
been used to demonstrate the equivalence between DeepWalk
and matrix factorization in attributed network representation
learning. It was also the first algorithm used to jointly learn node
attributes (textural features) and network structure, which are
achieved via matrix factorization. However, TADW only

FIGURE 1 | Single-layer and multiplex networks with the same set of nodes but different link types. (A) The single-layer network. (B) Different nodes are connected
to each other by a continuous line in each relationship. A single node is connected to its counterparts by a dashed line.
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considers second-order and higher-order proximity, leaving out
first-order proximity considerations (i.e., homophily properties).
HSCA [33] jointly learns homophily data, structural content, and
node attributes to develop an effective node representation.
MIRand [34] is an unsupervised algorithm for attributed
single-layer graph network embedding based on random walk.
This approach first establishes a two-layer graph network, one of
which depicts structural information from the input graph while
the other describes node attributes or content. MIRand performs
the random walk according to node informativeness, intelligently
traversing between structure and attribute layers.

Inspired by the success of CNNs in computer vision, graph
neural networks (GNNs) [35] generalize 2D convolutions from
Euclidean images to non-Euclidean graph data, which provides a
powerful end-to-end method for learning node representations
while addressing graph-related tasks. Graph convolutions are
performed by aggregating neighborhood node information,
which naturally considers node attributes. Representative work
concerning convolution operators applied to graph data is found
in Graph Convolutional Network (GCN) [5]. Michael
Schlichtkrull et al. first applied a GCN framework to model
relational data, focusing on knowledge graph datasets, which is
called Relational Graph Convolutional Networks (R-GCNs) [36].
In contrast, GAT [15] models specify different weights for
varying neighborhood nodes when performing convolution
operations. GAT assumes that different neighboring nodes
exhibit different importance levels for the objective node while
aggregating neighboring nodes. GraphSAGE [14] is an extension
of the GCN framework that uses inductive node embedding. For a
complete overview of network embedding techniques, readers are
referred to recent studies on the topic [35,37].

2.2 Multiplex Network Embedding
Although these techniques have proven to be effective and
efficient in various scenarios, they each attempt to process
standard single-layer graphs, which implies the graph only
consists of one type of relationship as shown in Figure 1A.
However, in practical applications, most networks exhibit
multiple relationships between nodes. For example, in social
networks, the relationship between two users could be
friendship, co-worker, or simply advice [38]. Although these
diverse relationships can independently form different
networks to be analyzed separately, specific interactions and
associations exist among them [17,28].

PMNE [19] uses three methods to learn global embedding
information for analyzing multiplex networks, including network
aggregation, result aggregation, and layer co-analysis which
considers interaction information and thus achieves the best
overall performance than network aggregation and result
aggregation. Ryuta Matsuno et al. proposed MELL [20] for
multiplex networks. It first requires embedding vectors, for the
same nodes in diverse relationships, to be close to each other in
order to share all layer structures. It then introduces a layer vector
that can capture each layer’s connectivity for use in differentiating
edge probabilities in each relationship. As such, MELL focuses
specifically on link prediction tasks. MVE [21] is a novel
collaboration framework for multiplex network embedding,

which promotes the collaboration of different views and
introduces an attention mechanise to learning the weights of
different views. Such can obtain robust node embedding results.
However, MVE only consideres the network structure (i.e.
attributes of nodes are ignored). MNE [11] uses one high-
dimensional common embedding and a lower-dimensional
additional embedding for each type of relationship, each of
which can be learned jointly based on a unified framework.
MANE [39] jointly models both connections in each
relationship and network interactions from different
relationships in a unified framework. Essentially, MANE
focuses on processing heterogeneous graphs with different
types of nodes and edges. However, node attributes are not
considered by the models discussed above.

HAN [25] uses a novel heterogeneous graph neural network
with node-level and semantic-level attentions for attributed
multiplex networks, generating node embeddings via
aggregating features from meta-path based neighbors. This
approach attempts to describe heterogeneous graphs generated
from meta-paths considering the semantics between nodes.
Similarly, mGCN [22] utilizes GCN to learn node
representations for each relationship. In order to jointly learn
cross-layer interactions, the authors used a weighted average over
relation-specific representations to produce generalized
descriptions in which weights were calculated based on
projection matrices from different networks. Unlike in mGCN,
our proposed approach adds regularized consensus constraints
and trainable weight parameters constraints among GCN for
different dimensional graph networks on the objective function.
In fact, the mGCN only learns node embeddings for each
dimension, using a weighted average of the embedding results
to generate overall node representations without considering the
interactions between different dimensional networks. Masha
Ghorbani et al. extended the GCN model to form a multi-
layer graph embedding called MGCN [23]. This approach
utilizes GCN models to learn node representations within
relationships. However, MGCN focuses on multi-layer graphs
with explicit adjacency links between nodes with different
relationship types. The types of nodes found in these
relationship networks can vary widely. For instance, one layer
could denote an airport network, while another describes a power
grid. MGAT [26], an extension of the GAT model, introduces
regularization terms for model parameters on the objective
function to optimize multiplex network embedding. The
primary difference between our method and MGAT is that we
extend the GCN model while requiring less memory than GAT
for parameter storage [15]. Furthermore, our technique is
advantageous because it uses a random walk network
embedding technique to learn 10-hop node information [10]
as the pre-trained node feature which concatenated with the
original node features, and resulting new node features were input
into the GCN model, while MGAT only learns 2-hop data.
MGAT also fails to consider the similarities of node
embeddings between different dimensional graph network.

The difference between single-layer and multiplex graph
network embedding: With the advent of the big data where
many different links of interconnected objects, it is difficult to
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model these interacting objects as single-layer graph networks but
can naturally model using multiplex graph networks to describe
different links. For example, two users could be connected to each
other across multiple social platform (e.g. Twitter, Facebook, and
LinkedIn). Therefore, each social relationship can bemodeled as a
graph network. The traditional graph network analysis methods
with single-layer network embedding technique can be utilized to
analyze these three graph networks separately, which may result
in incorrect analysis results. As the single-layer graph network
can only describe some or even biased information between
nodes. Another way is to transform these three graph network
(e.g. Twitter, Facebook, and LinkedIn) as a weighted or an
unweighted single-layer graph network. The weight represents
the number of link types (i.e. 0, 1, 2, 3) between connected nodes.
Then the single-layer network embedding methods can be used
on the transformed single-layer graph network. Although it is
easy to perform the graph network analysis in this way, the
interactive information among different relationships through
the same nodes in different links are ignored. Themultiplex graph
network can model more comprehensively characterize of the
complex systems than single-layer graph network. Besides, most
of the multiplex graph network embedding methods capture the
interactive information and common information among
different relationships, and the differences between different
relationships. Therefore, the graph analysis results of the
multiplex graph network embedding are more accurate than
single-layer network embedding.

3 PROPOSED MODEL

3.1 Problem Statement and Framework
Attributed Multiplex Graph Network. Given a single-layer
attributed network formally denoted as G � {V, E, X}, the
vertices V represent n nodes in the graph. The term E is a set
of edges representing the presence of a connection or relationship
between two nodes, where eij � (vi, vj) ∈ E describes the
relationship between node vi and node vj. In addition, |V| and
|E| denote the size of the vertice and edge sets respectively, and
X ∈ Rn×F is a matrix that represents attributes for the n nodes, F
represents the dimension of node features, A is an adjacency
matrix for the graph G (with a size of |V| × |V|), and Aij ∈ 0, 1{ }
denotes connections for unweighted network graphs. The
condition Aij � 1 represents a link between vi and vj,
otherwise Aij � 0. In practical applications, A is typically
sparse and high-dimensional, especially for very large-scale
networks. Attributed multiplex networks with |M| different
relationship types can be represented as G � {V, E(1), E(2), . . .,
E(M), X}, whereG(r) � {V, E(r), X} is a graph of the relation type (or
dimension) r and A � A(1), A(2), . . . , A(M){ } is a set of adjacency
matrices for the graph G. Multiplex network embedding attempts
to learn global consensus node representations for each node vi ∈
Vwith a d dimensional dense vector, through better collaboration
among different dimensions. This suggests the correlations
among diverse relation types should be considered for a
comprehensive and informative node representation. Low
dimensional and consensus vectors can be represented as zi ∈

Z ∈ Rn×d for each node vi ∈ V, where d≪ |V|. These notations are
summarized in Table 1.

An Overview of the Framework. The overall framework for
AMRG is illustrated in Figure 2. It is primarily composed of four
components, including 1) a random walk network embedding
model used to capture distance neighboring node information as
pre-trained node features, 2) dimension specific node
embeddings with the GCN model, 3) cross dimension
learning, and 4) an attention-based mechanism used to learn
node importance in different dimensions for fusing different
dimensions adequately.

We use the node2vec random walk network embedding
technique to capture distance node feature of each
dimensional graph network, and then the averaged node
embedding of |M| node embeddings are concatenated with the
original node feature. The resulting is considered as new node
features, which are inputted into the GCN model. Then the GCN
model can be utilized for the relation-type specific network Gr, to
learn a set of node representations Hr. However, unlike the
conventional GCN method [5], a weight was added to the
self-connections which is down in the same way in [24]. Large
weights (w > 1) indicate the node itself plays a more important
role in generating its embedding than its neighboring nodes in the
process of aggregating neighbor information. Furthermore,
learnable weight parameters of |M| GCNs are constrained
using a regularization term [26]. In addition, we introduce a
regularized consistency constraint for each network embedding
Hr∈M to capture node similarities from their counterparts. These
two constraints from different dimensional graph network can be
beneficial [17,19,24] for the downstream node classification, as
this can capture more comprehensive information of the
multiplex network. Finally, a global consensus node
embedding was generated by weighted average different
dimensional network embeddings based on the attention
mechanism. This obtained embedding is a comprehensive,
higher-quality, informative node representation, which can be
used for classification and visualization tasks.

3.2 Capturing Distance Neighboring Node
Information
The advantage of GCN is that it not only considers the network
structure, but also fuses the node attributes. GCN is typically
using two convolution layers [5], which means that it can only
captures 2-hop node neighboring information. However, more
than two convolution layers will result in the over-smoothing
problem. Node information from a larger receptive domain (10-
hop) with node2vec random walk network embedding technique
[10] can help to capture richer node features. However, node2vec
leaves out of consideration the node attributes. We thus combine
the node2vec random walk network embedding technique and
GCN to learn the node embeddings of multiplex graph network.
The resulting node embeddings can not only fuse node’s
attributes, but also make up for GCN’s inability to learn
distance node information to capture the structural equivalence.

Given the rth dimensional network, we can utilize the
node2vec random walk technique to learn 10-hop neighboring
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node information. The resulting network embedding can be
represented as Xr

rw ∈ Rn×drw (drw ≪ n). For |M| different
dimensional networks of multiplex graph network, we can use
the same method to acquire X1

rw, X
2
rw, . . . , X

r
rw, . . . , X

M
rw. Then,

we average |M| node embeddings as:

Xrw � 1
|M| · X1

rw +X2
rw +/ +Xr

rw +/ +XM
rw( ) (1)

The Xrw is considered as the pre-trained node feature which
contains the distance neighboring node information. Then the
Xrw is concatenated with the original node attributes X
(i.e., Xnew � X +Xrw,Xnew ∈ Rn×(F+drw)). Xnew, considered as
the new node feature, is inputted into the GCN model.

3.3 Dimension Specific Node Embedding
With GCN
Graph convolutional neural networks provide a powerful
solution for generating node representations for a given graph
[5], which naturally incorporate node attributes. In this section,
we utilize multi-layer GCN to learn the dimension specific node

embedding. For a given input graph (A, X), the layer-wise
propagation rule can be expressed as [5]:

H l+1( ) � σ ~D
−1
2 ~A ~D

−1
2H l( )W l( )( ) (2)

where ~A � A + In is an adjacency matrix with added self-
connections, In is the identity matrix,X ∈ Rn×F is a feature
matrix for the input graph, ~Dii � ∑j

~Aij is the degree matrix
for ~A, W(l) is the trainable weight parameters matrix for the lth
layer in the GCN, σ(·) denotes an activation function
(i.e., ReLU(•) � max(0, •)), and H(l) ∈ Rn×D is the activation
matrix for the lth layer, initialized as H(0) � X. In this way, the
resulting node embeddings that capture node attributes X and the
graph structure A simultaneously [5].

For a dimension specific network Gr, the representation
learning model can be denoted as:

H l+1( )
r � σ ~D

−1
2

r
~Ar

~D
−1
2

r H l( )
r W l( )

r( ) (3)

where Ar ∈ R|V|×|V| is an adjacency matrix for the graph Gr and Dr

is the corresponding diagonal degree matrix. Unlike in
conventional GCN, we modify ~Ar and define it as ~Ar � Ar +
wIn Park and Kim [24]. In this expression,w ∈ R is the weight of
self-connections used tomeasure the relative importance between
objective nodes and its neighboring nodes in generating objective
node embeddings. A value of w > 1 implies the objective node
itself is more important than its neighboring nodes, with
increasing values of w representing higher importance. The
term ~D

r
ii � ∑j

~A
r
ij represents the degree matrix for ~Ar. In this

paper, a two-layer GCN was used to learn dimension specific
node embeddings, and the node feature of the input graph is Xnew,
i.e.H(0) � Xnew. The last layer output embedding matrix was
denoted Hr, which describes a dimension specific node
embedding for the graph Gr. The resulting node embeddings
Hr that capture node original attributes X, distance node
neighboring information Xrw and the graph structure A
simultaneously [5].

3.4 Cross Dimension Modeling
For a given dimension r ∈ M, we can obtain the node
representation Hr∈M ∈ Rn×d, which provides distance

TABLE 1 | Notations.

Notation Description

G � {G(1),G(2), . . .,G(M)} The multiplex network
Gr The network for dimension r
V Set of vertices
E � {E(1), E(2), . . ., E(M)} Set of edges
|V | Number of vertices
|E| Number of edges
|M| Number of relationship types
A � {A(1), A(2), . . ., A(M)} Adjacency matrices for G
F Dimension of node features
d Dimension of learned node representations
drw Dimension of learned node representations for distance

node
vi The node i
Ar ∈ Rn×n Adjacency matrix for Gr

Hr ∈ Rn×d Node representations matrix for Gr

X ∈ Rn×F The node feature matrix
zi ∈ R1×d The global consensus node embedding for node i
Z ∈ Rn×d The global consensus node embedding matrix

FIGURE 2 | The framework for our proposed method of attributed multiplex network embedding.
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information for Gr. Each Hr∈M is acquired independently by
training a two-layer GCN model, as described by Eq. 3.
However, these embedding matrices fail to take advantage of
interactions and similarities between diverse dimensions. This
inspired us to devise a way of jointly learning embedding
information from diverse dimensional networks to develop a
more comprehensive node representation. This task was
accomplished by adding two regularization constraint
mechanisms to the objective function representing the
consistency constraint among the |M| network embedding
matrices Hr∈M, and the trainable weight parameter
constraint among |M| GCNs. These two constraints are
discussed below.

Regularized consistency constraints: We first applied the
normalization to each node embedding matrix to obtain the
normalized matrices (i.e. transforming the Hr to Hr−nor). The
normalized matrices were then exploited to collect similarity
information between each pair of counterpart nodes by
Hr−nor ·HT

r−nor, and the resulting is the similarity of n nodes.
The regularized consistency constraint can be defined as follows:

LCC � ‖Hr−nor ·HT
r−nor −Hr′−nor ·HT

r′−nor‖22, r ∈ M, r′ ∈ M, r ≠ r′
(4)

where ·T represents the transpose. This constraint can adaptively
capture node similarity information among diverse dimensional
graph networks when training the proposed model oriented by
the node classification task.

Regularized trainable weight parameter constraints among
|M| GCNs: As in Xie et al. [26], we utilize regularized
constraints for trainable weight parameters among |M| GCNs
models. This constraint can be defined as follows:

LWP � ∑
M

r�1
∑
M

r′�1,r′ ≠ r

Wr −Wr′‖ ‖22 (5)

where Wr and Wr’ are trainable GCN weight matrices for the
relation type r and r′.

3.5 Attention Mechanisms for Fusing
Different Dimensions
Now attention mechanisms were used to learn corresponding
importance weights from different dimensional graph network
during each step of model iteration. When optimization of the
proposed model ceases, the learned weights represent the
importance of diverse dimensional graph networks. The

learned dimensional attention matrices for the n nodes were
used to embed Hr∈M into the final global consensus node
representation as follows:

Zglobal � ∑M

r�1αrHr, αr ∈ Rn×n,Hr ∈ Rn×d (6)

where αr is the learned importance of n nodes for the r dimension
network.

Now, the node vi can be used as an example to illustrate how
importance values can be acquired for the node vi and how attention
matrices αr were acquired for the relation type r. For each r ∈M, the
embedding of node vi inHr is given by the row vector hir ∈ R1×d. We
first transform hir via a nonlinear transformation (i.e. the f(x)
function in Eq. 7) and then apply a shared attention vector p ∈
Rh′×1, designed to determine the weight εir:

εir � pT · f W · hir( )T + b( ) (7)

Here, W ∈ Rh′×d is a weight matrix, b ∈ Rh′×1 is a bias vector,
and f(x) � exp(x)−exp(−x)

exp(x)+exp(−x) is the tanh function (an activation

function). The Softmax function can then be used to
normalize different attention values in diverse dimensional
graph networks. The final weight for node vi can be calculated as:

air �
exp εir( )

∑M
r�1 exp εir( ) (8)

Larger values of air imply that corresponding embeddings are
more important. For n nodes in the r dimension network, we can
first obtain a learned weight column vector ar � [air], ar ∈ Rn×1
and then transform the column vector ar into a αr � diag (ar), αr ∈
Rn×n diagonal matrix.

3.6 Optimization Objective
Node Classification: The output embedding matrix in Eq. 6 was
used for node classification tasks in combination with a linear
transformation and a Softmax function. Prediction results were
then calculated as follows:

Ŷ � softmax Wnc · Zglobal + bnc( ) (9)

where Wnc ∈ Rn×n is a weight matrix, bnc ∈ Rn×C is a bias
vector,Ŷ � [ŷic] ∈ Rn×C is the predicted result for n nodes, and
ŷic represents the predicted probability of node vi belonging to

class c. The softmax(x) � exp(x)
∑C

c�1 exp(xc)
function is a normalizer

across all classes. The cross-entropy loss was thenminimized over
all training nodes using a loss function defined as follows:

Lnc � ∑
vi∈S

∑C

i�1 −yi ln ŷi[ ] (10)

where S represents the training set, yi is the real label for node vi,
and ŷi is the predicted label.

Overall Objective Function: The consistency constraint in Eq.
4 was jointly optimized, along with the trainable weight
parameter constraints in Eq. 5 and the node classification
function in Eq. 10. An overall objective function was given by:

TABLE 2 | Dataset statistics.

Dataset Nodes Links Features Relationships

Citeseer 3,312 21,462 3,703 2
Cora 2,708 19,023 1,433 2
Lazega 71 2,571 71 3
ACM 3,025 2,240 042 1,870 2
DBLP 4,057 11,783 886 334 3
IMDB 4,780 80,216 2,000 2
Amazon 7,621 1,384 799 2,000 3
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min
θ

L � min
θ

Lnc + αLCC + βLWP( ) (11)

Here, α and β are hyper-parameters used to control the
importance of consistency constraints and trainable weight
parameter constraint terms. Labeled data were then used to
guide the learnable parameters
θ � Wr, αr,W, b,Wnc, bnc{ }, r � 1, 2, . . . ,M, which were
automatically learned and updated via gradient descent and
back-propagation algorithms. Convergence of the overall
objective function L could then be used to obtain a global
node representation Zglobal. This process is summarized in
Algorithm 1.

Algorithm 1. The proposed technique.

For a given multiplex graph network G �
V, E(1), E(2), . . . , E(M), X{ } with M relationships, we first use
the node2vec random walk technique to capture the 10-hop
neighnoring node information, and then Eq. 1 is utilized to
obtain the pre-trained node feature Xrw concatenating with the
original node attributes X to get Xnew. The proposed multiplex
graph convolutional network is used to encode all nodes of the
multiplex graph network into vectors. We first set the hyper-
parameters including the embedding dimension d, parameters α,
β, w. When training the proposed model oriented with the node
classification task, the learnable parameters are first random
initialized, and optimized with the back-propagation
algorithm. While the loss function in Eq. 11 has not
converged, the proposed model will computer each dimension
(relationship) node embedding with Eq. 3, cross dimension
interactions with Eq 4 and Eq. 5 and attention coefficient
using Eq. 7 and Eq. 8. The global node embedding Zglobal for
all nodes from the multiplex relationships is generated according
to the obtained attention coefficient.

3.7 Time Complexity
Our proposed technique is primarily composed of four
components: 1) the pre-training of node features using a
random walk network embedding method, 2) dimension
specific node embedding using a GCN model, 3) cross
dimension modeling terms, and 4) an attention-based
mechanism used to generate global node representations by
integrating embeddings of different dimensions. The time
complexity of random walk can be expressed as O (|V|).
Dimension specific embeddings O (L|E|d′ + L|V|(F + drw)d′)
could then be learned using a GCN model, where F + drw is the
dimension of input node features and d′ is the output dimension
of one convolution layer. The term L represents the number of
GCN layers (2 in this study). The time complexity required for
learning global node representations is given by O (|V|d′|M|),

where |M| is the number of relation types. Updating attention
weights for diverse dimensions in the process of model training,
the time complexity can be expressed as O (|S|d′|M|), where |S| is
the number of training data. In practice, this quantity of training
data is typically small, such that |S| ≪ |E|. In most practical
networks, |V| ≪ |E|. As such, the total time complexity of node
classification tasks can be simplified as O (|V|(F + drw)d′ + |E|d′).

4 EXPERIMENTS

4.1 Experimental Setup
We construct our experiment on the popular Pytorch framework
(https://pytorch.org). All the experiments are performed on a
computer with 2.6 GHz 4-core Intel Core i9 processor and the
GPU is RTX2080.

Datasets: The proposed method was evaluated on several real-
world datasets, as described in Table 2. Lazega is a dense network,
while the other datasets are sparse networks.

• Citeseer [5]:Citeseer is a citation network consisting of
3,312 research papers, where nodes are publications
divided into six different research areas [5]. Node
features are bag-of-words representations for
individual papers. We can construct the multiplex
graph network including two dimensional: a citation
dimensional network (where edges represent citation
links between papers) and a paper similarity
dimensional network. It is a k-nearest neighbor (kNN)
graph constructed by calculating the cosine similarity
based on the node features and edges representing the top
10 similar papers (i.e., k is 10).

• Cora [5]: Cora is a citation network containing 2,708
machine learning papers divided into seven classes [5].
Node features are bag-of-words representations of
individual papers. We can utilize the same approach as
for the Citeseer dataset to construct a multiplex network
with two dimensions (i.e., citation and node similarity
dimensions).

• Lazega [38]: Lazega is a multiplex social network with three
relationship types (i.e., strong coworker, advice, and
friendship networks) among 71 attorneys (partners and
associates) at a law firm. The law school was selected for
node label classification.

• ACM [24,28]: It is a multiplex network about the paper-
paper relationships consisting of two views which are the
two papers are written by same author and two papers
contain same subjects respectively. The features of nodes are
the elements of a bag-of-words represented of keywords.
The nodes are divided into three classes.

• DBLP [24,28]: The dataset is made up of three views about
the authors-authors re-pationships, which is another
multiplex network from the DBLP. The three views are
the two authors have worked together on papers, two
authors have published papers with the same terms, and
two papers have published papers with the same terms. The
classes of the nodes represent the DM(KDD,WSDM,
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ICDM), AI(ICML, AAAI,IJCAI), CV(CVPR),NLP
(ACL,NAACL, EMNLP), which are the authors’
research areas.

• IMDB [24,28]: This is a movie network from the IMDB
dataset. In this paper, the IMDB dataset is made up of two
relationships (i.e. movies are acted by the same actor and
movies are directed by the same director). The features of
nodes are the bag-of-words represented of plots. The nodes
are divided according to the movies’ genre.

• Amazon [24,28]: This dataset is a multiplex network
including three views (i.e. also-viewed, also-bought, and
bought-together) between items. The items are divided into
four different categories (i.e. Beauty, Automotive, Patio
Lawn and Garden). The features of the items are the
description of items.

Baseline: AMRG was compared with the following
competitive baselines.

• DeepWalk [13]: DeepWalk is designed for standard single-
layer network embedding without considering node
attributes [13]. This approach first utilizes random walk
in the networks and then applies a skip-gram algorithm to
learn node representations.

• node2vec [10]: On the top of the DeepWalk, node2vec adds
two parameters to control the random walk process,
forming a biased random walk [10].

• NetMF [31]: It is a general framework that unifies
DeepWalk, LINE, node2vec, and PTE by converting a
negative sampling into a matrix factorization method for
learning network representations.

• MGAT [26]: MGAT is a multiplex network embedding with
the Graph Attention Networks (GAT) model.

MGAT was implemented using Pytorch, though the source
code is not provided here. The source code published by the
authors was utilized for all other baselines.

Parameter Settings: The output node embedding dimension
for all datasets was set to 32 to provide a fair comparison. We
carefully turn parameters of our proposed model to get optimal
performance. For our method, a two-layer GCN was trained with
hidden layer dimensions of 64, 128, 256,768, 512, 1024 and
output dimensions of 32. The objective function in Eq. 11 was
minimized for the training set using a learning rate of
0.000 95–0.005 and the Adam optimizer. A dropout rate of 0.5
was used in addition to weight decay values of 0.000 three for
Cora, 0.002 for Citeseer, 0.000 seven for Lazega, 0.000 five for
DBLP and ACM, 0.000 nine for Amazon and 0.03 for IMDB.
Consistency constraint coefficients and trainable weight
parameters (α and β) were searched in the intervals
0.001, 0.05, 0.2, 0.9, 1.0, 0.1{ } and
0.04, 0.05, 0.1, 0.5, 0.6, 0.7, 1.0{ }, respectively. The self-
connection weight was set to 2.0 for Citeseer and Amazon
datasets, 3.0 for ACM and IMDB datasets and to 1.0 for Cora,
Lazega and DBLP datasets. The Lazega dataset contains node
relationship types but not node features. As such, a unit diagonal
matrix was used as the feature matrix. The node2vec random

walk node embedding dimension (drw) for learning distance node
information was set to 8. These values of parameters are
summarized in Table 3.

For baselines, DeepWalk is a special case of node2vec with p �
q � 1. In the conventional node2vec algorithm, hyperparameters
were set to p � 2 and q � 0.5, with a window size of 10 and five for
negative samples. Other baseline hyperparameters were set as in
the original papers.

4.2 Node Classification
Accuracy (ACC) was used to evaluate node classification
performance for the all datasets. We randomly selected 10% of
the nodes to establish a training set, 10% to form the validation
set, and the remaining 80% formed the test set. A total of 120
epochs were used for each of the three datasets. The proposed
approach was compared with its variants and state-of-the-art
baselines to monitor node classification performance for the
following scenarios.

• AMRG/rw: A random walk strategy was not used to learn
distance neighboring node information.

• AMRG/att: Our proposed method without the attention
mechanism.

• AMRG/cc: Our proposed method without the regularized
consistency constraint.

• AMRG/wp: Our proposed method without the regularized
trainable weight parameters constraints among |M| GCNs.

The baselines of Node2vec and NetMF were designed for
standard single-layer networks. As such, we first acquired node
embeddings for each dimension separately and averaged the
resulting embeddings together to produce the overall node
embeddings. This process was repeated 5 times to produce
averaged results for baselines. For our proposed method, as
the node2vec random walk technique to capture the 10-hop
distance node information and the GCN model will produce a
slightly different outcome each time, so the performance of the

TABLE 3 | The values of parameters.

Parameters Values

d 32
learning rate 0.000 95–0.005
hidden layer dimensions {64,128,256,768,512,1024}
dropout rate 0.5
weight decay (Cora) 0.000 3
weight decay (Citeseer) 0.002
weight decay (Lazega) 0.000 7
weight decay (DBLP,ACM) 0.000 5
weight decay (Amazon) 0.000 9
weight decay (IMDB) 0.03
α {0.001,0.05,0.2,0.9,1.0,0.1}
β {0.04,0.05,0.1,0.5,0.6,0.7,1.0}
w (Citeseer, Amazon) 2.0
w (ACM,IMDB) 3.0
w (Cora, Lazega,DBLP) 1.0
drw 8
p, q {1,2,0.5}
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node classification for our proposed model will be evaluated 5
times, and average 5 times results.

Node classification accuracy (ACC) values are reported in
Table 4, where the bolded number denotes the best result. The
following are evident from the table:

• Compared with all other baselines, our proposed method
consistently achieved the best performance for all datasets.
These results demonstrate the effectiveness of our model for
attributed multiplex network embedding, oriented by node
classification tasks. From Table 4, we observe the random
walk technique improved the accuracy of node classification
by learning 10-hop node information. This suggests that
node information from larger receptive fields is important.

• AMRG/att generates node embeddings using a two-layer
GCN for each dimensional network and simply averages the
embeddings without considering the attention mechanism.
Table 4 suggests that attention-based weighting in each
dimension can boost overall performance. This result is
consistent with our assumption that node importance differs
in each dimension. However, DBLP can obtain better
performance on AMRG/att, it implies that three dimensional
graph networks are almost equal degree of importance.

• The coefficients (α and β) for AMRG/cc and AMRG/wp
were set to zero respectively in Eq. 11. The results suggest
these twomethods are inferior to AMRG. This indicates that
consistency and weight parameters constraints are
important for improving the overall performance,
demonstrating the need to capture similarities and
interactions among diverse dimensions.

• In addition, our technique improved on the classification
performance of MGAT (the best performing baseline method
except for Amazon dataset, the MGAT is not suitable for
Amazon) by as much as 6.69% for the DBLP dataset. This
performance was only slightly better thanMGAT for the Lazega
data. This is likely because Lazega is a small, dense multiplex
network with only 71 nodes. As such, node information spreads
quickly in graphs through the two-layer GCN. The accuracy of
node classification for the Cora all dataset was worse than that of
other variants without pre-trained node features, which again
indicates the importance of node information from larger
receptive fields. However, as NetMF method uses the matrix
factorization, the model does not convergence for Amazon,
which explains the shortcomings of the NetMF.

• The difference between our method and MGAT is that we
used consistency constraints to embed each dimension
network with pre-trained 10-hop node information.
Table 4 indicates the overall performance of our method
is superior to MGAT, which suggests that consistency
constraints and pre-trained methods with random walk
are important mechanisms for learning high-quality node
embeddings for multiplex network. Furthermore, compared
with MGAT, our approach achieved superior node
embeddings through two-layer general and simple GCNs
with fewer model parameters than MGAT, which is based
on the GATmodel with multiple attention heads that lead to
rapid growth in the number of parameters Veličković and
Cucurull [15].

Similarly, node classification F1-score values also are
presented in Table 5, where the bolded number denotes the
best result. These results demonstrate that our method is stable
and competitive.

4.3 Analysis of Attention Mechanisms
Now we use the Lazega,a dense network, and three sparse
networks (Cora, IMDB, and DBLP) as examples to were used
to analyze changing trends in attention values for node
classification tasks. The results are shown in Figure 3, where
the x-axis denotes different numbers of epochs during the model
training process and the y-axis is the corresponding attention
value. As seen in Figure 3A, the attention values for advice,
friendship, and strong coworker dimensional networks are nearly
the same for the Lazega dataset in epoch 0. However, this
attention value varies with increasing training epochs. The
attention value for the advice dimensional network increases
in epoch 20 (compared to epoch 0), while the attention value
for the strong coworkers dimensional network decreases.

TABLE 4 | Node classification Accuracy (%) (bold: Best).

Dataset Lazega Cora Citeseer ACM DBLP IMDB Amazon

DeepWalk 91.02 66.12 57.25 73.16 52.01 53.52 63.33
Node2vec 90.25 67.92 58.01 73.10 53.91 52.23 65.12
NetMF 92.05 72.95 57.15 74.65 54.98 57.64 -
MGAT 96.32 85.49 72.92 92.26 84.75 66.87 51.30
AMRG 96.49 86.25 74.31 94.05 91.44 70.28 78.12

AMRG/rw 96.33 85.56 74.27 93.18 88.79 69.05 76.72
AMRG/att 94.74 85.69 73.93 93.72 93.04 70.00 76.14
AMRG/cc 92.23 85.74 73.89 93.43 91.37 69.86 78.09
AMRG/wp 92.98 85.60 72.58 93.06 87.06 68.87 77.58

TABLE 5 | Node classification F1-score (%) (bold: Best).

Dataset Lazega Cora Citeseer ACM DBLP IMDB Amazon

DeepWalk 89.32 64.78 56.52 72.67 51.99 51.54 61.79
Node2vec 89.89 66.01 57.56 72.76 53.35 51.33 64.31
NetMF 92.01 75.98 61.41 74.65 54.11 55.21 -
MGAT 96.31 84.06 69.43 91.01 84.09 65.67 51.02
AMRG 96.32 84.08 71.32 92.90 90.51 70.24 72.85
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FIGURE 3 | (A) Lazega. (B) Cora. (C) IMDB. (D) DBLP.

FIGURE 4 | The performance of our method for parameters α, β, w on the Citeseer (A–C) and ACM (D–F) datasets for node classification task.
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Similarly, the attention values for the advice and strong coworker
dimensional networks gradually decrease until the model
converges. However, the attention value continues increasing
for the friendship dimensional network during the training
process. This illustrates that our approach can adaptively learn
the importance weights of diverse relation type network
embeddings during individual steps. For example, information
provided by the friendship dimension network was more
important than that of the advice and strong coworker
dimension for the Lazega dataset. Similar trends were
observed for the Cora, IMDB and DBLP datasets. The citation
dimension network also proved to be more important than the
paper similarity dimension network in the overall system, as
shown in Figure 3B.

For the IMDB dataset, when the epoch is 18, the accuracy of
node classification is the best (i.e. 70.28). At this moment, the
attention value for co-actor network and co-director network is
almost equal. From Table 4, we can see that when the attention
value for co-actor network and co-director network is equal

(i.e.AMRG/att, attention values are 0.5 and 0.5 respectively),
the accuracy is 70.00, which is in close proximity to 70.28.
This demonstrate that the attention mechanism is important.
For DBLP, when the epoch is 103, the accuracy of node
classification is the best.

4.4 Analysis of Variants
In this section, we analyze the effectiveness and sensitivity of pre-
trained node vector dimensions, two regularization constraints,
and the weight of self-connections. Specifically, we evaluate the
performance (i.e., accuracy and macro-F1) of our method for
node classification tasks with respect to α,β,w and drw. Since these
datasets produced similar results, we use the Citeseer, ACM and
Cora datasets as examples respectively.

Analysis for α: In this test, the value of β was set to zero, which
eliminates LWP in Eq. 11. The parameter α was varied from 0.1 to
1.0, as shown in Figure 4A. The accuracy and macro-F1 score for
these node classification tasks remained relatively stable with
increasing α for Citeseer. And when the α is 0.3, the accuracy and
macro-F1 score is the best for ACM in Figure 4D.

Analysis for β: Here, the value of α was set to zero, which
eliminates the consistency constraint LCC in Eq. 11. Figure 4B
demonstrates how different values of the coefficient β affected
node classification performance. The value of β was increased
from 0.1 to 1.0, as the accuracy slowly increased and decreased
(the maximum was in 0.7), and the macro-F1 score remained
nearly constant. Similarity trends can be found in Figure 4E and
the maximum was β in 0.6.

Analysis for w: The impact of the weight on these self-
connections was observed by varying w from 0.0 to 10.0, as
shown in Figure 4C for Citeseer. A value of w � 0.0 implies the
node itself only considers neighboring nodes in generating
embeddings, producing low accuracy and macro-F1 scores.
Larger values (w > 1) indicate the node itself is more
important than its neighboring nodes. The accuracy first
increases and then remains relatively stable, before dropping
quickly for w � 10.0. The maximum accuracy and macro-F1
scores occurred for w � 2 and w � 1, respectively, with macro-F1

FIGURE 5 | The performance of our method for parameters drw on the
Cora dataset for node classification task.

FIGURE 6 | (A) Accuracy. (B) B Macro-F1.
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decreasing slowly as w increased. For ACM in Figure 4F, the best
accuracy and macro-F1 occurred for w � 3.

Analysis of random walk dimension drw: Figure 5 suggests the
accuracy of node classification was maximized for drw in 8,
decreasing for higher dimensions. This demonstrates that pre-
trained node features, which contains distance node neighboring
information, can improve model performance. When the
embedding dimension drw is small, the obtained pre-trained node
features are not enough to describe the distance neighborhood
information. On the contrary, if the value of embedding
dimension drw is large, it will introduce some noise on the
obtained pre-trained node features.

Analysis of different training nodes: We tested the
performance of our method and its variants using training
node fractions of 10, 20, and 40% for the attributed multiplex
Citeeer network, as shown in Figure 6. The proposed method
consistently outperformed its variants, indicating the importance
and effectiveness of attention mechanisms, consistency
constraints, and trainable weight parameter constraints of |M|
GCN for each dimensional graph network for boosting overall
performance. The influence of attention mechanisms and these
two constraints on node classification performance varied with
different training label node ratios.

4.5 Analysis of Key Factor
In the previous section, we analyse the effect of the different single
variant on the performance of the proposed model. At present, we
take the Citeseer, ACM and Amazon as examples to evaluate the
key factor of regularized consistency constraints, weight
constraints and attention mechanism. That is to say, which one
of three factors is the most significant to improve the AMRG. The
evaluation indicator is the node classification accuracy.

• AMRG(wp): The AMRG only with the weight constraints.
• AMRG(cc): The AMRG only with the regularized
consistency constraints.

• AMRG(att): The AMRG only with the attention
mechanism.

Table 6 shows that these three strategies (i.e. regularized
consistency constraints, weight constraints and attention
mechanism) have different importance on the three datasets.
For Citeseer, it shows that the weight constraints is the key factor,
as the performance of AMRG (wp) is better than AMRG (att) and

AMRG (cc). From the results of ACM and Amazon, we can see
that the regularized consistency constraints is the key factor for
ACM and the attention mechanism is the key factor for Amazon.
As the performance of AMRG (cc) is better and AMRG (att) is
better than the other variants.

4.6 Visualization
Task visualization will be performed to provide a more
intuitive comparison and to further show the effectiveness
of our proposed method. As the results on different datasets
will exhibit similar trends, we take the Citeseer dataset as an
example to evaluate our method. Output embeddings in the
last layer, prior to the Softmax operation, were utilized for
node classification tasks and to plot the resulting node
embeddings using t-SNE Maaten and van der Hinton [40].
Results for the Citeseer dataset are shown in Figure 7 and are
colored using real labels.

It is evident from the figure that the results of the node2vec and
NetMF baselines are not satisfactory because nodes with different
classes are mixed together. In contrast, MGAT and our method
consider node features, producing better results than node2vec and
NetMF. This further demonstrates the importance of node features for
mining hidden graph information. The three variants are inferior to
our method, which is consistent with the results of Table 4. Our
approach has the clearest distinct boundaries among the diverse classes
and the same classes are grouped together. This demonstrates the
importance of pre-trained mechanisms with random walk network
embedding, consistency constraints, trainable weight parameter
constraints among |M| GCN, and attention mechanisms.

5 CONCLUSION

In this paper, a new approach for node classification in
attributed multiplex networks was developed using random

TABLE 6 | Node classification accuracy (%) (Bold: Best; underline: Runner-up).

Citeseer ACM Amazon

AMRG 74.31 94.05 78.12
AMRG (att) 71.90 93.26 77.23
AMRG (cc) 72.92 93.72 76.40
AMRG (wp) 73.70 93.22 75.53

FIGURE 7 | (A) Node2vec. (B) NetMF. (C) MGAT. (D) AMRG. (E) AMRG/rw. (F) AMRG/cc. (G) AMRG/wp (H) AMRG/att.
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walk network embedding and GCN. Random walk network
embedding was first used to capture 10-hop node information as
pre-trained node features. Then they were concatenated with
the original node attributes, the resulting as the new node
features inputted into the GCN model. A two-layer GCN was
then utilized to learn each dimensional network. In order to
achieve more comprehensive, informative, higher-quality and
global consensus node representations, we introduced
regularized consistency constraints to capture the similarities
among different dimensional network embeddings. Besides,
trainable weight parameter constraints were used to learn the
interactive information from diverse dimensions. Furthermore,
an attention mechanism was utilized to learn weights for diverse
dimensional networks, and then to fuse them based on the
weights. Extensive experiments were conducted using real-
world networks applied to node classification, visualization,
analysis of attention mechanisms, and parameter sensitivity.
The results demonstrated that these strategies of our approach
can boost overall performance of node classification for
multiplex graph networks, which outperformed many
competitive baselines. In the future, we plan to extend this
framework to larger, more complex, and time-varying graphs.
Another promising direction involves learning node
representations combining edge features.
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