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Holographic cytometry is an ultra-high throughput quantitative phase imaging modality
that is capable of extracting subcellular information from millions of cells flowing through
parallel microfluidic channels. In this study, we present our findings on the application of
holographic cytometry to distinguishing carcinogen-exposed cells from normal cells and
cancer cells. This has potential application for environmental monitoring and cancer
detection by analysis of cytology samples acquired via brushing or fine needle
aspiration. By leveraging the vast amount of cell imaging data, we are able to build
single-cell-analysis-based biophysical phenotype profiles on the examined cell lines.
Multiple physical characteristics of these cells show observable distinct traits between
the three cell types. Logistic regression analysis provides insight on which traits are more
useful for classification. Additionally, we demonstrate that deep learning is a powerful tool
that can potentially identify phenotypic differences from reconstructed single-cell images.
The high classification accuracy levels show the platform’s potential in being developed
into a diagnostic tool for abnormal cell screening.
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INTRODUCTION

Breast cancer is one of the most diagnosed cancers worldwide and its metastasis is the leading cause
of death [1, 2]. Fine-needle aspiration cytology (FNAC) is a widely used method for breast cancer
diagnosis and preoperative assessments. Subsequent to sample collection in FNAC, histopathological
examination is the gold standard procedure performed to define histological grade [3]. However, this
approach can be time-consuming, costly, labor-intensive and prone to low sensitivity [4]. Previous
works show that FNAC coupled with flow cytometry (FC) is a simpler, more rapid process that
provides comparable performance to conventional cytologic diagnosis [5–7]. These works typically
involve the use of immunocapture cytometry systems which have very limited sensitivity to certain
abnormal cells due to their incapability to detect cells not expressing the corresponding cell-surface
epithelial cell marker [8, 9]. Additionally, current flow cytometers are oriented to detecting
metastatic cells and little work has been done for identifying prognostic biomarkers of early
cancer or precancerous cells. As an alternative, quantitative phase imaging (QPI) coupled with
microfluidics offers a highly sensitive, high throughput label-free modality which, through
phenotypical profiling, has the potential to be used to detect both malignant and potentially
unhealthy cells. QPI-based profiling has already demonstrated high-throughput capabilities and
high accuracy levels in identifying cell-cycle phases, in ultrafast all-optical laser scanning approaches
[10, 11]. In other QPI approaches, deep learning has proven to be a powerful tool used by many for
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QPI classification [10–13], inference [14–17], and reconstruction
[18–20]. We now seek to use ultra-high throughput QPI to build
phenotypic profiles of single cells subjected to carcinogens, which
can be, in combination with deep learning, used to develop
prognostic biomarkers of precancerous cells.

For this work, we examine exposure to heavy metal ions,
which can be a contributor to carcinogenic development [21–23].
Our previous work used a flow assay to study cell stiffness
changes in arsenic-treated cells and the relationship with
normal cell transformation into carcinogenic state [24]. This
earlier study has led to our new interests in Cadmium (Cd),
which is a commonly found pollutant that is present in food,
water, and our surrounding environment [25]. According to the
International Agency for Research on Cancer (IARC), Cd is
classified as a group 1 carcinogen to humans [26]. Studies
have shown that Cd exposure promotes cancer progression in
epithelial cells and there is ample evidence of its role in inducing
cancer [27–29]. Thus, Cd-treated cells are a suitable target for
assessing aberrant morphologies with QPI and can enable
comparisons with cancer cells. Through evaluating the
precancerous phenotypes in Cd-treated cells, our results may
provide valuable insights to a normal healthy cells’ conversion to
cancer.

In this manuscript, a study is presented with applies an ultra-
high throughput QPI approach, termed holographic cytometry
(HC), to develop phenotype profiles of breast cells in different
states of cancer progression. The profiles can be then used to
develop classifiers to discriminate cells in unknown states. HC is
based on a stroboscopic QPI approach, advanced to provide a
high throughput approach by enabling imaging in multiple
parallel microfluidic channels [30]. The HC system is applied
here to acquire images of a breast cancer cell line BT474, a
normal breast epithelial cell line MCF10A, and Cd-treated
MCF10A cells which are expected to show pre-cancerous
changes. Phenotypical differences, determined from analysis
of the acquired images, are used to characterize and
differentiate each cell line. Convolutional neural network
(CNN) and logistic regression algorithms are used to provide
discrimination between different cell types that can form the
basis for identifying early-stage cancer.

MATERIALS AND METHODS

Cell Culture Protocol
Three different cell lines are imaged in this experiment: MCF10A,
Cd-treated MCF10A and BT474. MCF10A and Cd-treated
MCF10A were cultured in Dulbecco’s Modified Eagle
Medium/F12 (Invitrogen #11330–032) supplemented with 5%
horse serum, epidermal growth factor, hydrocortisone, cholera
toxin and insulin. For the latter, MCF10A was treated with
2.5 μM Cd for 24 weeks prior to imaging. Both cell lines were
passaged every 3 days using 0.25% trypsin. BT474 were cultured
in Minimum Essential Medium Eagle, supplemented with insulin
and 10% bovine serum. BT474 was passaged every 3 days using
0.05% trypsin. Cells were incubated in 37°C and 5% CO2
environment.

System Overview
The HC system is based on the Mach-Zehnder off-axis
interferometer design, as shown in Figure 1. Our system
consists of a 640 nm continuous wave laser pulsed by an
acousto-optic modulator (AOM) at 300 Hz, with a pulse width
of 350 μs The AOM is synchronized with the camera frame rate,
through an Arduino basedmicrocontroller [31]. The pulsed beam
is then coupled to an optical fiber and divided using a fiber splitter
into the off-axis Mach-Zehnder interferometer’s reference and
sample arms. The collimated beam in the sample arm passes
through samples contained in a microfluidic element. The beam
exiting the sample is magnified using a ×20 objective (NA � 0.4)
and interfered with light from the reference arm beam at the
beam splitter (BS). A small angle is imparted on the reference
field to enable off-axis digital holography [32]. The magnified
interferogram is then captured by a wide-framed high-speed
camera (Dalsa, 4,096 × 96px, 300 fps). System throughput is
optimized via wide field of view implementation and
stroboscopic illumination, which allows for rapid acquisitions
without image streaking. In each acquisition, 10,000 images are
acquired within 33 s, enabling the system to image up to 148
cells per second. The overall optical magnification of the system
is converted to × 30 by selecting the focal length of lens (L3).
This gives us a field of view that covers 16 channels. The
resolution of the HC is 1μm, which is close to diffraction
limit. The system is highly stable, producing a phase
sensitivity of 15mrad, which corresponds to 1.1 nm.

Microfluidic Channel Fabrication
The microfluidic element is comprised of 108 or 54 parallel
channels implemented in polydimethylsiloxane (PDMS)
substrate using soft lithography methods [32]. Since the
diameter of the largest cell line-BT474 is approximately 20 μm,
we designed each channel to have a height and width of 30 μm.
For fabrication of PDMS channels, the polymer is prepared by
mixing base polymer with curing agent at a 10:1 ratio. The
mixture is poured onto a patterned photomask and heated in
a convection oven at 85 °C for 2 hours to form the PDMS
channels. After curing glass is bonded to the channel side of
PDMS, inlet and outlet channels are added to enable cell media
flow entry and exit.

Imaging Experiment
Cells are supplied through the inlet channel of the PDMS element
using an automated syringe, with an initial flow speed of 15 μL/
min. The actual speed of cells in a given channel depends on the
fluid pressure and the cell concentration. We adjust the flow
speed to match camera acquisition rate, so that a sufficient
sequence of more than three images of each cell entering and
exiting field of view can be captured for cell-tracking. MCF10A
cells are imaged in continuous PDMS channels (Figure 2A) while
Cd-treated MCF10A cells and BT474 cells are imaged in
branched PDMS channels (Figure 2B). Selection of channel
type for these cells is based on the cell concentration at time
of experiment, evaluated prior to each experiment with a
hemocytometer. Samples with concentration below
700,000 cells/mL are flowed in branched channels while
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samples with concentrations above 700,000 cells/mL are flowed
in continuous channels. This selection criterion is the result of
trial and error that determined the optimal choice to avoid
channel blockage. All three cell lines are flowed through the
PDMS elements in their respective cell media.

Postprocessing
For each frame, the off-axis interferogram is processed using
standard methods to extract a phase image of the optical path
delay through each cell in the sample. Briefly, to obtain single cell
images, each frame of the interferogram goes through phase

FIGURE 1 | System overview [31]. L, lens; BS, beam splitter; AOM, acousto-optic modulator. The first order ray diffracted from AOM splits into sample arm and
reference arm. Prior to imaging, both arms are path matched.

FIGURE 2 | (A) Bottom: picture of continuous microfluidic channels. Top: enlarged image of subset of channels near inlet. Red lines enclose system’s field of
view—16 channels. (B) Bottom: picture of branched microfluidic channels. Top: enlarged image of subset of channels near inlet. Red lines enclose system’s field of
view—9 channels.
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reconstruction, background subtraction, background fitting and
digital refocusing (Figure 3) [31]. To ensure that cell data
describes individual cells and cell clumps are avoided, a
watershed-based segmentation algorithm is implemented
(Figure 4). The segmentation masks are dilated using Matlab’s
default dilate function. With the segmented frames, a modified
tracking code was developed based on the Matlab Computer
Vision Toolbox to identify duplicate cells that are present across
multiple frames [31]. Digital holograms allow for digital
refocusing during postprocessing. In this sample, large
refocusing ranges (up to 10’s of microns) are possible due to
the tall channel height, so each cell within the same frame is
refocused separately to different propagation distances

(Figure 5). Every segmented whole cell identified by the
tracking code, including duplicates, is refocused through
Fresnel propagation to the plane with minimal amplitude
variance to obtain the plane of best focus [31]. 25
morphological parameters (see supplementary) are calculated
for each single cell image and passed through logistic
regression [31]. The raw single cell images are used to train a
convolutional neural network (CNN).

Classification Algorithms
The acquired data are classified using two different
algorithms—logistic regression and CNN. In total, 5,662 × 25
descriptors (cells x morphological parameters) are calculated for

FIGURE 3 | Image pre-processing: (A) Reconstructed raw phase image from a single interferogram. (B) Background image acquired with cell media but no cells
present. (C) Phase image acquired with cell media and one cell present. (D) Resultant image after background subtraction. Slowly varying background noise is removed
through fitting to third-order polynomials.

FIGURE 4 | Image processing: (A) Reconstructed and processed phase image showing multiple cells in multiple channels. (B) Segmentation map produced by
automated code, note partial cells are excluded. (C) Phase image of segmented cells that can be used for single cell analysis; algorithm excludes all partial cells from frame.

FIGURE 5 | Example single cell images. Scale bar is 5 μm.
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each binary classification cell line pair, where 5,400 × 25 are used
for training and 262 × 25 are used for testing, as shown in
Figure 6. The logistic regression model is trained for 10 epochs.
In contrast to logistic regression, CNN classification accepts raw
phase images as input and outputs classification results. Based on
ResNet, the deep neural network consists of three res blocks
(Figure 7B) and a final convolution layer. Conceptually, each res
block serves as a residual minimizer (Figure 7A).

RESULTS

In the span of 33 s, the system obtained holographic images of
flowing cells, showing up to 148 cells per second. In total, 8,493
unique cell images are extracted from acquired videos where
2,831 cells from each cell line are used for analysis. We manually
selected the number of cells used for analysis so that the logistic
regression pairs match and thus have comparable accuracy levels.
25 morphological parameters are calculated for each single-cell
image, and almost all parameters exhibited significant differences

across the three cell lines, with majority p-values near zero (See
Supplementary). We observe that among the 25 morphological
parameters extracted, optical volume (OV), area, major axis
length and mean phase show the clearest trends. As shown in
Figure 8(A-H), for mean area, mean OV and mean major axis
length across the three cell lines, the ascending order of the
parameters is MCF10A, Cd-treated MCF10A and BT474. While
the BT474 cell line has more variation in OV values, the Cd-
treated MCF10A and MCF10A cell lines show more
homogeneity.

The dataset for each cell line is split into 2,700 training and 131
testing subsets. As shown in Table 1, when all 25 parameters are
used for training, logistic regression yields the highest binary
classification mean accuracy. If only the four morphological
parameters shown above (Area, OV, Major Axis Length, Mean
Phase) are used as input for logistic regression, the binary
classification still yields adequate accuracy levels, as shown in
Table 2. Overall, logistic regression demonstrates highly accurate
classification performance for discriminating normal epithelial
cells from abnormal cells. The CNN exhibits high accuracy
performance in identifying MCF10A, Cd-treated MCF10A and
BT474 through evaluating the single cell phase image, shown in
Table 3 and Figure 9(A, B).

DISCUSSION AND CONCLUSION

The combination of FNAC with FC provides a cheaper, quicker
and reliable alternative to the standard histological evaluation for
finding cancer cells [33, 34]. However, some of the disadvantages
of current FC methods include the inaccessibility to single-cell
morphological information [35] and fluorescent assays of
biochemical markers may be misleading if not exclusively
expressed in cancer cells [35–37]. Sample preparation usually

FIGURE 6 |Workflow of logistic regression. Single cell images from any
two cell lines of the three are passed through the algorithm, resulting in 5,400 ×
25 data points for training and 262 × 25 data points for testing.

FIGURE 7 | (A) Res Block architecture. BN: batch normalization. Conv: convolution layer. (B) Overall CNN architecture. FC: fully connected layer.
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FIGURE 8 | (A) Area box plot. (B) Area histogram. (C) Major axis length box plot. (D) Major axis length histogram. (E) OV box plot. (F) OV histogram. (G) Mean
phase box plot. (H) Mean phase histogram. p-values were calculated using Wilcoxon rank-sum test, *** refers to p < 1 × 10−5.

TABLE 1 | Results of logistic regression binary classification [%], with 25
morphological parameters as input. In total, 25 × 2,700 parameters were used
as training set and 25 × 131 parameters were used as testing set.

25 parameters logistic regression

Sensitivity Specificity Mean accuracy

MCF10A/BT474 99.5 ± 0.49 99.0 ± 0.84 99.3 ± 0.51
MCF10A Cd/BT474 90.0 ± 2.87 91.4 ± 1.96 90.7 ± 1.52
MCF10A/MCF10A Cd 98.7 ± 1.11 98.3 ± 0.97 98.5 ± 0.50

TABLE 2 | Results of logistic regression binary classification [%], with only area,
OV, major axis length and mean phase as input. In total, 4 × 2,700 parameters
were used as training set and 4 × 131 parameters were used as testing set.

Area, optical volume, major axis length, mean phase logistic regression

Sensitivity Specificity Mean accuracy

MCF10A/BT474 94.6 ± 1.92 89.0 ± 2.10 91.8 ± 1.34
MCF10A Cd/BT474 73.0 ± 2.45 70.4 ± 1.74 71.7 ± 1.41
MCF10A/MCF10A Cd 91.9 ± 3.06 92.4 ± 2.26 92.2 ± 1.84
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involves tedious staining processes and any mishandling can
cause low test sensitivity [38]. In comparison, the holographic
cytometer is a label-free imaging modality that provides a
morphology-based phenotype profile for each cell line, without
the need for fluorescent markers and very little sample
preparation. High throughput, enabled by high-speed camera
acquisition synchronized with pulsed illumination and fast cell
flow, provides an abundance of single cell imaging data that is
suitable for CNN classifications. In Table 3, we demonstrate with
our CNNmodel performance that deep learning has a 98–99% in
distinguishing between normal (MCF10A) and abnormal (Cd-
treated MCF10A and BT474) cells.

Figure 8(A–H) show that the Cd-treated cell line exhibit
intermediate morphological changes that are in between
normal breast epithelial cells and breast cancer cells. For
certain parameters such as mean phase, the Cd-treated cell
line overlaps more with the breast cancer cells than normal
cells. Through evaluating the similarities and differences of
morphological parameters across the cell lines, we can
potentially use these phenotype profiles to develop biomarkers
which can be used to identify carcinogen-exposed cells.

We show in our analysis results that the modality indeed
possesses great potential in serving as an abnormal cell identifier.
Trained with large numbers of abnormal and normal healthy
cells, the logistic regression algorithm and CNN are tuned to be
highly sensitive and specific to abnormal cells. Among the three
binary classification pairs, MCF10A/BT474 classification shows
the best performance, with a mean accuracy of 99.3% and the

highest sensitivity and specificity. The MCF10A/BT474
classification pair and MCF10A/MCF10A Cd pair have
comparable accuracy levels (98–99%) in logistic regression and
CNN, shown in Table 1 and Table 3. Note that because the Cd-
treated MCF10A exhibit a greater overlap in morphological
features with BT474 (Figure 8), it is within expectations that
our models exhibit lower performance in classifying MCF10A
Cd/BT474 pair (∼90%, Table 1). Using these two classification
methods illustrates how each morphological difference
contributes differently to the classification accuracy. CNN has
proven to be a powerful tool in classifying the three cell lines while
logistic regression provides insight on which traits play more
prominent roles in classification. In general, the system is most
accurate in differentiating between the abnormal cells and
healthy cells.

We note that majority of the phenotypic variation can be
explained by just the four statistically significant different
parameters, cell area, OV, major axis length and mean phase.
The logistic regression model achieves adequate accuracy levels
(89–95%, Table 2) in identifying normal/abnormal cells, with
only these four parameters as input. Thus, in practice, the system
can operate fairly effectively by monitoring fewer morphological
parameters to produce a shorter processing time. Alternatively,
inclusion of more parameters offers additional diagnostic
capability in classifying larger, more diverse cell populations
with greater variability.

In previous work, we used a flow assay to investigate
Arsenic-treated epithelial cells with QPI imaging. This study
found that the tumorigenic cells show a reduced shear stiffness
compared to non-tumorigenic cells [24]. Indeed, reduced
stiffness is an essential feature for invasion through
promotion of epithelial to mesenchymal transition. Here,
we find that Cd treatment induces morphological changes
in normal cells that resemble cancer cells. Combined, these
results point to a potential means for identifying early signs
that cells have malignant potential. Identification of such cells
could have a significant impact on cancer detection and
selection of therapeutic action. Future investigations will
seek to identify the Cd threshold required for onset for
phenotypic differences and to produce tumorigenic cell
lines. We are also interested in investigating the effects of

TABLE 3 |Classification results fromCNN. 2,700 images per cell line were used as
training set and 131 images per cell line was used as test set. We evaluated
the accuracy levels of four different models, three trained for binary classification
and last one trained with all three cell lines.

CNN

Accuracy (%)

MCF10A/BT474 98.1
MCF10A Cd/BT474 95.4
MCF10A/MCF10A Cd 99.4
MCF10A/BT474/MCF10A Cd 95.1

FIGURE 9 | Performance of CNN classification trained with three cell lines. (A) Stack box plot of classification results. (B)Confusion matrix for CNN predictions [%].
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Cd treatment on disorder strength, which has been shown to
be a surrogate biomarker of cell stiffness [39].

In conclusion, the HC system shows promising performance
in enabling high throughput analysis of cell samples. Here the
analysis demonstrates the feasibility of producing effective
biomarkers for cancer cells and carcinogen-exposed cells.
The results suggest these biomarkers offer the possibility
that the system can be developed into a diagnostic tool for
early-stage cancer by analysing large numbers of individual cell
images. Incorporating additional features such as fluorescence
and cell stiffness measurements in the future will further
broaden utility.
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