
Thermal Correction to the Kinnersley
Black Hole in a Lorentz-Violating Dirac
Field Theory
Zhi-E. Liu1*, Jie Zhang1 and Shu-Zheng Yang2

1College of Physics and Electronic Engineering, Qilu Normal University, Jinan, China, 2Physics and Astronomy College, China
West Normal University, Nanchong, China

According to Lorentz-violating theory, the dynamical equation of Dirac particles in the
Kinnersley black hole with variably accelerated linear motion is modified. The Hawking
quantum tunneling radiation characteristics of Kinnersley black hole are obtained by
solving the modified equation. The expression of the Hawking temperature of
Kinnersley black hole has been updated.

Keywords: Kinnersley black hole, quantum tunneling radiation, Hawking temperature, Lorentz symmetry violating,
Dirac particle

1 INTRODUCTION

During past years, people have made many meaningful researches on the quantum tunneling
radiation of black holes [1–15]. These researches have enriched us with knowledge about the
thermodynamic evolution of black holes. Using the Hawking quantum tunneling radiation
theory, Kraws et al calculated the Hawking temperature and entropy of black hole. The research
of quantum tunneling radiation for black hole has been increased greatly by the semiclassical
Hamilton-Jacobi method [8, 9]. Kerner and Mann used the semiclassical theory to study the
quantum tunneling radiation characteristic of Dirac field particles in black hole [16, 17]. They
divided the fermion spin into up and down and decomposed the Dirac equations into two
groups, then obtained the tunneling rate of Dirac particles at the event horizon and the Hawking
temperature of black hole.

In 2009, Lin and Yang proposed a new method to study the quantum tunneling radiation of black
hole. They transformed the Dirac equation in curved space-time into a matrix equation by using the
semiclassical approximation theory, and then the resulting matrix equation was further converted
to the Hamilton-Jacobi equation for Dirac particles in curved space-time by using the
commutation relation of gamma matrices. Finally they derived the Hawking quantum
tunneling rate of fermions and other important physical quantities of black hole based on
the Hamilton-Jacobi equation [11, 14, 18–21]. Their work showed that the Hamilton-Jacobi
equation and its Hamilton principal function S can be applied to the study of quantum tunneling
radiation of fermions in curved space-time. The developing Hamilton-Jacobi method can
effectively solve the problems related to fermion tunneling radiation and unify the
expressions of quantum tunneling radiation theory in curved space-time.

The study onmodifications to the Hawking radiation of black holes can help for understanding
the information loss paradox [22–26]. Banerjee and Majhi extended the beyond semiclassical
approximation to include all quantum corrections [27–32]. Lin and Yang investigate tunnelling
of charged black holes based on Klein-Gordon scalar particle theory to derive corrections to the
tunnelling rate and temperature in Reissner-Nordstr€om space-time and Reissner Nerdstr€om-de
Sitter space-time, respectively [33]. Beyond semiclassical theory and semiclassical theory are
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both modified theories, for which the former can give more
accurate correction to the quantum tunneling rate of
black hole.

With research of string theory and quantum gravity theory,
people have realized that the Lorentz relation should be modified
at high energy, which will lead to the Dirac equation in curved
space-time to be modified. The application of Lorentz-violating
theory in curved space-time is a Frontier subject worthy of
attention [34–40]. Cruz et al introduced the Lorentz symmetry
violating term in the scalar field Lagrangian, namely the Lorentz-
violating scalar field theory, to research thermal corrections to the
Casimir energy [41]. The Dirac particle action and Dirac equation
with Lorentz symmetry violating in flat space-time are introduced
in [42]. The influence of Lorentz violating theory on the quantum
tunneling radiation of Dirac particles in the Vaidya black hole is
investigated in [43].

However, for the stationary and dynamic axisymmetric black
holes, the effect of Lorentz violating theory on their quantum
tunneling radiation has not been studied. In this paper, Lorentz
violating theory is considered to correct the quantum tunneling
rate, the temperature and entropy of a dynamic Kinnersley black
hole with variably accelerated linear motion, resulting in some
new conclusion.

In the second section, we introduce the modification of
Lorentz violating Dirac field theory to Dirac particle dynamics
equation in the Kinnersley space-time. The third section studies
the thermal and entropy corrections to Kinnersley black hole in a
Lorentz violating Dirac field theory. The last section gives a
discussion on the results obtained in this paper.

2 LORENTZ’S VIOLATING THEORY AND
DIRAC EQUATION IN DYNAMICAL
CURVED SPACE-TIME
According to Hamilton principle, the dynamic equation of Dirac
particle in flat space-time can be acquired from the action of
Dirac particle in flat space-time [41–43]. Adding the Lorentz
symmetry violating term into the action and using Hamilton
principle, we can obtain the Dirac equation of Lorentz symmetry
violating in a flat space-time. It only needs to pay attention to two
points for generalizing the particle dynamics equation from the
flat space-time to the curved space-time: one is to generalize the
gamma matrix cμ from the flat space-time to the curved space-
time, with different curved space-time having different cμ; the
other is to generalize the ordinary derivative to the covariant
derivative related to connection. Therefore, in the Kinnersley
curved space-time, the dynamics equation of spin 1/2 fermion
with Lorentz symmetry violating can be expressed as [42].

cμDμ 1 + Z2
a

m2(cμDμ)2[ ] + b

Z
c5 + cZ(uαDα)2{

−m
Z
}Ψ � 0

(1)

where Ψ is the wave function. For Dirac particles, the wave
function Ψ and the action S are linked by

Ψ � ψ0e
i
Z S (2)

where ψ0 is a column matrix. For Dirac particles the non-
stationary Kinnersley black hole

S � S(v, r, θ, ϕ), (3)

where v is the advanced Eddington coordinate. The covariant
derivative Dμ in Eq. 1 is defined by

Dμ � zμ + i
2
Γαβμ Παβ, (4)

where Γαβμ is the connection in Riemannian geometry, and Παβ is
expressed as

Παβ � i
4
[cα, cβ]. (5)

i
ZΓαβμ Παβ is the spin connection term that characterizes the spinor
covariant derivative in curved space-time. In Eq.1, a, b and c are
all small quantities that satisfy a, b, c ≪ m, where m is particle
mass. The Gamma matrices cμ or c] meet the following
anticommutation relation:

cμc] + c]cμ � 2gμ]I, (6)

c5cμ + cμc5 � 0. (7)

The 4D ether-like field vector uα is not a constant vector in curved
space-time, but it must satisfy the following condition

uαuα � c(constant). (8)

We substitute Eq. 2 into Eq. 1, and keep the terms associated with
the lowest order of Z, then Eq. 1 is reduced to

icμzμS 1 − a

m2c
αcβzαSzβS[ ] − cuαuβzαSzβS{

+bc5 −m}Ψ � 0.

(9)

Considering Eq. 6, the following equality holds:

cαcβzαSzβS � gαβzαSzβS. (10)

Then the dynamics Eq. 9 becomes

icμzμSΨ � 1 − a

m2
gαβzαSzβS( )−1

cuαuαzαSzβS − bc5 +m( )Ψ
≈ 1 + c

m
uαuβ + a

m2g
αβ( )zαSzβS − b

m
c5[ ]mΨ,

(11)

Taking square for both sides of Eq. 11, and omitting the b
mc

5 term,
we transform it into

−cμc]zμSz]SΨ
� m2ψ + 2(cmuαuβ + agαβ)zαSzβSΨ +O (12)

where O is a high order small quantity. Then we use Eq. 6 to
simplify Eq. 12, resulting in

gμ]zμSz]S + 2(cmuμu] + agμ])zμSz]S +m2[ ]Ψ � 0 (13)
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Obviously,Ψ ≠ 0, making it necessary that

gμ]zμSz]S + 2(cmuμu] + agμ])zμSz]S +m2 � 0. (14)

In this equation S is the action, also called Hamiltonian
principal function. In the process of derive this equation,
we ignore the term b

mc
5 for two reasons. One is that b is a

small quantity; the other is that the term b
mc

5 in the square
bracket of Eq. 11 only indicates the correction in quantity and
thus can be ignored. However, the terms other than b

mc
5 in the

square bracket of Eq. 11 are related to the metric tensor or
ether-like field vector, thus can not be ignored. In fact, Eq. 14 is
completely equivalent to Eq. 1, since Eq. 14 is also the dynamic
equation of Dirac particles. Eq. 14 is a new form of modified
Hamilton-Jacobi equation about the action S of Dirac particles.
Starting from Eq. 14, we can conveniently study the tunneling
radiation characteristics of fermion with mass m in the curved
non-stationary Kinnersley black hole. This is an innovation
that has not been reported yet.

For a Dirac particle with mass ofm and charge q, its dynamic
equation is very complicated. Firstly, Eq. 4 must be
modified to

Dμ � zμ − i
Z
qAμ + i

2
Γαβμ Παβ. (15)

Substituting Eq. 15 into Eq. 1 and using the same method as
deriving Eq. 14, we can get the dynamic equation of Dirac particle
with mass m and charge q as follows

gμ](1 + 2a) + 2cmuμu][ ](zμS − qAμ)(z]S − qA])
+m2 � 0.

(16)

During the derivation of Eqs 14, 16, we ignored higher order
quantities in terms of a and c. From the point of view of
mathematics and physics, this is a reasonable and effective
approximation. In the next section, we will study the
tunneling radiation of Dirac particles in the non-stationary
Kinnersley black hole according to Eq. 16.

3 THERMAL CORRECTION TO THE
KINNERSLEY BLACK HOLE IN THE
LORENTZ-VIOLATING THEORY
According to Kinnersley’s research on the metric of accelerating
black holes, the space-time line element of a linearly moving black
hole with variable acceleration described by the advanced
Eddington coordinate v is [44].

ds2 � 1 − 2akr cos θ − r2f2 − 2Mr−1( )dv2 − 2dvdr
−2r2fdvdθ − r2dθ2 − r2 sin2 θdϕ2,

(17)

f � −ak sin θ, (18)

where ak � ak(v) is the acceleration of the Kinnersley black hole, θ
and ϕ are spherical coordinates, and M is the mass of the black
hole. The north pole θ � 0 of the black hole always points in the

direction of acceleration. Therefore, the covariant and
contravariant metric tensors are

gμ] �
g00 −1 −r2f 0
−1 0 0 0
−r2f 0 −r2 0
0 0 0 −r2 sin2 θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (19)

gμ] �
0 −1 0 0
−1 g11 f 0
0 f −r−2 0
0 0 0 −r−2 sin−2 θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (20)

where

g00 � 1 − 2akr cos θ − r2f2 − 2Mr−1 (21)

g11 � −(1 − 2akr cos θ − 2Mr−1) (22)

Obviously, this black hole is uncharged. According to the zero
hypersurface equation

gμ] zF

zxμ

zF

zx] � 0, (23)

The event horizon of the black hole should satisfy the following
equation:

2 _rH − (1 − 2akr cos θ − 2Mr−1) − 2frH′ − rH′
r

( )2

� 0, (24)

where _rH � zrH
zv , rH′ � zrH

zθ . As one of fundamental characteristics,
the Kinnersley black hole is axial symmetric and has Killing
vector ( z

zϕ)α. Now, by using Eqs 16, 20 is reduced to

(1 + 2a)[g11(zrS − qAr)2 − 2(zrS − qAr)(zvS − qAv)

+2f(zrS − qAr)(zθS − qAθ) − 1

r2
(zθS − qAθ)2

− 1

r2 sin2 θ
(zϕS − qAϕ)2]

+2cmuμu](zμS − qAμ)(z]S − qA]) +m2 � 0.

(25)

Note that Aμ is not the electromagnetic potential of the
Kinnersley black hole itself, but the electromagnetic potential
of the cosmological space around the moving non-charged
Kinnersley black hole. According to Eqs 17, 19, 20, we
construct the ether-like field vector uμ such that

uv � cv���
g00

√ , ur � cr
g01

���
g00

√
, uθ � cθ

g02

���
g00

√
, uϕ � cϕ���

g33
√ (26)

where cv, cr, cθ, cϕ are all constants. It is easy to show that
uvuv � c2v, u

rur � cvcr, uθuθ � cvcθ, uϕuϕ � c2ϕ and thus condition
(8) is met. Substituting Eq. 26 into Eq. 25 will result in
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(1 + 2a)[g11(zrS − qAr)2 − 2(zrS − qAr)(zvS − qAv)

+2f(zrS − qAr)(zθS − qAθ) − 1

r2
(zθS − qAθ)2

− 1

r2 sin2 θ
(zϕS − qAϕ)2] + 2cm

c2v
g00

(zvS − qAv)2[
−2cvcr(zrS − qAr)(zvS − qAv)
−2cvcθr−2f−1(zvS − qAv)(zθS − qAθ)

+2cvcϕ(g00g33)
−1

2(zvS − qAv)(zϕS − qAϕ)
+c2rg00(zrS − qAr)2
+2crcθg00r

−2f−1(zrS − qAr)(zθS − qAθ)

−2crcϕg
1

2

00g
−1

2

33(zrS − qAr)(zϕS − qAϕ)
+c2θg00r

−4f−2(zθS − qAθ)2

−2cθcϕg
1

2

00g
−1

2

33r
−2f−1(zθS − qAθ)(zϕS − qAϕ)

+c2ϕg−1
33(zϕS − qAϕ)2] +m2 � 0.

(27)

This is a time-dependent equation. To solve this equation, general
tortoise coordinate transformation must be performed, i.e.

rp � r + 1
2κ(v0, θ0) ln

r − rH(v, θ)
rH(v0, θ0) ,

vp � v − v0,

θp � θ − θ0.

(28)

Therefore, we have

z

zr
� 1 + 2κ(r − rH)

2κ(r − rH)
z

zrp
, (29)

z

zθ
� z

zθp
− rH′
2κ(r − rH)

z

zrp
, (30)

z

zv
� z

zvp
− _rH
2κ(r − rH)

z

zrp
. (31)

Then, the following variable separation is performed for S

S � R(v, r, θ) + jϕ, (32)

and let

zS

zvp
� −ω, (33)

zS

zϕ
� j, (34)

zS

zθp
� pθ. (35)

where ω is the particle energy, pθ is a component of the particle
generalized momentum in the θ direction, and the constant j is a
component of the particle generalized moment in the ϕ direction.
Substituting Eqs 29–31, 33–35 into Eq. 27, and considering the special

condition of r→ rH, θ→ θ0, v→ v0, we can get the dynamic equation
of Dirac particles at the event horizon of the black hole as follows

lim
r→rH
v→ v0
θ→ θ0

A

B

zS

zrp
( )2

− 2ω
zS

zrp
+ 2 lim

r→rH
v→ v0
θ→ θ0

C

B

zS

zrp
� 0,

(36)

where

A �

[2κ(r − rH)]−1 (1 + 2a) g11 + 2 _rH − 2frH′ − rH′
r

( )2[ ]{ }
−2cm[ _r2Hc2vg−1

00 + 2cvcr _rH − 2cvcθr
−2f−1 _rHrH′

+c2rg00 + 2cvcθr
−2f−1g00rH′ + c2θg00rH′ ],

(37)

B|r→rH
v→ v0
θ→ θ0

� B′ � (1 + 2a)

+2cm[c2v _rH(1 − 2ak cos θ0 − r2Ha
2
k sin

2θ0
−2Mr−1H )−1 + cvcr + cvcθr

−2
H a−1k sin−1θ0rH′ ],

(38)

C|r→rH
v→ v0
θ→ θ0

� C′ � (1 + 2a)q{A0 + A1[1 − 2akrH cos θ0

−2Mr−1H − _rH + frH′ ] − A2(rH′ r−2 − ak sin θ0)}
+(1 + 2a)pθ(r−2H rH′ − ak sin θ0) + 2cm{qA0cv[cr
+cv _rH(1 − 2ak cos θ0 − r2Ha

2
k sin

2θ0 − 2Mr−1H )−1
+cθr−2H a−1k sin−1θ0rH′ ] − crqA1[cv _rH + (1
−2akrH cos θ0 − r2Ha

2
k sin

2θ0 − 2Mr−1H )cr
−cθr−2H a−1k sin−1θ0rH′ )] + cθqA2r

−2
H a−1 sin−1θ0

(1 − 2akrH cos θ0 − r2Ha
2
k sin θ0 − 2Mr−1H )

(cθr−2H rH′a−1k sin−1θ0 + cr) + qcϕA3r
−1
H sin−1θ0

[ − cv _rH(2akrH cos θ0 − 1 + r2Ha
2
k sin

2θ0 + 2Mr−1H )−
1

2

a−1k sin−1θ0 + (2akrH cos θ0 − 1 + r2Ha
2
k sin

2θ0

+2Mr−1H )
1

2(cr + cθr
−2
H a−1k sin−1θ0)] + C″}, (39)

and

C″ � −cvcθr−2H _rHpθa
−1
k sin−1θ0 + cvcϕ _rHj

(2akrH cos θ − 1 + r2Ha
2
k sin

2θ0 + 2Mr−1H )−
1

2
r−1H a−1k sin−2θ0

−crcθpθr
−2
H a−1k sin−1θ0(1 − 2akrH cos θ − r2Hf

2 − 2Mr−1H )

+cϕ(2akrH cos θ − 1 + r2Ha
2
k sin

2θ0 + 2Mr−1H )
1

2

r−1 sin−1θ0(crj − cθr
−2a−1k sin−1θ0rH′ j)

−c2θr−4H a−2k sin−2θ0pθrH′ (1 − 2akrH cos θ

−r2Ha2k sin2 θ − 2MrH′ ). (40)
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Let

lim
r→rH
v→ v0
θ→ θ0

A

B
� 1. (41)

The first part of the expression (37) of A will become an
indeterminate formula of type 0

0 as r → rH, v → v0, θ → θ0. So
substituting Eqs 37, 38, into Eq. 41 and using L’Hospital rule,
we get

κ(v0, θ0) � κ

�
M

r2H
+ ak cos θ0 − (rH′ )2

r3H
(1 + 2a) + 2cm( _rH + cvcr + 2cvcθr

2
Ha

−1
k sin−1θ0)

(42)

where ak � ak (v0). κ(v0, θ0) in Eqs 29–31 is directly related to
the small region v0, θ0 at the event horizon rH of the black hole.
In fact κ is the surface gravity of the black hole. Let

ω0 � lim
r→rH
v→ v0
θ→ θ0

C′
B′, (43)

Be the chemical potential, also known as the maximal interleaving
of Dirac energy levels of particles. Then Eq. 36 is reduced to

zS

zrp
( )2

− 2(ω − ω0) zS
zrp

� 0. (44)

By solving this equation, we get

zS

zrp
� (ω − ω0) ± (ω − ω0). (45)

According to Eq. 29, we have

zS

zr
� 1 + 2κ(r − rH)

2κ(r − rH)
zS

zrp
(46)

Therefore, the action S of Dirac particle with massm and charge Q
can be obtained by integrating this equation and using the residue
theorem, that is

S± � iπ
2κ

[(ω − ω0) ± (ω − ω0)] (47)

According to the quantum tunneling radiation theory and the
semiclassical WKB approximation theory, the tunneling rate of
Dirac particles at the event horizon of the non-stationary
kennersley black hole should be

Γ ∼ exp( − 2Im(S+ − S−) � exp −ω − ω0

TH
( ). (48)

Here, TH is the Hawking temperature at the event horizon of the
non-stationary Kennersley black hole, corrected by the Lorentz
symmetry violating theory. It is linked to the surface gravity κ at
the event horizon by TH � κ

2π. From Eq. 42, we get

TH �
M + akr

2
H cos θ0 − (rH′ )2r−1H

2πr2H[1 + 2a + 2cm( _rH + cvcr + 2cmcvcθa
−1
k sin−1θ0)]

� Th[1 − 2(a + cm _rH + cmcvcr

+2cmcvcθa
−1
k sin−1θ0r−2H ) +/],

(49)

where

Th � M + akr2H cos θ0 − (rH′ )2r−1H
2πr2H

(50)

is the uncorrected Hawking temperature at the event horizon
of the black hole. For clarity, only the terms of the zeroth and
first order are showed in Eq. 49. It can be seen from Eq. 49
that the coefficients a, c of the correction term in Eq. 1 and the
components uv, ur, uθ of ether-like field vector all have an
effect on TH. Since there is killing vector ( z

zϕ)α in this space-
time, uϕ has no effect on TH. Moreover, according to Eqs
38–40, 43, 48, the tunneling rate Γ and chemical potential ω0

of Dirac particles in this space-time are also corrected, and
similarly, the quantities a, c, uv, ur, uθ, uϕ all have influence on
Γ and ω0. What needs to be further explained is that A0, A1, A2,
and A3 in Eqs 39, 40 in fact correspond to Av, Ar, Aθ and Aϕ in
Eq. 27. The only difference is that r and θ have been replaced
by rH and θ0 in A0, A1, A2, and A3. Obviously, Aμ has also an
effect on Γ and ω0. If Aμ � 0, then

C′ � C1′ � (1 + 2a)pθ(r2HrH′ − ak sin θ0) + 2cmC″ (51)

and

ω0 � C1′
B′ . (52)

If the correction item is ignored, the chemical potential will be
reduced to

ω0 � pθ
rH′
r2H

− ak sin θ0( ), (53)

where pθ has been defined in Eq. 35.

4 CONCLUSION

Based on the Lorentz symmetric violating theory, the
semiclassical theory and the quantum tunneling radiation
theory, we get the dynamical equation of Dirac particles by
studying Eq. 1, namely the Dirac-Hamilton-Jacobi equation
shown as Eq. 14 or Eq. 16. After giving explicit formula of
the ether-like field vector uμ and solving Eq. 16, the corrected
tunneling rate of Dirac particles and the corrected Hawking
temperature at the event horizon of the Kinnersley black hole
are obtained. These new results are of great significance for
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further studying the thermodynamic evolution of black
holes. It is necessary to further note that the key to solve
Dirac-Hamilton-Jacobi equation is to construct the ether-
like field vector correctly. The specific form of uμ must be
selected according to the characteristics of the curved space-
time to be investigated, so as to ensure the validity of the
derivation. The reference time v0 and the reference angle θ0
in Eq. 28 are arbitrarily selected, so the results derived from
the general tortoise coordinate transformation are of
universal significance. In addition, the entropy S of black
hole is closely related to Hawking temperature of black hole.
Using the change of Bekenstein-Hawking entropy ΔSBH to
express the tunneling rate will give Γ ∼ eΔSBH . Therefore, the
entropy of the black hole should also be corrected. If the
Lorentz symmetric violating is not considered, the results in
this paper will return to the uncorrected cases that have been
known ubiquitously.
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