
Solving the Traveling Salesman
Problem on the D-Wave Quantum
Computer
Siddharth Jain*

Supply Chain Digital & Data Science, Johnson & Johnson, Bridgewater, NJ, United States

The traveling salesman problem is a well-known NP-hard problem in combinatorial
optimization. This paper shows how to solve it on an Ising Hamiltonian based
quantum annealer by casting it as a quadratic unconstrained binary optimization
(QUBO) problem. Results of practical experiments are also presented using D-Wave’s
5,000 qubit Advantage 1.1 quantum annealer and the performance is compared to a
classical solver. It is found the quantum annealer can only handle a problem size of 8 or less
nodes and its performance is subpar compared to the classical solver both in terms of time
and accuracy.
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1 INTRODUCTION

The traveling salesman problem is a well-known NP-hard problem in combinatorial optimization
supported by an extensive body of research [1]. Given a fully connected graph of n nodes and a n × n
adjacency matrix M whose entries give the cost to travel from node i to node j andMii � 0, the goal is to
output a roundtrip (cycle) that minimizes the cost of traversing all the nodes in the graph (each node is
traversed exactly once and so has exactly one ingress and one egress).We restrict ourselves to the case when
the cost to travel from node i to node j is same as the cost to travel from node j to node i (negative values of
cost are permissible) and is further given byMij +Mji. If we let X be a n × n symmetrical indicator matrix
consisting of 0 s and 1 s (xij � 1 if node i is adjacent to node j in the output cycle; we will also call this as the
nodes being connected in the output cycle or graph; this is not to be confused with whether the nodes are
connected in the input graphwhich they always are), we seek to find theX thatminimizes∑M.pXwhere .p
denotes element-wise multiplication of matrices and ∑ denotes sum over elements of the matrix.

This paper describes a quantum solution to this problem that leverages adiabatic
quantum computation. Adiabatic quantum computation is one of the two paradigms of
quantum computation—gate-based model being the other one. In adiabatic quantum
computation, a system of qubits is prepared in an initial ground state associated with the
Hamiltonian H0 and the system is gradually evolved to a target state whose Hamiltonian is
given by H1. If the time evolution is done slowly enough, the theorem of adiabatic quantum
computation guarantees that the qubits will track the ground state of the evolving Hamiltonian and
at the end they will be found in the ground state corresponding to H1. Mathematically, if

H(t) � (1 − t)H0 + tH1 (1)

where t is some normalized unit of time, then H(0) � H0, H(1) � H1. H0 is the starting Hamiltonian
(initial conditions) and at time t � 1 the qubits will assume values that minimize the energy associated
with H1.
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Up until now the discussion is general. D-Wave’s1 quantum
computers are special purpose devices that aim to realize
adiabatic quantum computation through quantum
annealing where the Hamiltonian is constrained to be an
Ising Hamiltonian. The energy (eigenvalues) associated with
the target state H1 is given by:

EIsing � −∑
i

hisi −∑
i

∑
j,j≠i

Jijsisj (2)

The Ising constraint is a natural consequence of how the
device is built and wired. It is a system of superconducting
qubits obeying the Ising model. In Eq. 2, hi are biases and Jij
are coupling constants. si are the spins of the qubits si ∈ {−1, + 1}.
The H0 state is realized by subjecting the system to a high
transverse magnetic field in the x direction (H0 � X⊗ . . . ⊗X
where X is Pauli spin matrix along x) which aligns all the spins in
the x direction and thus sets the ground state to an equal
superposition of all states in the Z basis and the external
magnetic field is gradually turned off to attain the state
corresponding to H1. The spins will automatically align
themselves so as to minimize the energy given by Eq. 2. This
process is known as quantum annealing.

A simple change of variables (x � (1 + s)/2) together with the
observation that x2 � x when x ∈ {0, 1} transforms Eq. 2 into
(ignoring constant term as it is of no consequence)

E � xTQx (3)

where Q is a Hermitian matrix (symmetric if dealing
with real numbers only). The minimization of Eq. 3 is a
Quadratic Unconstrained Binary Optimization (QUBO)
problem. D-Wave’s devices are tailored to solve this class
of problems.

2 QUADRATIC UNCONSTRAINED BINARY
OPTIMIZATION FORMULATION OF THE
TRAVELING SALESMAN PROBLEM

The objective function of the traveling salesman problem can
then be written as:

f � ∑M. pX � ∑i<n
i�0

∑j<n
j�i+1

Mij +Mji( )xij � ∑k<m
k�0

Bkbk (4)

where Mij + Mji is the cost of traveling from i to j (or vice-versa)
and we have used indices starting from 0 which are convenient for
turning equations into computer code. The xij variables are
mapped to bk and m is given by nC2 � n (n − 1)/2. Thus for a
problem of size n, we have to solve for m � nC2 unknowns. f is a
linear function in bk and the solution is trivial if there are no
constraints on bk (set bk � 1 if Bk < 0 and 0 otherwise). However,
there are constraints on what bk can be. Each node is traversed
only once and connects to only two other nodes in the output

cycle. These constraints can be written as n equations (one
equation for each i):

∀i ∈ 0, . . . , n − 1{ } ∑
j

xij � 2 (5)

These constraints have to be mapped to bk (as we solve for bk
ultimately) and the function mapping i, j indices to k (and thus xij
to bk) is given by:

k(i, j, n) �
undefined for i � j
k(j, i, n) for i> j
in − i(i + 1)/2 + j − (i + 1) for i< j

⎧⎪⎨⎪⎩ (6)

So far what we have is a linear integer programming problem
subject to linear constraints. To convert it into a QUBO, we
formulate each constraint as:

∀i ∈ 0, . . . , n − 1{ } min 2 −∑
j

xij
⎛⎝ ⎞⎠2

(7)

and use the method of Lagrange multipliers to absorb the
constraints into the objective function as follows:

q � ∑k<m
k�0

Bkbk +∑i<n
i�0

λi 2 − ∑
j,j≠i

bk(i,j)⎛⎝ ⎞⎠2

(8)

where λi are Lagrange multipliers. The minimization of Eq. 8 is a
QUBO problem. The Ising (and equivalently QUBO) formulation
of many NP problems can be found in [2]. The QUBO class of
problems is NP-hard.

3 IMPLEMENTATION

We have used D-Wave’s 5,436 qubit Advantage 1.1 QPU [3]
to solve instances of Eq. 8. We created 8 sample problems all
of size n � 8 (corresponding to m � 28 binary variables) in
which the entries of M were randomly sampled from [1, n] or
{1, 2, . . ., 8}. All the Lagrange multipliers (λi) were set equal to
each other and further equal to the maximum of the absolute
values in the matrix M (thus 8 in this case). The Lagrange
multiplier acts as a weight given to the constraint. It should be
set high enough to ensure the constraint is satisfied, but
setting it too high obscures the real function we are trying
to minimize. In addition to the Lagrange multipliers, there
are some other parameters that can affect the solutions
returned by the QPU such as the chain strength and
annealing time. We use the default annealing time of 20 μs
of the QPU. The chain strength parameter is related to minor
embedding of the problem graph into the actual physical
connectivity graph of the QPU. The qubits represented by the
variables bk are logical qubits of the problem and we assume
in our problem formulation that any of them can interact
with another. However, in the physical processor the qubits
are laid out in a certain fixed pattern (graph) and to emulate
the problem graph it has to be minor embedded into the
physical graph. This is a hard problem in its own right (see [4]
and references cited therein) and in general given m QUBO1https://www.dwavesys.com/
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variables, we require O(m2) physical qubits for minor
embedding. That’s why even though the processor has
5,436 qubits, its compute power translates to the order of�����
5436

√
≈ 73 logical qubits. The task of minor embedding the

problem graph into the QPU is akin to compilation of a
classical computer program to the instruction set of the CPU.
We use the default function provided by D-Wave
(minorminer.find_embedding)2 to calculate the
minor embedding of our problem graph. Once, the
problem graph is embedded into the physical graph, a
chain of physical qubits maps to a logical qubit. Long
chains should be avoided and can create problems when
the constituent qubits of a chain assume different values -
this is known as a chain break and can result in garbage
solutions. The chain strength parameter is a parameter that
avoids the chain from breaking. Like the Lagrange multiplier,
it should be set high enough but setting it too high will hide
the actual problem we want to solve. In our implementation
we use the scaled3 function provided by D-Wave to
automatically set the chain strength without any manual
ad-hoc fine tuning. With this, we found the auto-
computed chain strength to be between 30.5 and 32 for all
the problem cases and there were no chain breaks in the
returned solutions. If the annealing process were perfect, the
wavefunction would be in the ground state of target
Hamiltonian in the end, but in practice that is not always
the case. Therefore we perform multiple runs (samples)—100
runs for each problem in our case. We then iterate through
the samples (observations) in order of lowest energy and
select the first sample that satisfies the constraints of Eq. 5.
This marks the solution to the problem by the quantum
method.

To compare the results and performance of the quantum
solution, we also solved each of the problem cases by trying
out all possible combinations (brute-force). For a problem of
size n, the total number of possible combinations is given by
(n − 1)!/2. For n � 8 this translates to 2,520. Figure 1 shows
graph of the original objective function ∑M. pX against all
the combinations for a sample problem. It has many local
extrema and no recognizable structure. All the 8 problems
are characterized by closely spaced extrema - the difference
in the objective function between the best and second-best
input configuration ranges from 1–3. This equals the
energy difference δE between the ground and first-excited
state of the quantum system. Quantum annealing
performs best when this energy gap is high. When the
energy gap is small, the system can jump to a excited state
over course of the time evolution giving suboptimal solution
in the end.

A classical optimizer for the traveling salesman problem was
also developed. It uses the following simple heuristic: we start

with a random initial configuration (cycle). Then, we pick 2 nodes
at random and check if swapping their positions (order) would
lead to an improvement of the objective function. If so, we swap
and repeat the process. If we have tried all nC2 swaps and got no
improvement of the objective function, the algorithm terminates.
This algorithm is guaranteed to converge (and converges fast) but
it does not always converge to the global optimum. The chances
of converging to the global optimum decline with increase in size
of the problem n.

4 RESULTS

Table 1 shows our results and compares the performance of
all the 3 solvers. Overall we find the quantum solver
performed worse than the classical solver. In terms of
time too, the classical solver ran faster for n � 8. The
quantum solver takes 20 μs × 100 samples � 2 ms to run
and this time excludes the time spent in minor embedding of
the problem graph. In comparison the classical solver
implemented in Python took less than a ms to run for
each of the problems on a 2018 Macbook Pro equipped
with a 2.2 GHz Intel Core i7 processor and 16 GB
2400 MHz DDR4 RAM. n � 8 is also the maximum size of
the problem the quantum solver was able to handle. When
we tried problems with n � 9 (m � 36), the D-Wave QPU did
not return any valid solution for 5 out of 8 test cases with the
methods described in previous section, and for n � 10 (m �
45), the QPU returned a solution for only 1 out of 8 test cases.
The solutions were also suboptimal compared to classical
solver. They are not listed in the main paper but can be found
in the Supplementary material accompanying the paper.
One strength of our implementation is that no tweaks are
needed to the code and the same code that works when
entries of M are sampled from [1, n] also works as-is when
the entries are sampled from [−a, +a].

FIGURE 1 | Graph of objective function against all possible
combinations for a sample problem.

2https://github.com/dwavesystems/minorminer/blob/main/minorminer/
minorminer.py
3https://github.com/dwavesystems/dwave-system/blob/master/dwave/embedding/
chain_strength.py
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One advantage of the classical solver is that it always respects the
constraints of the problem (Eq. 5) whereas the quantum solution
turns the constraints into soft-constraints that can be violated and
have to be checked for satisfaction. Another advantage is that the
quantum solver can return incorrect solutions in which there is
more than 1 loop (cycle) e.g., it might configure 4 nodes to be in
one loop and 4 others to be in another loop—there is no constraint
in Eq. 5 preventing that. Each node is still connected to two other
nodes. The classical solver does not suffer from this limitation.

For reference, D-Wave also provides a code sample to solve the
TSP using a QPU.4 We tried that code as well but it resulted in
errors. The formulation provided here is better than D-Wave’s
solution because it takes into account that xij � xji (consequently
there are nC2 variables to solve for) whereas in D-Wave’s solution
this constraint is treated as a soft-constraint using Lagrange
multipliers and the total number of variables is n(n − 1). The
classical optimizer we have described is the 2-opt algorithm for
solving the TSP [5]. Several computer codes and packages for
classical solutions to TSP can be found online.5, 6, 7 A quantum
study using D-Wave to solve the related Capacitated Vehicle
Routing Problem (CVRP) can be found in [6].

Lastly, in this paper we restricted ourselves to the case when the
cost of traveling from i to j is same as the cost of traveling from j to i.
The restriction can be removed and the methods developed here can
be applied to the general case as well. See the Appendix for details.

In conclusion, this paper presented a QUBO formulation of the
traveling salesman problem which makes it amenable to quantum
annealers and although our experiments withD-WaveQPUdid not
demonstrate any quantum advantage, we remain hopeful that with
advancements in technology the quantum solution might
outperform classical method esp. with large n although
quantum annealers like the D-Wave QPU will find a challenge
since the number of qubits required grows asm2 due to the minor

embedding problem. Hence, simply adding more qubits to the
QPUwhile keeping the rest of the architecture and design the same
is unlikely to succeed. Better innovations will be required.
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TABLE 1 | Evaluation of quantum algorithm and its comparison to a classical solver as well as brute-force method (n � 8).

Brute force Quantum solver Classical solver

Obj. Qubo
energy

#
Of distinct
solutions

Obj. Qubo
energy

Is optimal Is second
best

Obj. #
Of steps

Is optimal Is second
best

Problem 1 54 −202 5 61 −195 × × 54 77 ✓
Problem 2 54 −202 1 68 −188 × × 54 62 ✓
Problem 3 41 −215 1 53 −203 × × 44 60 × ✓
Problem 4 49 −207 2 55 −201 × × 49 94 ✓
Problem 5 40 −216 1 54 −202 × × 40 70 ✓
Problem 6 52 −204 2 58 −198 × × 52 85 ✓
Problem 7 51 −205 1 63 −193 × × 59 29 × ×
Problem 8 47 −209 1 59 −197 × × 50 60 × ×
Obj. is the original objective function ∑M.pX. The QUBO energy is same as Eq. 8 minus the constant term in it. The number of steps is equal to the number of combinations tried by the
classical solver. It is not equal to the number of swaps performed.

4https://github.com/dwavesystems/dwave-networkx/blob/main/dwave_networkx/
algorithms/tsp.py
5https://developers.google.com/optimization/routing/tsp
6https://python-mip.readthedocs.io/en/latest/examples.html
7https://www.math.uwaterloo.ca/tsp/concorde.html 8https://www.apache.org/licenses/LICENSE-2.0.txt
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APPENDIX

This appendix describes QUBO formulation of the TSP when the
cost of traveling from node i to node j is not equal to the cost of
traveling from node j to node i. In this case the total number of
possible combinations is given by (n − 1)! instead of (n − 1)!/2 and
for a problem of size n, the number of binary variables to solve for
becomes 2 ×nC2 instead of

nC2. This is also equal to the number of
entries in the matrix X minus the diagonal. Let xij be the binary
variable that denotes if there is a traversal from node i to node j.
The objective function ∑M. pX remains unchanged but X is no
longer a symmetric matrix. Each node i must have exactly one
ingress which is represented by n constraints:

∀i ∑
j

xji � 1 (9)

The above constraint can be equivalently stated as each
column of matrix X should have exactly one entry with a 1 in
it. Similarly each node must have exactly one egress which is
represented by another set of n constraints (equivalently stated as
each row of matrix X should have exactly one entry with a 1 in it):

∀i ∑
j

xij � 1 (10)

Finally, if xij is 1 then xji � 0 (X is not a symmetric matrix). This
gives following nC2 constraints:

∀(i, j) xij + xji ≤ 1 (11)

We have seen before how to absorb the linear constraints into
the cost function using Lagrange multipliers. Each inequality in
Eq. 11 can be represented by corresponding penalty function
xijxji which is 0 if the inequality is satisfied and 1 otherwise. We
can capture all the constraints into following QUBO cost
function:

q �∑M.pX

+ λ1 ∑i<n
i�0

1 − ∑
j,j≠i

xij
⎛⎝ ⎞⎠2

+ λ2 ∑i<n
i�0

1 − ∑
j,j≠i

xji
⎛⎝ ⎞⎠2

+ λ3 ∑i<n
i�0

∑
j,j≠i

xijxji

(12)

where λi are Lagrange multipliers. Minimization of above will
solve the TSP for the extended case.
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