
Enhanced Raman Spectra in
Femtosecond Laser Inscribed Yb:
YVO4 Channel Waveguides
Yi-Fei Bao1†, Tao Liu1*†, Wei-Jin Kong2*, Hao-Qi Luo1, Yong Liu3, Fei-Ran Liu1 and
Lin Cheng1

1School of Electronic and Information Engineering, Qingdao University, Qingdao, China, 2School of Physics, Qingdao University,
Qingdao, China, 3Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation
(MOE), Shandong University, Qingdao, China

The femtosecond laser writing with double-line technique was employed to fabricate
buried channel waveguides with different widths in Yb:YVO4 crystal. Model profiles of the
waveguides were captured using the endface coupling setup at the wavelength of 633 nm
under TE and TM polarization. Furthermore, the confocal micro-Raman spectra in bulk and
waveguide areas were studied at the wavelength of 633 nm. The enhanced Raman
intensity were performed in waveguide areas.
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INTRODUCTION

Yttrium vanadate (YVO4) is isostructural and crystallizes in the tetragonal space groupD19
4h with four

molecules per unit cell (Z � 4), which is an attractive laser host material for producing new highly
efficient micro and diode-pumped systems [1–3]. YVO4 crystals are largely fabricated at lower cost
due to the excellent optical quality with larger hardness and better water insolubility [4–6]. Rare-
earth ions doped in YVO4 exhibit excellent properties [4, 6]. Nd ions doped with YVO4 in a common
diode-pumped solid state laser have been studied extensively [7]. Yb3+ ion has a simple two-level
electronic band structure. Just like Yb doped laser medium, Yb doped YVO4 crystals possess strong
absorption band near 985 nm, high thermal conductivity, and broad gain bandwidth [8, 9], showing
potential applications in continuous-wave, Q-switched andmode-locked [6]. Therefore, the study on
the optical properties of Yb:YVO4 crystals is essential and significant.

As a basics component of integrated photonics, optical waveguide structures can confine light
propagation within small volumes. The optical properties perform better in waveguide areas in
comparison with the substrate. More than one hundred materials are fabricated as optical
guiding structures, including single crystals, polycrystalline ceramics, glasses, semiconductors,
and organic materials [10–14]. As a fast, flexible, and cost-effective technique, femtosecond laser
inscription has been used to fabricate diverse photonic structures on micro- or nano-scales [13].
Femtosecond laser inscription display controlled properties with ultrashort pulse width,
extremely high peak intensity and other adequately inscription parameters [13]. So, channel
waveguide structure with double lines in Nd:YVO4 crystal was studied by femtosecond laser
inscription [15]. As an excellent optical materials, waveguides in Nd:YVO4 crystal have been also
fabricated using ion irradiation with proton [16], N [17], Si [18], He [19], O [20] ions and swift
Kr ions [21].

The Raman effect was discovered by C.V. Raman in 1928, which can be used to describe the
inelastic scattering of photons on a quantized molecular system [22]. As an excellent Raman crystal,
the Raman characteristic of YVO4 is reported by experimental and simulated methods [23]. The
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Raman and infrared active modes of YVO4 crystal were firstly
theoretically analyzed and symmetry assigned in Ref. [1]. Nd:
YVO4 crystal has been studied using as self-Raman laser material,
based on the Raman peak at ∼888 nm in YVO4 host [17].

Although, Nd:YVO4 waveguides have been well studied, the
waveguide structure of Yb:YVO4 still need more attentions. Here,
channel buried optical waveguides in Yb:YVO4 crystals were
fabricated using femtosecond laser inscription with different
widths. Due to the birefringence of uniaxial Yb:YVO4 crystal,
model profiles in the two-line waveguide structures at 633 nm
under TE and TM polarization were investigated. The peaks in
confocal micro-Raman spectra were recorded and assigned to the
Raman modes in the Yb:YVO4 waveguide areas and substrate.

EXPERIMENTS

The Yb:YVO4 crystal with dimension 10 (x) × 6 (y) × 4 (z) mm3,
was optically polished and applied to produce waveguides along y
axis using the double-line technique. A Ti:sapphire amplifier
system (Libra, Coherent Inc.) with repetition rate of 1 kHz,
maximum pulse energy of 4 mJ, pulse width of 40 fs and
central wavelength of 800 nm was used to fabricate the buried
channel waveguide structures at the Shanghai Institute of Optics
Fine Mechanics, China. A laser beam with a writing speed of
20 μm/s was focused 50 μm below the largest faces in each crystal
having a lens with a numerical aperture of 0.55. Figure 1A shows
the laser writing setup used in Yb:YVO4 crystals. The details of
the samples are shown in Table 1, including laser power and
width of two - line varies from 6 to 24 μm with a step of 6 μm.

An endface coupling setup was employed to study the near-
field intensity profiles of the Yb:YVO4 crystal waveguides with a
He–Ne laser at the wavelength of 633 nm, as shown in Figure 1B.
Furthermore, we used two microscope objective lens (× 25) to
couple the 633 nm laser light through the waveguide structure.
The near-field intensity profiles were then recorded using a

charge-coupled device camera. A metallographic microscope
using reflected polarized light was applied to catch the images
of the waveguides at different magnifications. The Raman spectra
of the bulk and centers of waveguide areas in the Yb:YVO4

crystals were recorded with a micro-Raman spectrometer
(Horiba/Jobin Yvon HR800) at the wavelength of 633 nm with
the laser size of 1 μm at room temperature.

RESULTS AND DISCUSSION

In this study, channel waveguide structures were fabricated by
laser writing using the double-line technique in Yb:YVO4 crystal,
as shown in Table 1. In order to limit the transmission of light,
different writing energies were used in fabricating waveguide
structures with different widths. Figure 2 contains photographs
and model profiles of the buried channel waveguide structures
in Yb:YVO4 crystal at the wavelength of 633 nm under TE and
TM polarization. The photographs collected using a microscope
at cross-section of S1 (6 µm), S2 (12 µm), S3 (18 µm), and S4
(24 µm) were shown in Figure 2A. Many flaws at the junction of
the crystal and air originate from optical polishing. Areas
between the laser writing two lines can be clearly seen at the
endface photographs of S1, S2, S3, and S4, indicating the possible
formation of the waveguide structures with refractive index
variation. The model profiles of S2 (12 µm), S3 (18 µm), and S4
(24 µm) that were measured at the wavelength of 633 nm under
TE and TM polarization were shown in Figure 2B. The dashed
lines mean the damage track in S2 (12 µm), S3 (18 µm), and S4
(24 µm). The results show that S1 cannot confine the 633 nm
laser light under both TE and TM polarization, while S2 only
confines the 633 nm laser light under TM polarization. 12 µm
(S2) maybe the lower limit width of mode transmission in Yb:

FIGURE 1 | (A) Laser writing setup used in Yb:YVO4 crystals (left);
Schematic photographs of the buried channel waveguide structures in Yb:
YVO4 crystals (right) cross section and top section; (B) Endface coupling
setup at 633 nm.

TABLE1 | The details of the samples.

Double-line width(μm) Substrate 6 12 18 24

Writing energy (mW) 0 0.4 0.7 1.1 1.3

Sample S0 S1 S2 S3 S4

FIGURE2 | (A) Cross-section of the buried channel waveguide
structures in Yb:YVO4 crystals; (B)Model profiles of S2, S3, and S4 at 633 nm
under TE and TM polarization.

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 7580712

Bao et al. Femtosecond Laser Inscribed Yb:YVO 4 Channel Waveguides

http://www.baidu.com/link?url=nMG5PDr-3No64-7kKU8Q9XaqHABpTqqxUJAa5_yg_lQsCsMbEW-lQib7-z4fCFw_9dir3iawIfMe2EplEuqmydmP_ZqUjvu4u3KxuklNcvq
http://www.baidu.com/link?url=nMG5PDr-3No64-7kKU8Q9XaqHABpTqqxUJAa5_yg_lQsCsMbEW-lQib7-z4fCFw_9dir3iawIfMe2EplEuqmydmP_ZqUjvu4u3KxuklNcvq
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


YVO4 crystals at 633 nm. The results may imply that the width
of double lines fabricated by laser writing can influence the light
guiding.

To investigate the effect on the laser writing, the confocal
micro-Raman spectra in S0, S1, S2, S3, and S4 were obtained by
using a confocal micro-Raman system with an excitation
wavelength of 633 nm at room temperature, as shown in
Figure 3A, which corresponds to the symmetry species (A1g +
B1g) [24]. The spectra were measured vary from 100 to
1,000 cm−1 at the smallest end face of the samples. Raman
peak positions were listed in Table 2, where none extra peak
and peak shift existence in waveguide areas and Yb:YVO4

substrate comparing with the results in Refs. [16, 17, 23]. The
experiment modes vary with different wavelengths.

The Raman spectra can provide information about the
phonon modes, from the energy of the laser photons shifted
by the interaction of the laser light with phonons or other
excitations. As reported in Refs. [25, 26], the Raman peaks
corresponds to the internal vibrations into VO4

3− group and
external vibrations of complex VO4

3− and Y3+ ions in YVO4 unit
cell. The symmetric stretch (ν1), symmetric bending (ν2), anti-
symmetric stretch (ν3) and anti-symmetric bending (ν4) of the
VO4 “molecules” are four distinct internal vibrational modes in
VO4 tetrahedron [19, 26, 27]. The peaks at 153, 485, and 813 cm

−1

are assigned to B1g mode; the peaks at 375 and 888 cm−1 are to A1g

mode; 258 and 836 cm−1 are belongs to the Eg modes [1, 17, 23].
As reported by Zhang et al. [28], the change of peak position in
crystal Raman spectrum could disclose the stress and strain in the
sample, while the change of full width half maximum (FWHM)
indicates crystal quality change. In our work, the peak position
and width are both none change, meaning the waveguide areas
keep good crystal structures. While one can see that all peak
intensities are enhanced in the waveguide areas comparing with
the Yb:YVO4 substrate, as shown in Figure 3B. Especially, the
enhanced intensity of confocal micro-Raman peaks at 888, 836,
and 485 cm−1 were performed with increasing waveguide width
in S1, S2, S3, and S4, making the obtained waveguides promising
candidates for the development of integrated self-Raman laser
sources.

CONCLUSION

We fabricated buried channel waveguides in Yb:YVO4 crystal
using the femtosecond laser writing with double-line technique.
The photographs of waveguides structures with the widths of 6,
12, 18, and 24 µm were captured using a metallographic
microscope with reflected polarized light. Model profiles at TE

TABLE 2 | Observed modes of YVO4 crystals and the corresponding experimental results.

Observed modes (cm−1)@633 nm Experimental
modes (cm−1)@473 nm[16]

Experimental
modes (cm−1)@514.5 nm[17]

Experimental
modes (cm−1)@514.5 nm[8]

Assigned Raman modes
[8,16, 17]

153 157 157 157 B1g

258 260 -[17] 260 E1g
375 374 379 379 A1g

485 489 489 490 B1g

813 816 817 816 B1g

836 838 840 839 E1g
888 891 892 891 A1g

FIGURE 3 | (A) Confocal micro-Raman spectra in Yb:YVO4 crystal and waveguide areas in S0, S1, S2, S3, and S4; (B) Intensity of the confocal micro-Raman peaks
in Yb:YVO4 crystal and waveguide areas in S0, S1, S2, S3, and S4.
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and TMpolarization were captured using the endface coupling setup
at the wavelength of 633 nm. The results imply that the width of two
lines fabricated using the laser writing influences the light guiding.
The confocal micro-Raman spectra of the bulk and waveguide areas
in the Yb:YVO4 crystal were studied at 633 nm. The enhanced
Raman intensity at 888, 836, and 485 cm−1 were performed with
increasing waveguide width in waveguide areas.
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