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Thermoelectrics convert heat to electricity and vice versa. They are of technological
importance in cooling and energy harvesting. Their performances are defined by figure
of merit, zT. Decades of studies have largely focused on the development of novel and
advancedmaterials reaching higher performance in devices. To date, the lack of sufficiently
high-performance thermoelectrics, especially among Earth-abundant and lightweight
materials, is one of the reasons why there is no broad commercial application of
thermoelectric devices yet. This challenge is due to the complex correlations of
parameters that make up the zT. Theoretical estimation can reveal the optimal charge
carrier concentration, which can provide a good idea of doping compositions. Depending
on the material characteristics, decoupling these intercorrelated parameters could be
viable. Broadly speaking, increasing carrier mobility, inducing a large fluctuation in density
of states (DOS) at the Fermi level, and lowering the lattice thermal conductivity lead to
better thermoelectric performance. In this mini review, we provide a broad picture of
electronic property optimization for thermoelectric materials. This work will be a useful
guide to quickly take readers to the forefront of thermoelectric research.
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INTRODUCTION

In this era of rapid technological developments, more can be done to combat the climate change due
to overconsumption of energy. As one of the potential alternative energy technologies,
thermoelectric (TE) materials, which convert waste heat to electricity, are gaining increasing
attention [1–8]. In general, a TE module is made of n- and p-type materials that are electrically
connected in a series circuit, while the heat gradients applied are parallel to the device.

TE generators have been used for decades in space and automotive applications, especially high-
temperature TEs [9–16], and recently in wearable electronic devices [17]. However, the efficiency of
TE generators needs to be improved for commercialization. To date, the highest module efficiency
achieved is ∼12% with Bi2Te3-based materials of at least zT ∼ 1.5 [18–22]. Figure 1A shows a
progressive overview of research based on thermoelectric performance since the year 1960, as well as
the main physical driving force behind the developments. In addition, low-dimensional TEs such as
thin films and 2Dmaterials are also popular [23]. Figure 1B illustrates the complexity of components
that influences the dimensionless figure of merit, zT. The parameters that can be experimentally
measured are highlighted as green in the figure, whereas experimentally measurable but only in single
crystals is highlighted in yellow. It is evident that measuring fundamental properties such as elastic
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constant, dielectric constant, and band gaps are important to
complement and accurately determine the other derived TE
parameters. In addition, it is crucial to note that the viability
for commercialization is dependent on thermoelectric
performance for a range of working temperatures as well as
processing methods. Hence, the application space is limited by
the materials’ mechanical and chemical properties.

The overall TE device performance depends on two factors:
materials performance and Carnot efficiency, which is
temperature dependent. Materials wise, thermoelectric
performance is typically expressed in terms of figure of merit
zT, which is defined as zT � S2σT/κ, with S, σ, and κ denoting the
Seebeck coefficient, electrical, and thermal conductivity,
respectively. The overall power conversion efficiency depends
on both zT and ΔT (temperature gradient) and can be expressed
as follows:

η � ΔT
Th

��������
1 + ZTave

√ − 1��������
1 + ZTave

√ + Tc/Th
(1)

The first term of the equation, ΔT/Th, represents the Carnot
efficiency, which is the theoretical maximum efficiency limit in
any energy conversion process. Mathematically, higher ΔT favors
higher conversion efficiency and vice versa. The second term of
the equation represents the relative efficiency of the TE, which is
proportional to zTave (average zT over a temperature range). In
addition, a more subtle interpretation from the above equation is

the importance to keep the cold side temperature (Tc) low
(i.e., through effective heat dissipation) in order to maximize
the efficiency.

To date, the majority of efforts in thermoelectric materials
research have been focused on maximizing the materials figure of
merit zT. However, although it sounds simple, zT is not a trivial
parameter to optimize or improve on. This is due to the complex
interdependencies between the parameters that make up zT as
summarized in Figure 1B. This is not considering the many
interrelated parameters making up the lattice thermal
conductivity, kL. It is evident that these interdependencies and
compromises exist even at the level of fundamental material
properties. It has been a grand challenge with decades of research
from the TE, physics, and chemistry communities to arrive at the
current understanding.

In general, the strategies around enhancing thermoelectric
performances can be categorized into two broad classes: Seebeck
coefficient enhancement andmobility enhancement. Both aspects
will be discussed in turn in the subsequent sections. More
importantly, the discussion around these parameters will focus
on the importance of taking grain boundaries resistance into
account, which is an important topic that has been gaining
prominence of late.

SEEBECK COEFFICIENT ENHANCEMENT

Based on postulates by Cutler and Mott [24], the value of S for
degenerate semiconductors or metals can be written by the
following formula [25]:

S � π2

3
kB
e
(kBT)[ 1

n(E)
dn(E)
dE

+ 1
μ(E)

dμ(E)
dE

] (2)

where S is the Seebeck coefficient, kB is Boltzmann’s constant, T is
the temperature in Kelvin, e is the electron mass, n is the charge
carrier concentration, and μ is the charge carrier mobility.
Enhanced S can be achieved through degenerate band
convergence for Fermi level shifts towards the valence band
maxima (VBM) or conduction band minima (CBM), or
through enhancement of the density of states (DOS). Based on
Eq. 2, S can be enhanced through the variation of both n(E) and
μ(E) at EF. The n and EF have a significant influence on the
energy-dependent electrical conductivity, σ. The n at energy E is
equivalent to the g(E). See Figure 2 also. Variation of µ and n can
be achieved by varying the effective mass of DOS (m′dos) together
with band engineering. In other words, the Seebeck coefficient
depends on the symmetry breaking of both the DOS at the Fermi
level and the energy-dependent mobility. In addition to these
effects, phonon drag has also been widely reported to contribute
to the Seebeck coefficient at low temperatures [26, 27]. It is
worthy to mention the significant breakthroughs by Dresselhaus
et al. in the field of TE to enhance zT with the modification of the
electronic properties of some materials when prepared in the
form of quantum-well superlattices or nanowires. This concept of
quantum confinement offers additional degrees of freedom for
enhancing the TE performance because of the strong dependence
between electronic DOS and dimensionality [28, 29].

FIGURE 1 | (A) Progressive overview of thermoelectric performance as a
function to the timeline in years and correlations of zT components. (B) Tree
diagram showing the complex web of interdependencies between electronic
transport parameters that make up zT.
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To date, strategies to enhance the Seebeck coefficients at room
temperature and above have been mainly via the first term of Eq. 2,
dn(E)/dE (i.e., the slope of DOS vs. energy). This can be achieved via
either band convergence or resonant doping. In addition, the second
term of Eq. 2, dμ(E)/dE, is closely associated with energy filtering,
which manifests in scattering exponent r. Lastly, size effects in low-
dimensional materials have been known to provide such symmetry
breaking in DOS, as well elucidated in a recent review [30].

Band Convergence
For effective transport, the DOS effective mass (mp

DOS) must be
asymmetric around the Fermi level. This means that symmetry
breaking is desired (sharp peak in DOS) to achieve a high Seebeck
coefficient.

The effective mass of the DOS, mp
DOS, is expressed as

mp
DOS � mp

BandN
2
3
V (3)

wheremband is the effective mass for the band andNV is the band
degeneracy.

There are many ways of achieving band convergence [31, 32].
In p-type PbTe, the L and Σ band convergence happens at high
temperatures due to the higher downward shift of L band
compared with Σ band [33]. Such convergence is due to
thermal expansion. On the other hand, with the addition of
group 2 elements such as Mg or transition metal, Mn can also
cause band convergence in PbTe due to the absence of s2 lone pair
in Mg/Mn, which replaces Pb [34, 35]. The absence of lone pairs

FIGURE 2 | (A) An illustration of the band structure consisting of examples of converging, non-converging, and nesting bands, and the Brillouin zone of face-
centered cubic (FCC) lattice. (B) An illustration of the Pisarenko plot based on single parabolic band (SPB) model calculations with a density of states (DOS) profile of 3D
bulk material relative to energy.
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in Mg/Mn weakens the quenching of lone pairs in PbTe, resulting
in lower L band energy [36]. In addition, band convergence in
PbTe and SnTe can be achieved by doping of Zn, Cd, Mg, Mn, or
Ca, all of which are without s2 lone pair [37–44]. A very useful
reference for designing band convergence and resonant doping in
binary chalcogenides can be found in Ref. [45]. To understand
more about the role of lone pairs in the electronic band structure,
Ref. [36] is a useful guide.

The face-centered cubic (FCC) lattice band structure consists
of Γ, L, and K points in the reciprocal space representing the
center, corners, and edges of the cubic lattice in real space,
respectively. The illustration in Figure 2 summarizes the
examples of nesting, converging, and non-converging bands.

FCC lattice has eight corners; thus, an electronic band on the L
symmetry line in the band structure corresponds to eight
energetically similar Fermi surfaces of the Brillouin zone as
shown on the right side of Figure 2. These are degenerate
bands, and the number or multiplicity of degenerate bands is
defined by Nv. Further represented in Eq. 3, the higher the Nv,
the larger the effective mass DOS. Hence, identifying the
symmetry points with high Nv is crucial for enhancing
Seebeck. The ideal band modulation doping is to have band
converging and band nesting within the effective band
degeneracy, Nv*, close to the valence band. See Figure 2.

In certain cases, band convergence can be achieved at
structural phase-transition, just like in the case of GeTe. At
low temperature, the s2 lone pair is stereochemically expressed
due to the light ligand field in GeTe compared with SnTe and
PbTe. The stereochemical expression of the s2 lone pair leads to
rhombohedral structure, with Σ band as the VBM. However, at
high temperatures, the cubic structure prevails, leading to L band
as the VBM. Therefore, at the phase transition temperature, both
L and Σ bands converge, leading to a high thermoelectric
performance in GeTe. Consequently, manipulating phase
transition temperature in GeTe becomes a versatile tool to
control its peak performance at a particular temperature [22,
46–78].

Resonant Doping
In addition to band convergence, resonant doping and energy
filtering are also popular in enhancing Seebeck. Resonant doping
differs from the usual doping states such that the energy states of
the resonant dopant lie within the valence band or conduction
band, yet away from the VBM or the CBM. Resonant dopants
normally have similar electronic configurations as the host atoms,
and they are usually selected from the neighboring main group
elements. Resonant doping is achieved when the dopant energy
level coincides with the host energy level to form two extended
states. These developed extended states have similar energy levels
again with host energy states and resonate to form more energy
states resulting in the increase in DOS. These new energy states
introduce distortion to the existing DOS within the material. See
Figure 2. When the dopant states lie near the band edge where the
Fermi level is, the resonant level becomes beneficial in enhancing
Seebeck. It is noteworthy that although fostering resonance levels
can enhance the Seebeck, it can adversely affect the carrier
mobility. Therefore, it is crucial to have a minimal doping

level to achieve a resonance state (unlike band convergence,
where the doping level can be much higher). Equation [4]
postulates that increased DOS results in enhanced Seebeck.
The Pisarenko plot in Figure 2 further illustrates this
relationship between the Seebeck and DOS. One of the
landmark papers on resonant doping was reported in 2008 by
Heremans et al. on Tl-doped PbTe [79].

S � 8π2kB2T

3eh2
mp

DOS( π

3n
)2/3

(4)

Energy Filtering
On the other hand, the idea behind energy filtering lies in
symmetry breaking of carrier energy. Due to the nature that
carriers of lower and higher energy than Fermi level contribute
oppositely to the total Seebeck coefficient, the presence of
potential barriers to selectively block out lower energy carriers
may be beneficial for the Seebeck coefficient while only sacrificing
a little bit of electrical conductivity. Mathematically, energy
filtering is described by dμ(E)/dE (see Eq. 2). A more rigorous
mathematical treatment and derivation of energy filtering can be
found in the literature [80]. Experimentally, such a large energy-
dependent mobility, which gives rise to enhanced Seebeck
coefficient, has been reported in the work by Xie et al. [81].

ENHANCING ELECTRICAL CONDUCTIVITY
VIA MOBILITY

Electrical conductivity written as σ defines the capacity of a
medium to transfer current in direct proportion to n and µ as
shown below:

σ � q(μnn + μpp) (5)

where σ is the electrical conductivity, q is the electronic charge, μn
and μp refer to mobilities of electrons and holes, and n/p is the
carrier concentration of each type.

From this equation, enhancing s requires that the values of n
and µ are maintained at high levels. Usually, enhancing the value
of n is achieved by the introduction of a dopant. In general, the
optimal carrier concentration, n, ranges between 1019 and 1021

cm3 with considerable µ. The reduction of µ results from the
enhanced scattering of ionized impurities. This calls for a
midpoint between the two parameters n and µ. In order to
achieve this midpoint, modulation doping is used for
discretizing charge carriers from ionized dopants in a bid to
reduce the scattering of ionized impurities to achieve high values
of µwhile enhancing the value of n in the thermoelectric material.

Owing to the variance in the value of Ef in the undoped and
uniformly doped, the carriers found within the modulation-
doped material overflow across the boundaries of the equitably
doped region to the undoped region. This results in carriers
eluding the scattering effect of ionized impurities, and therefore, µ
is enhanced. The most recent application of modulation doping
was in BiCuSeO where high values of PF and ZT were obtained,
5.4 μW·cm−1·K−2 and 0.99 at 873 K, respectively, compared with
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the lower values obtained from uniformly and highly doped
BiCuSeO. Moreover, this method is known to enhance the
carrier concentration, n, and reduce the carrier mobility, µ,
due to intervalley scattering in PbTe quantum well. That said,
as discussed in the previous section on band convergence,
degenerate band convergence leads to an increase in effective
mass, m*, which in this case outweighs the loss of carrier mobility.
Hence, the overall zT is enhanced [82].

Just like enhancing Seebeck coefficients, there are a few reliable
strategies to independently enhance carrier mobility without
sacrificing the Seebeck coefficient (i.e., without changing carrier
concentration or reduced Fermi level). These strategies can be
broadly categorized into tuning inertial effective mass, tuning the
deformation potential, tuning carrier scattering, and, in certain cases,
even tuning dielectric constant, elastic constant, or band gaps.

In addition to the popular acoustic and ionized impurities
scattering, grain boundary scattering, and alloy scattering are also
prevalent, especially in polycrystalline materials. Physically,
different scattering mechanisms mainly manifest in the
temperature and energy (carrier concentration) dependency of
carrier mobility. The temperature dependence of some common
scattering mechanisms such as acoustic phonon (AP), ionized
impurity (II), alloy (AL), and grain boundaries (GB) are as
follows:

μAP ∝T−3/2η−1/2 (6)

μII ∝T3/2η3/2 (7)

μAL ∝T−1/2η−1/2 (8)

μGB ∝T−1
2 exp(−CT−1) (9)

In fact, grain boundary scattering recently gained popularity
among TE communities, driven by rigorous work from Kuo et al.,
who propose that in a system with mixed acoustic phonon and
ionized impurities scattering, Matthiessen’s rule does not
adequately reconcile with the sharp transition in temperature
dependence between these two scattering mechanisms [83]. This
is later verified in NbFeSb system too [84]. The importance of
taking grain boundaries into account can also affect the

conclusion of other physical mechanisms, as illustrated in
Figure 3. Figure 3A shows the lower peak power factor in
polycrystalline materials where grain boundaries effects are
considered (dashed lines) as compared with single crystals
(solid line). Figure 3B shows the effect on weighted mobility
vs. temperature, showing acoustic phonon-dominated behavior
in single crystals (red curve) and gradually shifting to mixed
scattering with increasing grain boundaries (dark green curve).
Furthermore, overestimation of lattice thermal conductivity has
also been reported when grain boundaries were not taken into
account [85].

SUMMARY AND OUTLOOK

In summary, although the existing physical understanding of the
electronic properties of TEs is quite comprehensive, caution must
still be taken when trying to draw conclusions from analyzing
these properties. For instance, although it sounds trivial, the
consideration of grain boundaries electrical resistance may
lead to over/underestimation of lattice thermal conductivity
and wrong conclusions about the predominant scattering
mechanisms in a material. This is especially prevalent in
polycrystalline materials, where grain boundaries are present
in abundance.

Moving forward, this importance of grain boundaries can be a
useful guide towards materials performance optimization
especially in 3D-printed TEs, which has been gaining traction
recently. By designing printing parameters to optimize the grain
boundaries, there is much more performance that can be gained
from 3D-printed TEs for power harvesting and cooling
applications.
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