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A variable boostable chaotic system and the Hindmarsh–Rose neuron model are
applied for observing the dynamics revised by memristive computation. Nonlinearity
hidden in a memristor makes a dynamic system prone to be chaos. Inherent
dynamics in a dynamic system can be preserved in specific circumstances.
Specifically, as an example, offset boosting in the original system is inherited in
the derived memristive system, where the average value of the system variable is
rescaled linearly by the offset booster. Additional feedback from memristive
computation raises chaos, as a case, in the Hindmarsh–Rose neuron model the
spiking behavior of membrane potential exhibits chaos with a relatively large
parameter region of the memristor.
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INTRODUCTION

Memristor is a new nonlinear component that brings great convivence for chaos generation
[1–5] and dynamics control [6–10]. When a memristor is introduced, a dynamical system finds
its way to exhibit more complicated evolvements. Whatever in a 3D [11–13] or 4D [14–16] or
an even higher dimensional [17, 18] system, a memristor does endow abundant dynamics
including hidden attractor [19, 20], bistability [21, 22], tristability [23], extreme multistability
[24–27], and megamultistability [28–30]. Memristor, meminductor [31, 32], and
memcapacitor [33, 34] are in fact representations of special computation, where the
current output is critically associated with the past states and the current input. This is
essentially a kind of time delay, which brings nonlinear factors and makes the system more
prone to be chaos or even hyperchaos [35–37].

In this paper, a memristor-based computation is introduced in a variable boostable chaotic
system and the Hindmarsh–Rose neuron model for observing the influence of memory from
the memristive computation. As shown in Figure 1, chaos oscillation, and dynamics control
are explored and discussed in a variable boostable system and neuron cells. In A 3D
Memristive Chaotic System, the VB14 system is applied to host a memristor, where
chaotic oscillation is preserved with the inherent property of offset boosting. The system
and component parameter shows their separate power for preserving chaos and revising
dynamics . In A Memristive Hindmarsh-Rose Neuron, the Hindmarsh–Rose neuron model is
studied as an example to demonstrate the effect of memory. Memristive computation shows
its disturbance for chaos production. Some discussion and future work are presented in the
last section.

Edited by:
Christos Volos,

Aristotle University of Thessaloniki,
Greece

Reviewed by:
Shaobo He,

Central South University, China
DaweiDing,

Anhui University, China

*Correspondence:
Chunbiao Li

goontry@126.com
chunbiaolee@nuist.edu.cn

Specialty section:
This article was submitted to

Interdisciplinary Physics,
a section of the journal

Frontiers in Physics

Received: 17 August 2021
Accepted: 16 September 2021

Published: 27 October 2021

Citation:
Ma X, Li C, Wang R, Jiang Y and Lei T

(2021) Memristive Computation-
Oriented Chaos and
Dynamics Control.

Front. Phys. 9:759913.
doi: 10.3389/fphy.2021.759913

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7599131

ORIGINAL RESEARCH
published: 27 October 2021

doi: 10.3389/fphy.2021.759913

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.759913&domain=pdf&date_stamp=2021-10-27
https://www.frontiersin.org/articles/10.3389/fphy.2021.759913/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.759913/full
http://creativecommons.org/licenses/by/4.0/
mailto:goontry@126.com
mailto:chunbiaolee@nuist.edu.cn
https://doi.org/10.3389/fphy.2021.759913
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.759913


A 3D MEMRISTIVE CHAOTIC SYSTEM

Basic Analysis
A variable boostable chaotic system is a class of chaotic systems
with an independent variable that can be controlled with a
linearly rescaled average value. By introducing a constant, the
offset of the variable can be boosted to any desired level. Thus, we
can control the variable switch between a bipolar signal and a
unipolar signal according to the constant. In this paper, VB14 is
selected as the seed system for hosting a memristor,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
_x � 1 − ayz,
_y � z2 − z,
_z � x − bz.

(1)

when a � 3.55, b � 0.5, IC � (1, 0, 1), system (1) is chaotic with
Lyapunov exponents (0.151, 0, −0.651) and Kaplan–Yorke
dimension DKY of 2.2319. A memristor is introduced into the
VB14 system, as shown in Eq. 2,

⎧⎪⎨⎪⎩
_x � 1 − a(−c + d

∣∣∣∣y∣∣∣∣)z,
_y � z2 − yz,
_z � x − bz.

(2)

where the flux-controlled memductance is described as,

⎧⎪⎨⎪⎩
iM � W(y)z,
W(y) � −c + d

∣∣∣∣y∣∣∣∣,
_y � z2 − yz.

(3)

Here y is the internal variable of the memristor and can be
regarded as the flux-controlled variable of the memristor. The
memristor function curve and the corresponding hysteresis loop
are plotted as shown in Figure 2. In the process memristor with
the internal variable determined as, _y � z2 − yz is selected for
introducing a memristor-based computation. Here x, and z are
system variables, a, and b, are the bifurcation parameters of the
system (2); and c, and d are the internal parameters of the
memristor. When a � 2.4, b � 0.5, c � 1.7, and d � 2.5, under
initial conditions (1, 0, 1), system (2) has a chaotic attractor of
Lyapunov exponents (0.18548, 0, −1.2907) and Kaplan–Yorke
dimension of 2.1437, as shown in Figure 3.

The hypervolume contraction of this system can be described
by the following expression:

∇V � zx

zx
+ zy

zy
+ zz

zz
� −z − b (4)

which is related to the values of the system variable z
and parameter b. When system parameters are a � 2.4, b �
0.5, c � 1.7, and d � 2.5, the result of this equation ∇V is negative.
Further examination revealed that the sum of Lyapunov
exponents is also negative. So, system (1) is dissipative.

Let the left-hand side of the system (2) be equal to zero, the
equilibria can be solved by the following equation:

⎧⎪⎨⎪⎩
1 − a( − c + d

∣∣∣∣y∣∣∣∣)z � 0,
z2 − yz � 0,
x − bz � 0,

(5)

system (2) has a non-zero equilibrium point S0 � (0.43564387,
0.87128774, 0.87128774). Linearizing system (2) at the
equilibrium point S0, the Jacobian matrix can be obtained as,

J � ⎡⎢⎢⎢⎢⎢⎣ 0 −ad∣∣∣∣y∣∣∣∣z −a(−c + d
∣∣∣∣y∣∣∣∣)

0 −z −y + 2z
1 0 −b

⎤⎥⎥⎥⎥⎥⎦ (6)

FIGURE 1 | Memristive computation-oriented dynamics.

FIGURE 2 | Memristor function and corresponding hysteresis loop. (A) memristor function, (B) hysteresis loop.
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The characteristic equation is derived as:

det(λI − J) � (a1λ 3 + a2λ
2 + a3λ + a4) � 0 (7)

Therefore, a1 � 1, a2 � z + b, a3 � a(−c + d|y|) + bz,
a4 � ad|y|z + a(−c + d|y|), when a � 2.4, b � 0.5, c � 1.7,
d � 2.5, the eigenvalue of S0 is: λ1 � −1.9842081,
λ2 � 0.30646019 − 1.6448751i, and λ3 � 0.30646019 + 1.6448751i.

Bifurcation Observation
For system (2), the dynamic behavior of the system can be
modified by changing the parameters. When b � 0.5, c � 1.7,

d � 2.4 and the initial condition is (1, 0, 1), the bifurcation
diagram and Lyapunov exponents of parameter a varies in [0.5, 3]
are shown in Figures 4A,B. It can be seen from the figure that the
system has a couple of periodic windows. When parameter a
varies in the range of [0.5, 1.1], system (2) is periodic and exhibits
a period-doubling process; then, the system enters a chaotic state
around a � 1.1. After that system (2) remains in chaos in [1.1,
1.255], [1.4, 1.725], [1.8, 2.05], [2.1, 2.5], [2.55, 3] except a couple
of interrupted period windows.

When a � 2.4, c � 1.7, d � 2.5, the initial condition is (1, 0, 1)
and b varies in (0, 1.5), the corresponding bifurcation and

FIGURE 3 | Strange attractor of system (2) with a � 2.4, b � 0.5, c � 1.7, d � 2.5 under initial conditions (1, 0, 1) (A) x-y plane, (B) x-z plane.

FIGURE 4 | Bifurcation and Lyapunov exponents diagramsof oscillator (2) with b� 0.5, c� 1.7, d� 2.4 and the initial conditions is (1, 0, 1) when the parameter a is in [0.5, 3].
(A) bifurcation, (B) Lyapunov exponents.

FIGURE 5 | Lyapunov exponents and bifurcation diagrams of system (2) with a � 2.4, c � 1.7, d � 2.5 and initial conditions (1, 0, 1) when the parameter b varies in
[0, 1.5]. (A) bifurcation, (B) Lyapunov exponents.
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Lyapunov exponents are shown in Figure 5. From Lyapunov
exponents and bifurcation, we observe that the system
undergoes a typical inverse-period-doubling process from
chaos. When b in [0, 0.385], [0.435, 0.735], and [0.785,
0.81], system (2) exhibits chaos. Some periodic windows
such as [0.385, 0.435] are seen. When parameter b varies in
[0.81, 1.5], system (2) gives cycle-4, cycle-2, and cycle-1 limit
cycles.

To observe the memristive computation influence on system
dynamics, here the coefficient d implying memristor resistance

is used as a bifurcation parameter. When a � 2.4, b � 0.5, and
c � 1.7, and initial condition (1, 0, 1), and d increases in the
region of [0, 5], the bifurcation and Lyapunov exponents are
shown in Figures 6A,B. When the internal parameter d of the
memristor is in the range of [1.8, 2.01], the system shows
periodic oscillation; similarly, when the internal parameter d
of the memristor is in the range of [2.01, 2.71] and [2.71,
3.56], the system again turns to be chaos; when the internal
parameter d of the memristor changes in the region of [3.56,
3.96], the system enters a chaotic state. A typical inverse

FIGURE 6 | Lyapunov exponents and bifurcation diagrams of system (2) with a � 2.4, b � 0.5, c � 1.7 and initial condition (1, 0, 1) when the memristor parameter d
varies in [0, 5]. (A) bifurcation, (B) Lyapunov exponents.

FIGURE 7 | Offset boosted attractors of system (8) with a � 2.4, b � 0.5, c � 1.7,and d � 2.5: (A) attractors on plane of x-z, (B) signal x(t).

FIGURE 8 | Bifurcation and Lyapunov exponents of system (10) with b � 5.5, c � 1.7, d � 2.5 and initial condition (0, 0, 0) when parameter a varies in [2, 3.3]. (A)
bifurcation, (B) Lyapunov exponents.
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periodic doubling bifurcation happens when d becomes
larger.

As shown in the latter, the newly introduced
memristor does not break the property of offset boosting.
Suppose if there is a constant e is introduced in the last
dimension,

⎧⎪⎨⎪⎩
_x � 1 − a(−c + d

∣∣∣∣y∣∣∣∣)z,
_y � z2 − yz,
_z � (x − e) − bz,

(8)

Different constants of e revise the offset of the system variable
x directly. As shown in Figure 7, three chaotic attractors with
different offsets are displayed in cyan, green, and red. Here signal
x(t) at e � 0 is bipolar signal, while signals at x(t) at e � ±3 are
unipolar positive and negative signal. Offset controller e only
rescales the average value of x without influencing system
dynamics.

A MEMRISTIVE HINDMARSH-ROSE
NEURON

The 2D HR neuro was simplified from the classical
Hodgkin–Huxley model [25] by HR, which is expressed by the
following expression,

{ _x � y − x3 + ax2 + I,
_y � 1 − bx2 − y.

(9)

where a and b are positive constants, and I is the external current.
In the system (9), x stands for membrane potential, and y stands

for spiking variable, [38]. To better express the complex
dynamical behaviors of the neuron electrical activities, here a
new 3-D memristive HR neuron model is proposed [39]. The
external current I in the 2-D HR neuron model (8) be replaced by
a memristor, the new HR neuron model can be described as,

⎧⎪⎨⎪⎩
_x � y − x3 + ax2 − (−c + d|z|)x,
_y � 1 − bx2 − y,
_z � −x2 − xz.

(10)

Let the left-hand side of the system (10) be equal to zero, the
equilibria can be solved by the following equation:

⎧⎪⎨⎪⎩
y − x3 + ax2 − (−c + d|z|)x � 0
1 − bx2 − y � 0
−x2 − xz � 0

(11)

System (10) has a non-zero equilibrium point S � (0.58771263,
− 0.89973376, − and 0.58771263). Linearizing system (10) at the
equilibrium point S0, the Jacobian matrix can be obtained as,

J � ⎡⎢⎢⎢⎢⎢⎣ 3x
2 + 2ax − (−c + d|z|) 1 −dxsgn(z)

−2bx −1 0
−2x − z 0 −x

⎤⎥⎥⎥⎥⎥⎦ (12)

The characteristic equation is derived as:

det(λI − J) � (a1λ 3 + a2λ
2 + a3λ + a4) � 0 (13)

where a1, a2, a3, and a4 are polynomials containing a, b, c, d,
and variables x and z: a1�1, a2�(−3x+1−2a)x−c+d|z|+1, a3�
−(x+1)(3x2+2ax−c+d|z|)−dxsgn(z)(2x+z) +(2b+1)x, and
a4�−x(3x2+2ax+2bx−dsgn(z)(2x+z)− c+d|z|). When

FIGURE 9 | Time series of membrane potential under different parameters a of system (10) with b � 5.5, c � 1.7, d � 2.5 and initial condition (0, 0, 0): (A) a � 2.2, (B)
a � 2.5, (C) a � 2.8, (D) a � 3.
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a �2.8, b � 5.5, c � 1.7, and d � 2.5, the eigenvalues of S are:
λ1�0.683273, and λ2,3�0.107353±0.597675i, thus showing it is a
saddle point.

The parameters in (10) are specified as follows: b � 5.5, c �
1.7, and d � 2.5, and the initial condition is (0, 0, 0). When a
varies within the range of [2, 3.3], the bifurcation diagram of
the membrane potential x and Lyapunov exponents are
shown in Figures 8A,B. When the parameter a is
increased in the region [2, 2.6], system (10) exhibits
typical period-doubling bifurcation; when the range of
parameter a varies in [2.6, 2.92], system (10) shows chaos;
When parameter a is in the range of [2.92, 3.3], system (10)
exhibits an inverse-period-doubling process. As shown in
Figure 9, the neuronal electrical activity shows different

modes by modifying the value of the system parameter a.
Corresponding attractors are displayed in Figure 10.

When a � 2.8, c � 1.7, and d � 2.5, and the initial condition is
(0, 0, 0), the bifurcation diagram of the maxima X of the
membrane potential x and Lyapunov exponents of parameter b
varies in the range of [2, 13] are shown in Figures 11A,B.
When parameter b is increased in the region of [0, 5.25], the
system (10) exhibits typical period-doubling bifurcation
phenomenon; When parameter b varies in [5.25, 5.77], [6.68,
7.59], [8.5, 8.63], [8.89, 9.28], [10.84, 10.97], and [12.27, 12.4],
system (4) exhibits chaos; When parameter b is in the range of
[5.77, 6.68], [7.59, 8.5], [8.63 8.89], [9.28, 10.84], and [10.97,
12.27], system (10) gives periodic solution. When b increases in
the region of [12.27, 13], system (10) moves from chaos to

FIGURE 10 | Dynamics of system (10) with b � 5.5, c � 1.7, d � 2.5 and initial condition (0, 0, 0): (A) a � 2.2, (B) a � 2.5, (C) a � 2.8, (D) a � 3.

FIGURE 11 | Bifurcation and Lyapunov exponents of system (10) with a � 2.8, c � 1.7, d � 2.5 and the initial conditions is (0, 0, 0) when the parameter b varies in [2,
13]. (A) bifurcation, (B) Lyapunov exponents.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7599136

Ma et al. Memristive Computation and Dynamics Control

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


period again. As shown in Figure 12, the bursting state of
neuronal electrical activity can be changed into different modes
by modifying the value of the system parameter b. As shown in
Figure 13, attractors correspond to the different bursting states
of neuronal electrical activity.

Also to observe the memristive computation influence on
system dynamics, here the coefficient d is used as a bifurcation
parameter in the derived HR neuron model. When a � 2.4, b �
5.5, c � 1.7, and the initial condition is (0, 0, 0), the bifurcation
diagram of the maxima X of the membrane potential x and

FIGURE 12 | Time series of membrane potential of system (10) with a � 2.8, c � 1.7, d � 2.5 and initial conditions (0, 0, 0): (A) b � 5.5, (B) b � 6.2, (C) b � 9.2, (D)
b � 11.5.

FIGURE 13 | Dynamics of system (10) with a � 2.8, c � 1.7, d � 2.5 and initial condition (0, 0, 0): (A) b � 5.5, (B) b � 6.2, (C) b � 9.2, (D) b � 11.5.
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Lyapunov exponents of parameter d varies in the range of [1, 4]
are shown in Figures 14A,B. When the parameter d is
increased in the region of [0, 2.24], The system exhibits
typical period-doubling bifurcation phenomenon; When the
range of the parameter d vary in [2.24, 2.75], the system (10)
is chaotic, obviously, there are two typical period windows in
this chaotic range; When parameter d is in the range of [2.75, 4],
system (10) exhibits an inverse-period-doubling process.
Interestingly, the function of the parameter d is similar to
the system parameter a.

As shown in the latter, the newly introduced memristor does
not break the property of offset boosting. Suppose there is a
constant e introduced in both of the first dimension and the
second dimension,

⎧⎪⎨⎪⎩
_x � y − e − x3 + ax2 − (−c + d|z|)x,
_y � 1 − bx2 − (y − e),
_z � −x2 − xz.

(14)

Different constants of e revise the offset of the system variable
y directly. As shown in Figure 15, three chaotic attractors with
different offsets are displayed in cyan, green, and red. Here signal
x(t) at e � 0 is bipolar signal, while signals at x(t) at e � ±3.5 are
unipolar positive and negative signal. Offset controller e only
rescales the average value of y without influencing system
dynamics.

CONCLUSION

Memristor and memristive computation have great merits for
producing chaos and dynamics control due to the special
nonlinearity. It shows that even a memristor function is a
linear function, the memory effect from memristive
computation still returns chaos under a specific bifurcation. In this
paper, two systems are reformed to be memristive chaotic systems
based on the same memristor function. Offset boosting is discussed in
both systems. Memristive computation as a new type of computing
shows great potential with chaos-based engineering and pattern
recognition in artificial intelligence, which deserves further research
and will yield great value in information engineering.
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varies in [1.8, 3.8]. (A) bifurcation, (B) Lyapunov exponents.

FIGURE 15 | Offset boosted attractors of system (11) with a � 2.8, b � 5.5, c � 1.7, d � 2.5: (A) attractors on plane of x-y, (B) signal y(t).
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