
QNet: A Scalable and Noise-Resilient
QuantumNeural Network Architecture
for Noisy Intermediate-Scale Quantum
Computers
Mahabubul Alam* and Swaroop Ghosh

Department of Electrical Engineering, School of Electrical Engineering and Computer Science, Pennsylvania State University,
University Park, PA, United States

Quantum machine learning (QML) is promising for potential speedups and improvements
in conventional machine learning (ML) tasks. Existing QML models that use deep
parametric quantum circuits (PQC) suffer from a large accumulation of gate errors and
decoherence. To circumvent this issue, we propose a new QML architecture called QNet.
QNet consists of several small quantum neural networks (QNN). Each of these smaller
QNN’s can be executed on small quantum computers that dominate the NISQ-era
machines. By carefully choosing the size of these QNN’s, QNet can exploit arbitrary
size quantum computers to solve supervised ML tasks of any scale. It also enables
heterogeneous technology integration in a single QML application. Through empirical
studies, we show the trainability and generalization of QNet and the impact of various
configurable variables on its performance. We compare QNet performance against
existing models and discuss potential issues and design considerations. In our study,
we show 43% better accuracy on average over the existing models on noisy quantum
hardware emulators. More importantly, QNet provides a blueprint to build noise-resilient
QML models with a collection of small quantum neural networks with near-term noisy
quantum devices.

Keywords: quantum machine learning, quantum neural network, parameterized quantum circuit, noisy
intermediate-scale quantum, quantum-classical hybrid algorithms

1 INTRODUCTION

Quantum computing (QC) is one of the major transformative technologies. The community is
seeking computational advantages with quantum computers (i.e., quantum supremacy) for practical
applications. Recently, Google has claimed quantum supremacy with a 53-qubit quantum processor
to complete a computational task (of no practical relevance though) in 200 s that may take 10K years
on the state-of-the-art supercomputers [1]. This experiment has been a significant milestone for
quantum computing.

Quantum machine learning (QML) is a promising application domain to archive quantum
advantage with noisy quantum computers in the near term. Numerous QML models built upon
parametric quantum circuits (PQC) are already present in the literature [2–6]. A PQC is a quantum
circuit with parameterized gates as shown in Figure 1 (w1, w2,. . .are the tunable parameters). The
parameters can be tuned to create the desired output state. Quantum Neural Network (QNN) is one
of the most promising QMLmodels that has gained significant attention in the past few years [3–5, 7,

Edited by:
Jingfu Zhang,

Technical University Dortmund,
Germany

Reviewed by:
Che-Ming Li,

National Cheng Kung University,
Taiwan
Qing Ai,

Beijing Normal University, China
Stefano Martina,

University of Florence, Italy

*Correspondence:
Mahabubul Alam
mxa890@psu.edu

Specialty section:
This article was submitted to

Quantum Engineering and
Technology,

a section of the journal
Frontiers in Physics

Received: 08 August 2021
Accepted: 05 November 2021
Published: 05 January 2022

Citation:
Alam M and Ghosh S (2022) QNet: A
Scalable and Noise-Resilient Quantum
Neural Network Architecture for Noisy

Intermediate-Scale
Quantum Computers.

Front. Phys. 9:755139.
doi: 10.3389/fphy.2021.755139

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551391

TECHNOLOGY AND CODE
published: 05 January 2022

doi: 10.3389/fphy.2021.755139

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.755139&domain=pdf&date_stamp=2022-01-05
https://www.frontiersin.org/articles/10.3389/fphy.2021.755139/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.755139/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.755139/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.755139/full
http://creativecommons.org/licenses/by/4.0/
mailto:mxa890@psu.edu
https://doi.org/10.3389/fphy.2021.755139
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.755139

8]. A conventional QNN consists of a data encoding circuit and a
PQC followed by measurement operations (Figure 1). The data
encoder encodes the classical data as a quantum state. The
quantum state is transformed by changing the parameters of
the PQC. The output state is retrieved through the measurements.
QNNmodels are claimed to be more expressive than the classical
neural networks [8–10]. In other words, QNN models have a
higher capability to approximate the desired functionality (e.g.,
classifying data samples) compared to the classical models of a
similar scale (e.g., with the same number of tunable parameters/
weights). Numerous choices exist for the encoding circuits, PQC,
and measurements to build a QNN [9, 11–13]. Recent works have
demonstrated application of QNN in image classification [14, 15],
drug discovery [16, 17], finance [18, 19], and many other
industrial problems [20].

The near-term quantum devices have a limited number of
qubits. Moreover, they suffer from various errors such as,
decoherence, gate errors, measurement errors and crosstalk.
John Preskill famously coined the term Noisy Intermediate-

Scale Quantum or NISQ computers to refer to these machines
[21]. The size of the quantum circuit (in terms of qubit count, gate
count, and depth) that can be executed reliably on a quantum
computer is limited by the hardware noise characteristics [22].
Therefore, the QNNmodels need to be small to exploit near-term
devices for QML applications. However, the size of the
conventional QNN model grows with the scale of the ML task.
For example, we may require a 4-qubit QNN model to solve a 4-
features ML task with 1 variable per qubit angle encoding
(Figure 2B). A 1000-features problem will require a 1000-
qubit circuit that may not fit in any near-term quantum
devices. Even if the larger model fits in target hardware, it
may not execute reliably due to a higher accumulation of gate
errors and decoherence. Therefore, development of QNNmodels
that use smaller quantum circuits is required.

Two variants of the conventional QNN model are widely used
to address the above scalability issue: 1) reduction of data
dimension using a classical algorithm (e.g., PCA) before
training a QML [17,23,24], and 2) repeatedly uploading the

FIGURE 1 | Conventional quantum neural network (QNN) and the proposed architecture (QNet). Each conventional QNN consists of a classical-to-quantum data
encoding circuit followed by a parametric quantum circuit and measurement operations. QNet consists of several conventional QNN’s placed in different QNN layers.
Each QNN layer is followed by classical non-linear activation and random shuffling of the output vector.

FIGURE 2 | (A)Bloch sphere representation of a qubit. At any given point, a qubit can be rotated along the X, Y, or Z axis. The states repeat in 2π intervals, (B) angle
encoding 1:1 (i.e., one continuous variable encoded in a single qubit state), (C) angle encoding 2:1 (i.e., two continuous variables encoded in a single qubit state), and (D)
parametric layer used in this work (following [7, 8, 11]).

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551392

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

high-dimensional data in a small number of qubits using
sequential rotation operations [25–27]. Technically, both these
approaches can exploit arbitrarily small quantum hardware to
solve ML tasks of any scale (a single qubit can be used to build a
classification model involving 1,000 features). However, they
have significant limitations that restrict their use in practical
problems. For example, the performance of approach 1) will
largely depend on the number of principal components (PC)
taken from the PCA. A lower number of PC may not explain the
variance in the data efficiently. This can affect the overall
performance of this hybrid model. If we choose a large
number of PCs, the succeeding QNN model may not be that
small. It may not even fit in the target hardware. Uploading many
features on a small number of qubits using approach 2) will easily
cross the coherence limit of the quantum devices if the number of
features is large. Therefore, the model will essentially generate
random outputs on hardware and may not be trainable.

To address the above challenges, we propose QNet - a scalable
quantum neural network architecture for small noisy quantum
computers (Figure 1). We draw inspiration from classical
multilayer perceptron network (MLP) [28]. QNet consists of
several smaller QNN’s that are distributed in multiple QNN
Layers (similar to the hidden layers in MLP). The number of
qubits in a QNN and the circuit depth can be chosen based on the
target hardware characteristics. Each QNN takes a fraction of the
input vector as inputs and generates a transformed output. All the
QNN’s in a QNN Layer together generates a new representation
of the input vector. A QNN Layer is followed by classical non-
linear activation functions to add more non-linearity to the
system. A random shuffling layer is used to mix the outputs
from different QNN’s before feeding them as inputs to the next
layer. Note that, the random shuffling indexes are generated
during model instantiation. These indexes remain the same
throughout the training and inference steps. Every QNN can
have a very small number of qubits, gates, and circuit depth.
Therefore, they can show robustness against various types of
quantum noises. Consequently, the overall QNet network can
show greater resilience to noise compared to the conventional
models. A large number of QNN’s can be used to solve large-scale
ML problems which indicate the scalability aspect of QNet.

We make the following contributions in this paper: 1) present
a scalable quantum neural network architecture (QNet) for noisy
small quantum devices, 2) analyze the performance of QNet
against a variety of design choices through numerical
experiments, 3) compare the performance of QNet against
conventional QNN, and two existing proposals to exploit
small quantum computers for larger ML problems, and 4)
discuss potential issues and future developments of QNet. We
perform the numerical experiments using ideal simulators and
hardware emulators (ibmq_melbourne, ibmq_bogota,
ibmq_casablanca). An extensive set of classification datasets
e.g., Iris, Wine, Breast Cancer, Digits, MNIST, and Fashion-
MNIST is used to showcase the superior performance of QNet
over the existing proposals.

We cover the basics on quantum computing and quantum
neural networks in Section 2, discuss related works in Section 3,
present our QNet architecture in Section 4, describe the results in

Section 5, discuss potential issues, applications, and future
development of QNet in Section 6, and draw our conclusions
in Section 7.

2 PRELIMINARIES

Qubits, Quantum Gates, and Measurements: Qubit is
analogous to classical bits. However, unlike a classical bit, a
qubit can be in a superposition state i.e., a combination of |0〉
and |1〉 at the same time. A variety of technologies exist to realize
qubits such as, superconducting qubits, trapped-ions, neutral
atoms, silicon spin qubits, to name a few [29]. Quantum gates
(e.g., single qubit Pauli-X gate or 2-qubit CNOT gate) modulate
the state of qubits and thus perform computations. These gates
can perform a fixed computation (e.g., an X gate flips a qubit
state) or a computation based on a supplied parameter (e.g. the
RY(θ) gate rotates the qubit along the Y-axis by θ). A two-qubit
gate changes the state of one qubit (target qubit) based on the
current state of the other qubit (control qubit). For example, the
CNOT gate flips the target qubit if the control qubit is in |1〉 state.
A quantum circuit contains many gate operations.

Qubits are measured to retrieve the final state of a quantum
program. A complete state extraction requires the simultaneous
computation of the position of a qubit along the X, Y, and Z-axis
in the Bloch sphere. Unfortunately, it is impossible to
simultaneously compute these components, thus requiring
many executions of the same circuit. In addition,
measurements are generally restricted to a computational basis
(Z-basis in IBM quantum computers). Therefore, each qubit
needs to be rotated to the standard Z-basis before
measurement to access the X and Y components. Note that
the majority of the existing quantum algorithms only require
measurements in the computational Z-basis.

Expectation Value of an Operator: Expectation value is the
average of the eigenvalues, weighted by the probabilities that the
state is measured to be in the corresponding eigenstate.
Mathematically, expectation value of an operator (σ) is defined
as 〈ψ|σ|ψ〉 where |ψ〉 is the qubit state vector. For example, the
expectation value of the Pauli-Z operator (σz) is 〈ψ|σz|ψ〉. If a
qubit yields more |0〉 (|1〉) than |1〉 (|0〉), its Pauli-Z expectation
value will be positive (negative). This value will vary in the range
[−1, 1]. In practice, the expectation value can be approximated
from a finite number of repeated qubit measurements: Pauli-Z
expectation value of a qubit ≈ 2*(Number of measured 0’s/Total
number of measurements)–1.

Noise in Quantum Computation: Errors in quantum
computing can be broadly classified into three categories: 1)
Coherence errors: a qubit can retain its state for a short period
(coherence time). The computation needs to be completed well
within this limit. The coherence time restricts the depth of
quantum circuits that can be executed reliably on any target
hardware. 2) Gate errors: quantum gates are realized using
microwave/laser pulses. It is impossible to generate and apply
precise pulses in actual hardware. Hence, gate operations in
quantum computers are erroneous. An intended rotation of θ
along X-axis may end up being θ + δ or θ − δ when executed on

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551393

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

the hardware. 3) Measurement errors: a |0〉 state qubit can be
measured as |1〉 (or vice versa) due to imprecise measurement
apparatus. In practice, the output state (e.g., Pauli-Z expectation
value of a qubit) of a quantum circuit is approximated from a
finite number of repeated circuit executions and measurements.
The state approximation can be erroneous due to finite sampling.
This error is often referred to as shot noise or finite sampling
error in the literature [30].

Quantum Volume (QV): QV is a metric to measure the
computational power of physical quantum computers [22]. IBM
measures QV using the following formula: log 2QV � arg maxn≤N
{min[n, d(n)]} where N is the total number of qubits in the
hardware. Here, “n” and “d(n)” are the maximum width and
depth of the circuit that can be executed reliably on the hardware,
respectively. The output distributions of a set of random circuits
are used to calculate these values [22]. In simple words, a QV of
32 signifies that we can run circuits with 5-qubits and a depth of 5
reliably on the hardware. If we go beyond this limit, the reliability
will be severely compromised. Figure 3 shows the QV metric of
the current generation of quantum systems in the IBMQ suite (7/
28/2021).

Challenges in Scaling Quantum Computing Systems: The
current generation of quantum computers operates in near-zero
temperatures to minimize thermal noise. They are stored in
dilution refrigerators while the control circuit operates at
room temperature [31]. The Quantum Control Interface (QCI)
between the qubits and the control circuitry is a major bottleneck
in scaling quantum computers [31, 32]. The cables connecting the
control chip with the qubits dissipate heat in the quantum chip
adding thermal noise in computation. Large quantum systems are
noisier due to larger QCI. Therefore, they may not provide a
higher computational power compared to a small system. For
instance, the 7-qubit ibmq_casablanca, ibmq_lagos,
ibmq_nairobi systems have a quantum volume of 32 same as
the 65-qubit ibmq_brooklyn or ibmq_manhattan systems.
Significant research is underway to move control circuitry near
the qubits using cryogenic control chips [33]. However, the most
optimistic projection places their development at least a decade
away [32]. Therefore, small quantum computers (≈10 qubits)
may dominate in the near term.

Quantum Neural Network: QNN involves parameter
optimization of a PQC to obtain a desired input-output
relationship. QNN generally consists of three segments: 1) a

classical to quantum data encoding (also referred to as
embedding in the literature) circuit, 2) a parameterized circuit,
and 3) measurement operations. A variety of encoding methods
are available in the literature [12]. For continuous variables, the
most widely used encoding scheme is angle encoding [7, 8, 12, 34]
where a continuous variable input classical feature is encoded as a
rotation of a qubit along the desired axis (X/Y/Z). For “n” classical
features, we require “n” qubits. For example, RZ(f1) on a qubit in
superposition (the Hadamard–H gate is used to put the qubit in
superposition) is used to encode a classical feature “f1” in
Figure 2B [8]. We can also encode multiple continuous
variables in a single qubit using sequential rotations. For
example, “f1” and “f2” are encoded using subsequent RZ(f1)
and RX(f2) rotations on a single qubit in Figure 2C. As the states
produced by a qubit rotation along any axis will repeat in 2π
intervals (Figure 2A), features are generally scaled within 0 to 2π
in a data pre-processing step. One can restrict the values between
−π to π to accommodate features with both negative and positive
values. Discrete/categorical variables can be encoded using
rotations in discrete steps [35].

The parametric circuit has two components: entangling
operations and parameterized single-qubit rotations. The
entanglement operations are a set of multi-qubit operations
between the qubits to generate correlated states [34]. The
following parametric single-qubit operations search through
the solution space. This combination of entangling and
rotation operations is referred to as a parametric layer in the
literature. Note that finding the optimal PQC architecture is an
unresolved research problem. Descriptors such as, expressive
power, entanglement capability, and effective dimension are
proposed to measure the potency of various PQC choices [8, 9,
11]. Recent work indicates that these descriptors may have a
significant correlation with the trainability of the quantum
circuits [36]. In practical applications, such descriptors may
be useful to choose better PQC architecture for the intended
QML application. A widely used parametric layer architecture is
shown in Figure 2D [8, 11]. Here, CNOT gates between
neighboring qubits create the entanglement, and rotations
along Y-axis using RY(θ) operations define the search space.
Normally, these layers are repeated multiple times to extend the
search space [7, 8]. We refer to this QNN model with a single
PQC as our “Baseline.”

QNN Cost Functions: Qubits in a QNN circuit are measured
in the computational basis to retrieve the output state. A cost
function is derived from the measurements to train the network
[6–8]. For example, in a binary classification problem, the authors
measured all the qubits in the QNN model in Pauli-Z basis and
associated class 0 with the probability of obtaining even parity,
and class 1 with odd parity [8]. Then, the model is trained using
binary cross-entropy loss (BCELoss).

BCELoss � − 1
N

∑
N

i�1
yi log(pi) + (1 − yi)log(1 − pi) (1)

Here, “N” is the number of samples in a batch, yi is the original
class label of the ith sample (0 or 1), pi is the predicted probability
of class 1.

FIGURE 3 | Quantum volume (QV) of quantum computing systems
available in the IBMQ suite (7/28/2021).

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551394

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

In [37], the authors used the Pauli-Z expectation value of a
single qubit (−1 associated with class 1 and +1 associated with
class 0) for a binary classifier and trained it using mean-squared
error loss (MSELoss).

MSELoss � 1
N

∑
N

i�1
(yi − E(Qi))2 (2)

Here, “N” is the number of samples in a batch, yi is the original
class label of the ith sample (−1 or 1), E(Qi) is the Pauli-Z
expectation value of the qubit.

Note that multiple one-vs-all classifiers are often used for
multi-class classification problems, i.e., classification ofmore than
two classes [7]. Huang et al. [24] fed the expectation values from
the QNN to a classical neural network and trained it using binary
cross-entropy loss function for binary classifications (Projected
Quantum Kernel or PQK).

3 RELATED WORKS

Baseline QNN: The “Baseline” QNN is widely used in the
literature where a single parametric quantum circuit is used as
the QML model [7, 8, 12, 34]. Although they are quite useful to
demonstrate various properties of QNN’s with toy datasets, they
are not quite as useful for practical applications. The qubit
requirements and the circuit depth/gate-count grows with the
size (number of features) of the input dataset. The exact nature of
this growth depends on the chosen encoding method and PQC
architecture. For example, in angle encoding, qubit requirement
and gate-count grow linearly while the depth remains constant
for the encoding circuit [7, 8, 34]. In amplitude encoding, the
qubit requirement grows logarithmically while the gate count/
depth grows in O(2n) [38]. The gates in the entanglement layer in
Figure 2D grows linearly with the number of qubits. In summary,
either the qubit-count or the gate count/depth or both become
high for large datasets. Due to the limited quantum volume of the
NISQ-era quantum devices, the “Baseline” approach is infeasible
for practical applications.

PCA + Baseline: A popular quantum-classical hybrid QNN
model targetted for smaller quantum devices uses classical
algorithm (e.g., PCA) to reduce data dimension to a level that
is tractable for the “Baseline” model [15, 17, 23, 24] (Figure 4A).
We refer to this model as “PCA + Baseline.” This hybrid model

has some obvious issues. For instance, the chosen number of
principal components in PCA will explain a fraction of the
variance of the original dataset. Therefore, the hybrid model
performance will depend on the number of chosen principal
components. Increasing the number of components may improve
the overall model performance. However, the quantum circuit
may or may not fit in the small hardware if the number of
components is high. Even if the circuit fits in the target
hardware, it may not execute reliably if the gate count or
depth is large.

Data Re-Uploading Classifier: Data Re-Uploading Classifier
(DRC) is proposed by Pérez-Salinas et al. [25] for small quantum
computers. In DRC, classical data are sequentially uploaded in
qubits with rotation angles. Each set of data uploads is followed by
a PQC. This combination of data uploading and PQC is repeated
many times. Note that one can implement a classifier with a single
qubit for an arbitrary number of feature variables using DRC. For
example, 4 features of a dataset (f1, f2, f3, f4) can be uploaded in a
single qubit with alternating RZ and RY rotations
[RZ(f1)–RY(f2)–RZ(f3)–RY(f4)] (Figure 4B). Adding a
suitable PQC to this single qubit [e.g., trainable RX(θ)], and
repeating this combinationmany times, one can use a single qubit
to build a QNN classification model for the dataset with 4-
features. However, the DRC model has obvious scalability
issues. For instance, the number of gates in DRC increases
linearly with the size of the dataset. For a 1000 feature dataset,
a single data upload requires 1000 sequential single-qubit
operations. In the current generation of IBM quantum
computers, the coherence time is in the order of microseconds
while gate operation time is in the order of nanoseconds [39]. The
DRC classifier for the 1000 feature dataset can cross the
coherence limit in a single data uploading step.

4 PROPOSED QNET ARCHITECTURE

In this section, we present the architectural details of QNet which
consists of several QNN Layers (Figure 1). Each QNN Layers
contains multiple conventional QNN’s. A QNN processes/
transforms a fraction of the input vector. A QNN Layer is
followed by classical non-linear activation functions and
random shuffling of the output vector. The final QNN Layer
output is fed to a fully connected classical dense layer. The details
of the architecture are discussed below.

FIGURE 4 | Existing QNN models for small quantum computers. In (A), the high dimensional data is transformed to a lower dimension using a classical algorithm
(e.g., PCA, LDA, etc.). The lower-dimensional data is used as inputs to the Baseline QNN model [17, 23, 24]. In (B), classical features are loaded repeatedly in a single-
qubit using a series of rotation operations [25–27].

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551395

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

Conventional QNN: The conventional QNNmodel lies at the
heart of QNet. It consists of several conventional QNN models
distributed in multiple QNN Layers. Unlike “Baseline” which
encodes the whole input vector as a quantum state, each QNN in
QNet encodes a fraction of the input vector in a quantum state
and performs data transformation in the Hilbert space with a
PQC. The width of the QNN (number of qubits) can be chosen
based on the size of the target hardware. Each QNN in QNet can
use any conventional data encoding technique, PQC architecture,
and measurement operations. However, in this work, we use
angle encoding (1 continuous variable per qubit as in Figure 2B)
as our preferred encoding method and the entanglement layer
shown in Figure 2D as our preferred PQC architecture following
the recent trends in QML research [8, 11, 24]. We use Pauli-Z
expectation values of the qubits as the output features from the
QNN [6, 7]. In this chosen configuration, each QNN takes “k”
continuous variables as inputs and generates “k” output features
as qubit expectation values in the range of [−1, 1]. A toy example
is shown in Figure 1. The toy dataset has 4 features. The
“Baseline” processes all 4 features using a single quantum
circuit. On the other hand, each QNN in QNet processes a
fraction of the features (2).

QNN Layers: QNN’s are distributed in multiple QNN Layers
(Figure 1). The number of parallel QNNs in a Layer is chosen
based on the size of the input vector, and the width of individual
QNN’s. For example, in a 30-feature tabular dataset, each QNN
Layer can have five 6-qubit QNN’s or ten 3-qubit QNN’s.
Increasing the number of QNN Layers raises the total number
of QNN in the network. If each QNN has a similar number of
trainable parameters, the total number of trainable parameters in
the network grows linearly with increasing QNN Layers. It is
quite similar to increasing hidden layers in a multi-layer
perceptron network [28]. Note that the width of individual
QNN’s in a QNN Layer can differ. Moreover, the number of
QNN’s in different QNN Layers can be varied as well. For
simplicity, we have kept these values constant across the layers
in this work. In the remaining paper, we refer to the number of
Qubits/QNN as QQ, the number of Parametric Layers/PQC as PL,
and the number of QNN Layers in QNet as QL.

Non-linearity: Classical deep neural networks consists of
many neurons that perform linear transformations on the
input data. However, linear transformation alone is not
sufficient to generate complex non-linear decision boundaries
encountered in practical ML classification/regression problems.
Therefore, non-linear activation functions (e.g., sigmoid, relu,
tanh, etc.) are used to provide non-linearity in classical neural
networks [28]. In the quantum domain, every gate operation is a
linear transformation of the quantum state [29]. During
measurements of the qubits in the computational Z-basis, we
lose the phase information associated with the quantum state (X
and Y components). It provides the required non-linearity in
QNN models [40]. In our QNet architecture, we have added an
optional classical non-linear activation layer at the end of every
QNN Layer to increase non-linearity (Figure 1).

Random Shuffling: In classical neural networks, each fully
connected neuron processes the entire input vector generated by
the previous layer. However, in QNet, each QNN processes a

fraction of the input vector. Therefore, the correlation between
features at different fractions is not utilized. To circumvent this
issue, we have added a shuffling layer at the end of every QNN
Layer that randomly shuffles the input vector generated by the
previous layer. Consequently, the QNN’s in subsequent QNN
Layers processes a different fraction of the input (/transformed)
vector. Note that the random shuffling order is generated when
the QNet is instantiated. In the later training and inference steps,
the order remains constant.

Output Layer and Cost Function: To date, the best QNN
performance (accuracy/loss) has been reported by Huang et al.
[24] using a hybrid quantum-classical architecture called
Projected Quantum Kernel or PKQ. In PKQ, a “Baseline”
QNN transforms the input data to a new feature space using a
PQC. These new features are extracted through measurements of
the quantum state in all three bases (X, Y, and Z). Next, these
features are fed to an MLP. The classical network can be trained
using any conventional loss function (e.g., cross-entropy loss).

Drawing inspiration from this work, we use a classical dense
layer at the end of QNet. The final QNN Layer output is taken as
the input to this classical layer. For classification problems, the
number of neurons in this dense layer is equal to the number of
classes in the input dataset. Unlike PKQ, which performs the
quantum kernel transformation and training of the classical
network separately, we train the whole network
simultaneously. Moreover, PKQ uses a single large quantum
circuit while QNet uses a collection of several small quantum
circuits. We apply LogSoftmax activation at the output of the
dense layer and use negative log-likelihood loss (NLLLoss) as our
preferred loss function [41]. The LogSoftmax activation function
transforms the output of the dense layer to class probabilities.
This combination of LogSoftmax activation and NLLLoss is also
known as Cross-Entropy Loss (CELoss) in the literature.

CELoss � − 1
N

∑
N

i�1
∑
k

j�1
yij log(pij) (3)

Here, “N” is the number of samples in a batch, “k” is the
number of classes in the problem, yij is the truth label of the ith
sample and jth class, and pij is the corresponding predicted
probability. Note that one can choose any suitable loss
function to train QNet (e.g., MSELoss).

Trainable Parameters: The number of trainable circuit
parameters in QNet depends on chosen PL and QL. Since we
have used identical QNN across the layers with single feature/
qubit angle encoding, the total number of trainable circuit
parameters is “f*PL*QL” where “f” is the number of features
in the input dataset. Additionally, the network has “f*C” classical
weights between the final QNN Layer and the output Dense layer
where “C” is the number of classes in the dataset. Note that one
can also add bias parameters/weights to the outputs of the QNN
Layers and the classical dense layer.

Training and Inference: The QNet network can be trained
using any gradient-based optimization algorithm such as, Adam
or Adagrad [42, 43]. To apply backpropagation on QNet, QNN
outputs have to be differentiable with respect to the inputs and the
circuit parameters. Multiple methods exist to compute gradients

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551396

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

in QNN [44–46]. However, not all of them are suitable for
hardware. For instance, the adjoint method proposed by Luo
et al. [44] requires the circuit intermediate state information to
compute gradients which is not accessible when we execute the
circuit on hardware. The parameter-shift rule is widely used to
compute quantum gradients [45, 46]. It is quite similar to the age-
old finite difference method which uses two evaluations of the
target function at proximity to compute the gradients. However,
in the parameter-shift rule, the two data points can be far from
each other. It shows greater resilience to shot noise and
measurement errors compared to finite difference [46]. It is
also suitable for hardware. The PennyLane framework
supports all these quantum gradient computation methods
[47]. In this work, we use the Pytorch and the PennyLane
frameworks to build and train QNet [41, 47].

Note that all the QNN’s in a QNN layer can go through the
forward pass during training/inference at the same time as they
do not have any dependency. Therefore, multiple hardware/
simulators can be used to execute/simulate these QNN’s for
faster computation both during training and inference. We
can also use gradient-free optimizers such as, Nelder-Mead to
train QNet [48]. However, they may perform poorly when the
network has lots of parameters.

5 EVALUATION

In this section, we present a numerical analysis of QNet
performance with varying QQ, QL, and PL. We compare
QNet with “Baseline” both in noiseless simulations and
hardware emulations. We also compare QNet with PCA +
Baseline and DRC. Note that this is not an exhaustive study.
For instance, encoding methods, parametric layer architecture,
measurements in the QNN’s are also major design choices. The
field is continuously evolving, and there is a wide variety of
choices for each of them. We stick to the same design choices
throughout the study to prevent deviating from our key goals.
Future research can focus on a comprehensive analysis that takes
into account all of the variables.

5.1 Setup for Numerical Studies
Datasets: We use 6 classification datasets that are often used to
evaluate the performance of QMLmodels in contemporary works [3,
8, 23, 24]–Iris (150 samples, 4 features, 3 classes),Wine (178 samples,
13 features, 3 classes), Breast Cancer (569 samples, 30 features, 2
classes), Digits (1797 samples, 64 features, 10 classes), MNIST (70000
samples, 784 features, 10 classes) and Fashion-MNIST (70000
samples, 784 features, 10 classes). To limit simulation time, we
pick 1200 samples from the MNIST and the Fashion-MNIST
datasets. For MNIST, we pick 400 samples/digits of digits 3, 5,
and 8 [49]. For Fashion-MNIST, we use samples of T-shirt/top,
Trouser, and Pullover [50] classes. We also downsampled both
MNIST and Fashion-MNIST datasets from 28 × 28 to 14 × 14
using 2d max-pooling [41]. The Iris, Wine, Breast Cancer, and Digits
datasets are downloaded through the scikit-learn Python package
[51]. We divide each dataset into two equal sets and use them for
training and validation, respectively.

Metrics:We use the average loss and accuracy as our preferred
metrics to measure the performance of the QML models [28].
Note that the average loss value is calculated by performing a
forward pass through the networks with each of the data samples,
measuring the corresponding loss value, and then averaging all
the losses. Accuracy is the fraction of the samples that are
classified correctly. The training loss and accuracy indicate the
trainability of the models. The validation loss and accuracy
indicate the generalization capability of the models on
unseen data.

Simulation Framework: We have developed a Python
framework using Pytorch, PennyLane, and Qiskit packages to
build and train all the QMLmodels used in this work [39, 41, 47].
We use the Adagrad optimizer with a learning rate of 0.5 [41, 43].
We use the default state vector simulator available in the
PennyLane framework to simulate the quantum circuits in
noiseless training [47]. Currently, we have limited access to
actual quantum computers through cloud-based quantum
computing services. It is not possible to present a statistically
significant amount of data from the hardware since training and
inference of QML models need frequent calls to quantum
computers. Therefore, we resort to hardware emulators
(simulated hardware with noise). IBM calibrates the hardware
available in their cloud service twice a day. After each calibration,
they provide the hardware characterization data through IBM
Quantum [52]. Qiskit provides hardware emulation models (e.g.,
FakeMelbourne, FakeBogota, FakeCasablanca, etc.) that can
replicate the output from the target hardware available in IBM
Quantum [39]. These emulators use the noise models derived
from the calibration data. We use these hardware emulators to
compare the performance of various QML models under noise.
The adjoint method is used for gradient computation in noiseless
simulations because it is faster than parameter-shift. We use the
parameter-shift rule in training QNet with hardware emulators as
it is robust against shot noise and measurement errors. The QNN
outputs are calculated (Pauli-Z expectation values of the qubits)
from a finite number of samples of the circuit output. The
number of samples is kept to 128 throughout our experiments.
In the noiseless simulation, we calculate QNN outputs
analytically. The simulations are done in a Windows machine
with an Intel Core i7-10750H processor and 16 GB RAM. The
datasets and Python framework are available through the
following GitHub repository.1

Noise Simulation: We measure the impact of gate errors,
decoherence, and measurement errors on QML models using
Qiskit hardware emulators–FakeBogota, FakeMelbourne, and
FakeCasablanca [39, 53, 54]. Several contemporary research
works have also used these emulators [55–58]. Errors in
single-qubit gate execution are simulated by applying a single
qubit depolarizing error (gate error) followed by a single qubit
thermal relaxation error (decoherence). Similarly, errors in two-
qubit gate execution are simulated by applying a two-qubit
depolarizing error (gate error) followed by single-qubit
thermal relaxation errors on both qubits in the gate

1https://github.com/mahabubul-alam/QNet

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551397

Alam and Ghosh QNet

https://github.com/mahabubul-alam/QNet
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

(decoherence). Each measured bit is flipped with a bit-flip
probability to simulate the impact of measurement errors. The
error parameter of the thermal relaxation errors is derived from
T1 (longitudinal coherence time) and T2 (phase coherence time)
parameters, and the gate execution time parameters [59]. Several
characterization techniques are used in the IBM quantum
systems to measure coherence time parameters (T1 and T2)
such as Inversion Recovery, Ramsey Experiments, and Hahn
Echoes. Gate errors are characterized using the Randomized
Benchmarking protocol. Qubits are repeatedly prepared and
measured in |0〉 and |1〉 states to calculate the corresponding
bit-flip probabilities during measurements. IBM provides access
to the hardware calibration data through its Qiskit framework
[53]. During simulation, the hardware emulators load these noise
models, decompose/compile the circuit with the basis/native
gates of the hardware, and generate outputs under the
aforementioned noises. Note that noise modeling is not the
contribution of our work. One can use a different/more
accurate noise model for comparative analysis of the QML
models [60, 61, 62]. However, we believe that the conclusion
will remain similar. The Supplementary Materials provide a
more detailed overview of the noise models and attributes.

Note that these hardware emulators do not support simulation
of crosstalk noise that stems from parallel/concurrent execution
of gate operations on the same hardware. The smaller QNN’s in
QNet run on different hardware or on the same hardware at
different points in time. Therefore, there are fewer concurrent
gate operations in one particular hardware compared to the
Baseline. As a result, QNet may accumulate less crosstalk
noise compared to the Baseline. On top of that, we use noise
simulations for comparative studies between the models/
architectures. Therefore, we believe that the exclusion of
crosstalk noise simulation does not affect our conclusions.

Recent studies show a high degree of similarity between the
distributions generated by hardware simulators and the original
hardware [55–58]. The difference can be as little as ≈ 7% in terms
of total variation distance [37]. The minor difference can be
attributed to noises that are not simulated (e.g., crosstalk).
Therefore, we believe the comparative analysis will yield
similar conclusions if the experiments are done on actual
hardware.

5.2 Results
5.2.1 QNet Design-Space Exploration
We sweep three major configurable attributes of QNet (PL, QL,
and QQ) and train the networks for various classification tasks to
gauge the impact of these attributes on training and validation.
The training curves (over 100 epochs, averaged over 10 separate
training runs) of Iris and Wine classifiers are shown in Figures
5A,D, respectively (QQ � 2, PL � 2, QL � 2). The training loss
consistently goes down over training epochs, and the training
accuracy improves for both these datasets. However, the
validation loss decreases initially, and after a few epochs of
training, it either goes up (Figure 5A) or remains at similar
level (Figure 5D). This behavior resembles the classic overfitting
issue of neural networks [28]. When a network is trained over a
large number of epochs, the model tends to overfit. Consequently,

it exhibits poor performance on unseen data. To avoid overfitting
QNet, we can use the existing techniques such as early
stopping [63].

We vary PL from 1 to 4 (for QQ � 2, QL � 2) and train the
corresponding QNet networks for Iris and Wine classification. The
corresponding results are shown in Figures 5B,E, respectively. Note
that increasing PL from 1 to 2 doubles the number of trainable
circuit parameters in the network. In both cases, the training loss
goes down and the training accuracy improves with increasing PL.
However, the validation loss or accuracy improve initially, then they
start to saturate (Figure 5B) or degrade (Figure 5E). We observe
similar behavior when we vary QL from 1 to 4 (Figures 5C,F).
Increasing QL from 1 to 2 doubles the number of trainable circuit
parameters in the QNet network used in this work. This behavior
also resembles the classic overfitting issue in neural networks due to
over-parameterization [28]. In practical applications, the size of the
network should be chosen judiciously to avoid this issue. It may be
worthwhile to explore techniques that exist in the classical domain to
avoid overfitting in over-parameterized neural networks and apply
them to QNet [64].

QNet performance metrics for the Wine, Breast Cancer and
the Digits datasets with varying QQ’s and network sizes (PL � 2,
QL � 2 Vs PL � 3, QL � 3) are shown in Table 1. Surprisingly, at
lower QQ values, QNet performs better across all these datasets.
The performance on the training set improves with increased
network size. However, the validation performance deteriorates
as expected due to overfitting. The performance on the truncated
MNIST and Fashion-MNIST datasets are shown in Table 2. The
performance metrics on both these datasets indicate the
trainability and generalization capability of QNet on real-
world datasets. Note that prior works on applying QML
models on datasets such as MNIST or Fashion-MNIST
reduced the input dimensions to an extremely low level (e.g.,
30 in [24]). However, such reduction is not necessary for QNet.
Nevertheless, we downsample the data from 28 × 28 (784) to 14 ×
14 (196) to avoid large simulation time.

5.2.2 QNet Vs. Baseline
We train the Iris andWine classifiers using QNet and Baseline with a
varying number of trainable circuit parameters (noiseless simulation).
The results are shown in Figures 6A,B. Note that both these
approaches provide similar performance in noiseless simulations.
Baseline performs slightly better thanQNet for the smaller Iris dataset
(Figure 6A). QNet performs slightly better than Baseline for the
bigger Wine dataset. Note that the Baseline models for Iris andWine
datasets require 4 and 13 qubits, respectively. We used QQ � 2, PL �
2, and QL � 2 in the QNet models. We can not train the Baseline
models for other datasets (e.g., Breast Cancer, Digits, MNIST,
Fashion-MNIST) in our computing environment due to the
memory bottleneck of quantum simulation [29].

The superior performance of QNet becomes evident when we
train these models under noise with a hardware emulator
(ibmq_16_melbourne) as shown in Figure 7. On the smaller
Iris dataset (Figure 7A), the performances are similar. However,
on the bigger Wine dataset, there is a significant gap (Figure 7B).
The QNet network training loss and validation loss consistently
goes down over training epochs. However, the Baseline models

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551398

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

remain more or less constant. The Baseline model uses a 13-qubit
circuit for the Wine dataset. The target device’s quantum volume
(ibmq_16_melbourne) is 8, implying that 3-qubit (or similarly
sized) circuits can be reliably executed on the hardware.
Consequently, the Iris Baseline model performs well with this
hardware emulator that uses a 4-qubit circuit. However, the 13-
qubit Baseline QNN for the Wine dataset essentially generates
random outputs, and therefore, this model does not train well as
evident from Figure 7B. In both cases, QNet employs a sequence
of 2-qubit circuits and is hardly affected by hardware noise.

5.2.3 QNet Vs. PCA + Baseline
As mentioned earlier, the performance of PCA + Baseline will
largely depend on the level of compression using PCA. To further

FIGURE 5 | Performance (training loss, training accuracy, validation loss, and validation accuracy) of QNet on Iris and Wine datasets with a varying number of
Parametric Layers/PQC (PL) and QNN Layers (QL). Qubits/QNN (QQ) is fixed at 2. (A,D) shows the performance over 100 epochs of training. (B,E) shows performance
against varying PL after 20 training epochs. (C,F) shows performance against varying QL after 20 training epochs. All data points are an average of 10 different training
runs that start with different seeds. The models tend to overfit (performance improves monotonically for the training set and worsens for the validation set) with an
increasing number of epochs, PL and QL.

TABLE 1 |QNet performance after 20 epochs of training on Wine, Breast Cancer, and Digits classification datasets with varying QQ, QL, and PL. QNet performs better with
lower QQ. Larger networks tend to overfit, e.g., training performance improves from QL � 2, PL � 2 to QL � 3, PL � 3 while validation performance falls down.

QNN Layers = 2 Parametric Layers/PQC = 2 QNN Layers = 3 Parametric Layers/PQC = 3

Dataset Qubits/
QNN

Training
Loss

Validation
set Loss

Training
set

accuracy

Validation
set

accuracy

Training
set Loss

Validation
set Loss

Training
set

accuracy

Validation
set

accuracy

Wine (features: 13, classes: 3) 2 0.0748 0.2103 0.9955 0.9213 0.05034 0.3056 0.9831 0.8876
4 0.1174 0.1705 0.9644 0.9505 0.0702 0.2528 0.9887 0.8932
6 0.3588 0.3826 0.8561 0.8865 0.0886 0.4044 0.9775 0.8651

Breast Cancer (features: 30,
classes: 2)

3 0.0365 0.1265 0.9850 0.9701 0.0716 0.1553 0.9841 0.9508
5 0.0482 0.1214 0.9832 0.9631 0.0516 0.0933 0.9841 0.9701
10 0.1142 0.2061 0.9586 0.9192 0.0948 0.1323 0.9753 0.9508

Digits (features: 64, classes: 10) 2 0.0288 0.2805 1.0000 0.9154 0.0164 0.3987 1.0000 0.8915
4 0.0293 0.3381 1.0000 0.9032 0.0229 0.4267 1.0000 0.8793
8 0.1794 0.5279 0.9610 0.8387 0.0837 0.6001 0.9866 0.8264

TABLE 2 | QNet performance on truncated MNIST and Fashion-MNIST datasets
after 10 training epochs.

Dataset MNIST Fashion-MNIST

Original Features 28 × 28 28 × 28
Used Features (MaxPooled) 14 × 14 14 × 14
Classes (Original/Used) 10/3 10/3
Samples (Original/Used) 70000/1,200 70000/1,200
Training/Validation Split 600/600 600/600
QQ 7 7
QL 2 2
PL 2 2
Training Loss 0.1679 0.0803
Validation Loss 0.3373 0.2292
Training Accuracy 0.9360 0.9766
Validation Accuracy 0.875 0.9316

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7551399

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

illustrate this issue, we show the fraction of explained variance
against the chosen number of principal components (PC) on the
Digits dataset in Figure 8A [65]. The fraction improves with an
increasing number of PC. For instance, 4 PC explains roughly
40% variance in the digits dataset compared to ≈ 70% in 8 PC.
Therefore, the subsequent Baseline model in PCA + Baseline will
work on a poor representation of the original dataset.
Consequently, this PCA + Baseline model will perform poorly.
The accuracy of the trained PCA + Baseline models and QNet
models on the Digits dataset with varying PCs is shown in
Figure 8B (noiseless simulation). Note that, when we choose
n-PC’s, the subsequent Baseline QNN in the PCA + Baseline
model uses n-qubit circuits. For QNet, we use QQ � 2 (2-qubit

circuits), PL � 2, and QL � 2. The QNet models outperform the
corresponding PCA + Baseline models in terms of accuracy. For
instance, QNet accuracy is 68% greater than PCA + Baseline with
2 PC. The difference is 30% for PCA + Baseline with 16 PC. If we
use a larger PC (e.g., 32), the PCA + Baseline model may perform
at a similar level to QNet in the noiseless simulation. However,
the quantum circuit will be much larger (32-qubit), and it may
perform very poorly on the near-term hardware.

To compare the performance between QNet and PCA + Baseline
on hardware, we use the 5-qubit ibmq_bogota and 7-qubit
ibmq_casablanca hardware emulators and measure the trained
QNet and PCA + Baseline models performance for Wine, Breast
Cancer, Digits, MNIST, and Fashion-MNIST datasets. The results are

FIGURE 6 | QNet and Baseline model performances in 10 training epochs on a simulator (noiseless) with similar network sizes (same number of trainable circuit
parameters). (A,B) shows the performances on Iris and Wine datasets, respectively. These models exhibit similar performances in noiseless simulations.

FIGURE 7 |QNet and Baseline model performances in 10 training epochs on a quantum hardware emulator (simulated ibmq_16_melbourne) with similar network
sizes (same number of trainable circuit parameters). (A,B) shows the performances on Iris and Wine datasets, respectively. On the smaller Iris dataset (4-features), the
performance is comparable. However, on the larger Wine dataset (13-features), QNet shows significantly better performance under noise.

FIGURE 8 | The PCA + Baseline model performance largely depends on the chosen number of principal components (PC). A higher number of PC captures more
variance of the input data. (A) shows the fraction of explained variance with an increasing number of PC. (B) shows the performance of PCA + Baseline against QNet with
varying numbers of PC (after 20 epochs of training in a noiseless simulator). n-qubit corresponds to n chosen PC for the PCA + Baseline models and QQ � n for the
corresponding QNet models (both can be executed on n-qubit hardware). In QNet, we use PL � 2, QL � 2. For a fair comparison, we vary the number of trainable
parameters in PCA + Baseline models and report the best-measured performance against QNet.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 75513910

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

shown in Figures 9A,B. We use 5 and 7 PC in the PCA + Baseline
models for ibmq_bogota and ibmq_casablanca, respectively. In all
these cases, QNet uses QQ � 2, PL � 2, QL � 2. QNet accuracy is
36–76% higher on ibmq_bogota and 32–62% higher on
ibmq_casablanca across all these datasets. Note that both of these
pieces of hardware have a QV of 32, indicating that they can run 5-
qubit (or equivalent) circuits reliably. The PCA+Baselinemodels use
5/7 qubit circuits. We anticipate that noise will have less of an impact
on these circuits. However, the PCA compression loses too much
information and thus, damages the overall performance.

5.2.4 QNet Vs DRC
As mentioned earlier, the DRC model exceeds the coherence time of
the device when the number of features is large. It may be pointless to
compare DRC with QNet for larger datasets on hardware emulators.

Therefore, we choose the smallest Iris dataset for comparison. The
measured performance of the trainedQNet (QQ � 2, PL � 2, QL � 2)
and two-qubit DRC models (on simulator and ibmq_bogota
emulator) are shown in Figure 10. Note that the performances
are similar in noiseless simulations (Figure 10A). However, the
measured accuracy of QNet on noisy ibmq_bogota emulator is
significantly higher on both the training (29%) and the validation
(21%) sets (Figure 10B). Similarly, the loss is significantly lower
in QNet.

6 DISCUSSION AND FUTURE OUTLOOK

Why is QNet Noise-Resilient and Scalable?: Unlike Baseline,
PCA + Baseline, and DRC models, the circuit sizes can be

FIGURE 9 | Measured performance of trained QNet and PCA + Baseline models on hardware emulators. (A) shows performance comparison on 5-qubit
ibmq_bogota where the QNet models use QQ � 5 and the PCA + Baseline models use 5 principal components. (B) shows the performance comparison on 7-qubit
ibmq_casablanca where the QNet models use QQ � 7 and the PCA + Baseline models use 7 principal components. For QNet, we use PL � 2, QL � 2. For a fair
comparison, we vary the number of trainable parameters in PCA + Baseline models and report the best-measured performance against QNet.

FIGURE 10 | Performance comparison between QNet and DRC on Iris classification dataset. We report (A) loss and (B) accuracy of the trained QNet and DRC
models in noiseless simulation and emulated hardware (ibmq_bogota). In the noiseless simulation, their performances are comparable. However, under noise, QNet
significantly outperforms DRC. For QNet, we used QQ � 2, PL � 2, QL � 2. For a fair comparison, we vary the number of trainable parameters in a single-qubit DRCmodel
and report the best-measured performance against QNet.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 75513911

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

modulated arbitrarily in QNet. This flexibility provides noise
resilience and scalability to QNet. Each QNN can have a small
number of qubits (e.g., QQ � 2) and a small depth (e.g., PL � 2).
One can execute these small circuits reliably in existing NISQ-
machines. Due to the high accumulation of gate noise and
decoherence in the Baseline and PCA + Baseline models, their
corresponding QNN circuit outputs can be highly erroneous.
Therefore these models may perform poorly on hardware. The
circuits in DRC have a lower number of qubits. They are,
however, too deep for larger datasets, so decoherence and gate
errors can have a bigger impact on their outputs. To solve larger
problems in the Baseline or PCA + Baseline models, we need to
add more qubits to the QNN circuit, whereas in QNet, we only
need to add more small noise-resilient QNN circuits. As a result,
QNet models can be scaled to fit any size dataset. PCA + QNet
could be another promising solution for reducing the use of
quantum resources. The PCA + QNet variation, unlike PCA +
Baseline, does not require significant data compression to fit the
quantum circuit on the target hardware. As a result, its
performance will be less affected than that of the PCA
+ Baseline model due to information loss during data
compression.

Constructing QNN’s in QNet: Throughout this study, we use
the same encoding method (Figure 2B), parametric layer
architecture (Figure 2D), and measurement operations (Pauli-
Z expectation values of qubits) in all the models. We also use the
same number of QNN in different QNN Layers. All these choices
can have a significant impact on the network size and
performance. For example, if we choose a 2-variables/qubit
angle encoding method instead of the 1-variable/qubit angle
encoding method, the number of QNN’s in the network can
reduce greatly. For example, the QNN circuits in a QNet network
for an 8-feature dataset (QQ � 2, QL � 2) will reduce from 8 to 3
as shown in Figure 11. The Baseline and PCA + Baseline models
will also have similar benefits. However, a detailed study on this
front is beyond the scope of this paper.

QNet on Small Quantum Systems: QNet enables the
integration of multiple small and heterogeneous quantum
computing systems in a single machine learning application.

The QNNs in a QNN Layer can be executed sequentially on a
small quantum computer (at the expense of increased run-time)
or concurrently in different hardware during the training/
inference step’s forward pass. Seven 5-qubit systems, four 7-
qubit systems, and one single-qubit system are available in the
current IBMQ suite. One can use the 64 qubits available in these
chips to create QNet models to handle 64-feature ML problems
(e.g., digits classification discussed in the previous section). To
create QNet with this set of hardware, we can utilize seven 5-qubit
QNNs, four 7-qubit QNNs, and one single-qubit QNN in each
QNN Layer. Each QNN model (parametric layer, encoding, and
so on) should be tailored to the hardware used in the backend. For
example, if we want all the QNNs in a QNN Layer to have a
comparable forward pass execution time, the QNNs with a larger
number of qubits should have fewer Parametric Layers than the
QNNs with lower qubit counts.

QNet on Heterogeneous Systems: It’s worth noting that
hardware based on a different quantum computing technology
(for example, IonQ’s 11-qubit trapped-ion system) can be added
to the mix without sacrificing generality. Individual QNNmodels
can be modified for unique hardware in these circumstances.
QNN’s for trapped-ion computers can be built using the
technology’s native gates (e.g., GPI, GPI2, GZ, and MS) [66].
For example, instead of the CNOT gate, which is the native 2-
qubit gate in IBM’s superconducting quantum computers, we can
entangle the qubits using the two-qubit MS gate in trapped-ion
systems [22]. Again, if we want all the QNNs in a single QNN
Layer in QNet to have a comparable forward pass time, the PQCs
of individual QNNs will need to be customized accordingly.

QNet on Larger Quantum Systems: Furthermore, we can
implement QNet with small QNN’s on large hardware (e.g., the
65-qubit ibmq_brookyn). Even if a Baseline fits in this large
hardware, QNet might be preferred. The QV measure explains
this. The ibmq_brookyn hardware has QV of 32. Even though it
has 65 qubits, we can reliably execute circuits that have ≈ 5-qubits
and a depth of ≈ 5. As a result, for an ML job including a 64-
feature dataset, a QNet model with sixteen 4-qubit QNNs per
QNN Layer will have a better chance of success than a Baseline
QNN created with a 64-qubit circuit.

FIGURE 11 | Throughout this work, we have used 1-variable/qubit angle encoding for all the QNNmodels. All these networks (QNet, Baseline, PCA + Baseline) can
benefit from improved classical-to-quantum data encoding methods. Here, we show the impact of using the 2-variables/qubit angle encoding method on the QNet
network for an 8-feature ML problem. We use QQ � 2, PL � 2, QL � 2. While the first network uses a total of 8 2-qubit circuits, the second one uses only 3. However, we
may potentially lose information while loading too many variables in a single qubit, and that may affect the performance/trainability of these models [8]. We keep
exploration on this front for future studies.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 75513912

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

QNet in Simulation: Quantum simulation is limited by the
memory bottleneck [29]. One can represent an n-qubit system
state with a state vector that has 2n complex values. The memory
requirement can easily go beyond the limit of classical simulation
if we increase the number of qubits. Currently, the most powerful
simulator available in the IBMQ suite can handle 32-qubits. Even
QML applications based on classical simulators can benefit from
QNet. Let’s say we’re solving a 64-feature dataset with QNet, and
we’re employing 8-qubit QNNs. There will be eight such QNN’s
in each QNN Layer. A quantum simulator will need to store 28 or
256 complex values to process these QNN’s sequentially. Eight
instances of the simulator (e.g., employing multi-processing) can
be used for concurrent simulation, requiring storage of 8*28 or
2048 complex values. In comparison, a 64-qubit Baseline QNN
circuit will require storage of 264 complex values. It is far beyond
the capabilities of existing supercomputers.

In this work, we have demonstrated QNet models on 196-
feature datasets using quantum simulators available in the
Pennylane [47] framework that runs on a single CPU-core of
a standard computer (Intel Core i7-10750H, 16 GB RAM)
reasonably fast. The simulation time can be improved by
allocating QNN’s in a QNN Layer to different instances of the
simulator using advanced computing techniques (e.g., multi-
processing/multi-threading or distributed computing). QNet is
not affected by the memory bottleneck as much as the Baseline
when QQ is small. Figure 12 shows the single-epoch training
time of QNet (Breast Cancer dataset) with varying QQ on our
computing environment. At lower QQ, the simulation takes
minutes. Therefore, QNet can be an exciting choice for
simulation-based practical QML applications.

Other Applications of QNet: In this study, we exclusively
employ classification datasets. By adjusting the cost functions,
one can use QNet for different QML tasks (such as regression,
auto-encoder, and so on). These can be worthwhile research
topics for the future.

Quantum Supremacy: Quantum computing and quantum
machine learning are still in their infancy. Existing classical ML
algorithms have matured over a few decades of research.

Therefore, we feel that seeking superior performance with QNet
compared to the classical algorithms can be unfair. Nonetheless, the
performance of QNet in this study is comparable to that of traditional
neural networks. It may improve further with proper choice of
encoding methods, parametric layer architecture, and
measurements. QNet is a generic framework for creating quantum
machine learning models that are noise-resistant. We believe it will
have a profound impact on quantum machine learning research in
the near term.

QNet Limiting Factors: QNet employs a large number of
small QNNs, which can be advantageous if a user has access to a
large number of small quantum computers for parallel
processing. However, having only one piece of quantum
hardware can be a bottleneck. In such circumstances, one
needs to execute the QNNs in order. Furthermore, we will
need to reset the qubits between each call to the quantum
computers, which may raise the overall execution time of the
QNet network because qubit resets can take much longer than
actual gate executions [67]. Moreover, the number of qubit
measurements increases with QL in QNet. A QNet with QL �
2 may have 2X measurements compared to QL � 1. Large
measurement errors can affect QNet performance. However,
measurement errors have decreased significantly in the IBM
quantum devices in the past few years. For example, the 5-
qubit ibmqx-2, a quantum device from the past generation,
had an average measurement error of 8.2% while the current
5-qubit ibmq_bogota device has an average measurement error
rate of 2.27%. On top of that, one can reduce measurement errors
by applying classical post-processing [68–70]. The advantages of
a reduced depth and gate-count may outweigh the additional
measurement noise, as evidenced by comparison to prior
approaches.

7 CONCLUSION

In this paper, we present QNet–a scalable and noise-resilient
quantum neural network architecture. Through empirical study,
we show that QNet outperforms existing techniques in terms of
performance and noise resilience. We use six datasets (Iris, Wine,
Breast Cancer, Digits, MNIST, Fashion-MNIST) and three noisy
hardware emulators (ibmq_16_melbourne, ibmq_bogota,
ibmq_casablanca) for this study. On average, trained QNet
models show 43% better accuracy over the existing models on
the hardware emulators. QNet also provides a framework for
creating noise-resistant QML models using a collection of small
quantum neural networks. In the not-too-distant future, it has the
potential to have a significant impact on quantum machine
learning research.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

FIGURE 12 | QNet models are suitable for simulation based QML
applications where quantum simulators are used for training and inference of
QNN models for practical applications. We report the time taken for 1 training
epoch on the Breast Cancer classification dataset with varying QQ. This
dataset contains 569 samples (30 features) and we use half of them (285) for
training. The training is done on a standard desktop machine (Intel Core i7-
10750H, 16 GB RAM) using a single computing core. We use the default state
vector simulator available in the PennyLane framework. With lower QQ, the
model can be trained in minutes. With higher QQ, the training time increases
due to larger memory requirements by the simulator.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 75513913

Alam and Ghosh QNet

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

The work is supported in parts by NSF (CNS-1722557, CCF-
1718474, OIA-2040667, DGE-1723687, DGE-1821766, and
DGE-2113839) and seed grants from Penn State ICDS and
Huck Institute of the Life Sciences.

ACKNOWLEDGMENTS

We also thank Prof. Mehrdad Mahdavi from Penn State and Dr.
Rasit Topaloglu from IBM Corp. for helpful discussions.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2021.755139/
full#supplementary-material

REFERENCES

1. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, et al. Quantum
Supremacy Using a Programmable Superconducting Processor. Nature (2019)
574:505–10. doi:10.1038/s41586-019-1666-5

2. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum
Machine Learning. Nature (2017) 549:195–202. doi:10.1038/nature23474

3. Farhi E, Neven H. Classification with QuantumNeural Networks on Near Term
Processors (2018). arXiv preprint arXiv:1802.06002.

4. Killoran N, Bromley TR, Arrazola JM, Schuld M, Quesada N, Lloyd S.
Continuous-variable Quantum Neural Networks. Phys Rev Res (2019) 1:
033063. doi:10.1103/physrevresearch.1.033063

5. Cong I, Choi S, Lukin MD. Quantum Convolutional Neural Networks. Nat
Phys (2019) 15:1273–8. doi:10.1038/s41567-019-0648-8

6. Schuld M, Killoran N. Quantum Machine Learning in Feature hilbert Spaces.
Phys Rev Lett (2019) 122:040504. doi:10.1103/PhysRevLett.122.040504

7. Schuld M, Bocharov A, Svore KM, Wiebe N. Circuit-centric Quantum
Classifiers. Phys Rev A (2020) 101:032308. doi:10.1103/physreva.101.032308

8. Abbas A, Sutter D, Zoufal C, Lucchi A, Figalli A, Woerner S. The Power of
Quantum Neural Networks. Nat Comput Sci (2021) 1:403–9. doi:10.1038/
s43588-021-00084-1

9. Du Y, Hsieh M-H, Liu T, Tao D. Expressive Power of Parametrized Quantum
Circuits. Phys Rev Res (2020) 2:033125. doi:10.1103/physrevresearch.2.033125

10. Wright LG, McMahon PL. The Capacity of Quantum Neural Networks. In:
CLEO: QELS_Fundamental Science. Washington, DC: Optical Society of
America (2020). p. JM4G–5. doi:10.1364/cleo_at.2020.jm4g.5

11. Sim S, Johnson PD, Aspuru-Guzik A. Expressibility and Entangling
Capability of Parameterized Quantum Circuits for Hybrid Quantum-
Classical Algorithms. Adv Quan Tech (2019) 2:1900070. doi:10.1002/
qute.201900070

12. Schuld M, Sweke R, Meyer JJ. Effect of Data Encoding on the Expressive Power
of Variational Quantum-Machine-Learning Models. Phys Rev A (2021) 103:
032430. doi:10.1103/physreva.103.032430

13. Funcke L, Hartung T, Jansen K, Kühn S, Stornati P. Dimensional Expressivity
Analysis of Parametric Quantum Circuits. Quantum (2021) 5:422.
doi:10.22331/q-2021-03-29-422

14. Mari A, Bromley TR, Izaac J, Schuld M, Killoran N. Transfer Learning in
Hybrid Classical-Quantum Neural Networks. Quantum (2020) 4:340.
doi:10.22331/q-2020-10-09-340

15. Alam M, Kundu S, Topaloglu RO, Ghosh S. Iccad Special Session Paper:
Quantum-Classical Hybrid Machine Learning for Image Classification (2021).
arXiv preprint arXiv:2109.02862.

16. Li J, Alam M, Sha CM, Wang J, Dokholyan NV, Ghosh S. Drug Discovery
Approaches Using Quantum Machine Learning (2021). arXiv preprint arXiv:
2104.00746.

17. Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, et al.
Quantum Machine Learning Algorithms for Drug Discovery Applications. In:
Chem Inf Model., 61 (2021). p. 2641–7. doi:10.1021/acs.jcim.1c00166

18. Sakuma T. Application of Deep Quantum Neural Networks to Finance (2020).
arXiv preprint arXiv:2011.07319.

19. Pistoia M, Ahmad SF, Ajagekar A, Buts A, Chakrabarti S, Herman D, et al.
Quantum Machine Learning for Finance (2021). arXiv preprint arXiv:
2109.04298.

20. Luckow A, Klepsch J, Pichlmeier J. Quantum Computing: Towards Industry
Reference Problems (2021). arXiv preprint arXiv:2103.07433.

21. Preskill J. Quantum Computing in the Nisq Era and beyond. Quantum (2018)
2:79. doi:10.22331/q-2018-08-06-79

22. Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM. Validating
Quantum Computers Using Randomized Model Circuits. Phys Rev A
(2019) 100:032328. doi:10.1103/physreva.100.032328

23. Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, et al.
Hierarchical Quantum Classifiers. npj Quan Inf (2018) 4:1–8. doi:10.1038/
s41534-018-0116-9

24. Huang HY, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H, et al.
Power of Data in Quantum Machine Learning. Nat Commun (2021) 12:
2631–9. doi:10.1038/s41467-021-22539-9

25. Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E, Latorre JI. Data Re-uploading
for a Universal Quantum Classifier. Quantum (2020) 4:226. doi:10.22331/q-
2020-02-06-226

26. Easom-Mccaldin P, Bouridane A, Belatreche A, Jiang R. On Depth, Robustness
and Performance Using the Data Re-uploading Single-Qubit Classifier. IEEE
Access (2021) 9:65127–39. doi:10.1109/access.2021.3075492

27. Suzuki T, Katouda M. Predicting Toxicity by Quantum Machine Learning.
J Phys Commun (2020) 4:125012. doi:10.1088/2399-6528/abd3d8

28. Anthony M, Bartlett PL. Neural Network Learning: Theoretical Foundations.
Cambridge University Press (2009).

29. Nielsen MA, Chuang I. Quantum Computation and Quantum Information.
American Association of Physics Teachers (2002).

30. Crawford O, Straaten Bv., Wang D, Parks T, Campbell E, Brierley S. Efficient
Quantum Measurement of Pauli Operators in the Presence of Finite Sampling
Error. Quantum (2021) 5:385. doi:10.22331/q-2021-01-20-385

31. Reilly D. Challenges in Scaling-Up the Control Interface of a Quantum
Computer. In: 2019 IEEE International Electron Devices Meeting (IEDM).
IEEE (2019). p. 31–7. doi:10.1109/iedm19573.2019.8993497

32. Clarke J. An Optimist’s View of the 4 Challenges to Quantum Computing.
IEEE Spectrum (2019). Available at: https://spectrum.ieee.org/an-optimists-
view-of-the-4-challenges-to-quantum-computing (Accessed November 30,
2021).

33. Pauka SJ, Das K, Kalra R, Moini A, Yang Y, TrainerM, et al. A Cryogenic Cmos
Chip for Generating Control Signals for Multiple Qubits. Nat Electron (2021)
4:64–70. doi:10.1038/s41928-020-00528-y

34. Lloyd S, Schuld M, Ijaz A, Izaac J, Killoran N. Quantum Embeddings for
Machine Learning (2020). arXiv preprint arXiv:2001.03622.

35. Yano H, Suzuki Y, Raymond R, Yamamoto N. Efficient Discrete Feature
Encoding for Variational Quantum Classifier. In: 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE). IEEE (2020).
p. 11–21. doi:10.1109/qce49297.2020.00012

36. Hubregtsen T, Pichlmeier J, Stecher P, Bertels K. Evaluation of Parameterized
Quantum Circuits: on the Relation between Classification Accuracy,
Expressibility, and Entangling Capability. Quan Machine Intelligence (2021)
3:1–19. doi:10.1007/s42484-021-00038-w

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 75513914

Alam and Ghosh QNet

https://www.frontiersin.org/articles/10.3389/fphy.2021.755139/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2021.755139/full#supplementary-material
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/nature23474
https://doi.org/10.1103/physrevresearch.1.033063
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/physreva.101.032308
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1103/physrevresearch.2.033125
https://doi.org/10.1364/cleo_at.2020.jm4g.5
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1103/physreva.103.032430
https://doi.org/10.22331/q-2021-03-29-422
https://doi.org/10.22331/q-2020-10-09-340
https://doi.org/10.1021/acs.jcim.1c00166
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/physreva.100.032328
https://doi.org/10.1038/s41534-018-0116-9
https://doi.org/10.1038/s41534-018-0116-9
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1109/access.2021.3075492
https://doi.org/10.1088/2399-6528/abd3d8
https://doi.org/10.22331/q-2021-01-20-385
https://doi.org/10.1109/iedm19573.2019.8993497
https://spectrum.ieee.org/an-optimists-view-of-the-4-challenges-to-quantum-computing
https://spectrum.ieee.org/an-optimists-view-of-the-4-challenges-to-quantum-computing
https://doi.org/10.1038/s41928-020-00528-y
https://doi.org/10.1109/qce49297.2020.00012
https://doi.org/10.1007/s42484-021-00038-w
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

37. Alam M, Ash-Saki A, Ghosh S. Addressing Temporal Variations in Qubit
Quality Metrics for Parameterized Quantum Circuits. In: 2019 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED).
IEEE (2019). p. 1–6. doi:10.1109/islped.2019.8824907

38. Mottonen M, Vartiainen JJ, Bergholm V, Salomaa MM. Transformation of
Quantum States Using Uniformly Controlled Rotations (2004). arXiv preprint
quant-ph/0407010.

39. Cross A. The Ibm Q Experience and Qiskit Open-Source Quantum Computing
Software. In: APS March Meeting Abstracts, 2018 (2018). p. L58–003.

40. NghiemNA, Chen SY-C,Wei T-C. Unified Framework for QuantumClassification.
Phys Rev Res (2021) 3:033056. doi:10.1103/physrevresearch.3.033056

41. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: An
Imperative Style, High-Performance Deep Learning Library. Adv Neural Inf
Process Syst (2021) 32:8026–8037.

42. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization (2014). arXiv
preprint arXiv:1412.6980.

43. Duchi J, Hazan E, Singer Y. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. J machine Learn Res (2011) 12.

44. Luo X-Z, Liu J-G, Zhang P, Wang L. Yao.jl: Extensible, Efficient Framework for
Quantum Algorithm Design. Quantum (2020) 4:341. doi:10.22331/q-2020-10-
11-341

45. Banchi L, Crooks GE. Measuring Analytic Gradients of General Quantum
Evolution with the Stochastic Parameter Shift Rule. Quantum (2021) 5:386.
doi:10.22331/q-2021-01-25-386

46. Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N. Evaluating Analytic
Gradients on Quantum Hardware. Phys Rev A (2019) 99:032331. doi:10.1103/
physreva.99.032331

47. Bergholm V, Izaac J, Schuld M, Gogolin C, Alam MS, Ahmed S, et al.
Pennylane: Automatic Differentiation of Hybrid Quantum-Classical
Computations (2018). arXiv preprint arXiv:1811.04968.

48. Lavrijsen W, Tudor A, Müller J, Iancu C, de Jong W. Classical Optimizers for
Noisy Intermediate-Scale Quantum Devices. In: 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE). IEEE (2020).
p. 267–77. doi:10.1109/qce49297.2020.00041

49. Li Deng L. The Mnist Database of Handwritten Digit Images for Machine
Learning Research [best of the Web]. IEEE Signal Process Mag (2012) 29:
141–2. doi:10.1109/msp.2012.2211477

50. Xiao H, Rasul K, Vollgraf R. Fashion-mnist: A Novel Image Dataset for
Benchmarking Machine Learning Algorithms (2017). arXiv preprint arXiv:
1708.07747.

51. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-
learn: Machine Learning in python. J machine Learn Res (2011) 12:2825–30.

52. [Dataset] Ibm quantum. Real Quantum Computers. Right at Your Fingertips
(2021). Available at: https://quantum-computing.ibm.com/ (Accessed July 28,
2021).

53. [Dataset] Ibm quantum. Qiskit/qiskit-terra (2021). Available at: https://github.
com/Qiskit/qiskit-terra/tree/main/qiskit/test/mock/backends (Accessed July
28, 2021).

54. [Dataset] Ibm quantum. High-Performance Simulator Tutorials (2021).
Available at: https://qiskit.org/documentation/tutorials/simulators/
(Accessed July 28, 2021).

55. Liu J, Zhou H. Reliability Modeling of Nisq-Era QuantumComputers. In: 2020
IEEE International Symposium onWorkload Characterization (IISWC). IEEE
(2020). p. 94–105. doi:10.1109/iiswc50251.2020.00018

56. Wang Y, Krstic PS. Prospect of Using grover’s Search in the Noisy-
Intermediate-Scale Quantum-Computer Era. Phys Rev A (2020) 102:
042609. doi:10.1103/physreva.102.042609

57. Azses D,Haenel R, Naveh Y, Raussendorf R, Sela E, Dalla Torre EG. Identification of
Symmetry-Protected Topological States on Noisy Quantum Computers. Phys Rev
Lett (2020) 125:120502. doi:10.1103/physrevlett.125.120502

58. Resch S, Gutierrez A, Huh JS, Bharadwaj S, Eckert Y, Loh G, et al. Accelerating
Variational Quantum Algorithms Using Circuit Concurrency (2021). arXiv
preprint arXiv:2109.01714.

59. Wood CJ. Special Session: Noise Characterization and Error Mitigation in
Near-Term Quantum Computers. In: 2020 IEEE 38th International
Conference on Computer Design (ICCD). IEEE (2020). p. 13–6.
doi:10.1109/iccd50377.2020.00016

60. Ishizaki A, Fleming GR. Unified Treatment of Quantum Coherent and Incoherent
Hopping Dynamics in Electronic Energy Transfer: Reduced Hierarchy Equation
Approach. J Chem Phys (2009) 130:234111. doi:10.1063/1.3155372

61. Ishizaki A, Fleming GR. On the Adequacy of the redfield Equation and Related
Approaches to the Study of QuantumDynamics in Electronic Energy Transfer.
J Chem Phys (2009) 130:234110. doi:10.1063/1.3155214

62. Wang B-X, TaoM-J, Ai Q, Xin T, Lambert N, Ruan D, et al. Efficient Quantum
Simulation of Photosynthetic Light Harvesting. NPJ Quan Inf (2018) 4:1–6.
doi:10.1038/s41534-018-0102-2

63. Ying X. An Overview of Overfitting and its Solutions. J Phys Conf Ser (2019)
1168:022022. doi:10.1088/1742-6596/1168/2/022022

64. Li M, Soltanolkotabi M, Oymak S. Gradient Descent with Early Stopping Is
Provably Robust to Label Noise for Overparameterized Neural Networks. In:
International conference on artificial intelligence and statistics. Palermo, Sicily,
Italy: PMLR (2020). p. 4313–24.

65. Friedman J, Hastie T, Tibshirani R. The Elements of Statistical Learning, Vol. 1.
New York: Springer series in statistics (2001).

66. Wright K, Beck KM, Debnath S, Amini JM, Nam Y, Grzesiak N, et al.
Benchmarking an 11-qubit Quantum Computer. Nat Commun (2019) 10:
5464–6. doi:10.1038/s41467-019-13534-2

67. Magnard P, Kurpiers P, Royer B, Walter T, Besse JC, Gasparinetti S, et al. Fast
and Unconditional All-Microwave Reset of a Superconducting Qubit. Phys Rev
Lett (2018) 121:060502. doi:10.1103/PhysRevLett.121.060502

68. Tannu SS, Qureshi MK. Mitigating Measurement Errors in Quantum
Computers by Exploiting State-dependent Bias. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (2019). p.
279–90. doi:10.1145/3352460.3358265

69. Nachman B, Urbanek M, de Jong WA, Bauer CW. Unfolding Quantum
Computer Readout Noise. npj Quan Inf (2020) 6:1–7. doi:10.1038/s41534-
020-00309-7

70. Bravyi S, Sheldon S, Kandala A, Mckay DC, Gambetta JM. Mitigating
Measurement Errors in Multiqubit Experiments. Phys Rev A (2021) 103:
042605. doi:10.1103/physreva.103.042605

71. Murali P, Baker JM, Javadi-Abhari A, Chong FT, Martonosi M. Noise-adaptive
Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. In:
Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (2019). p.
1015–29. doi:10.1145/3297858.3304075

72. Tannu SS, Qureshi MK. Not all Qubits Are Created Equal: a Case for
Variability-Aware Policies for Nisq-Era Quantum Computers. In:
Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems
(2019). p. 987–99.

73. Alam M, Ash-Saki A, Ghosh S. Circuit Compilation Methodologies for
Quantum Approximate Optimization Algorithm. In: 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE
(2020). p. 215–28. doi:10.1109/micro50266.2020.00029

74. Ash-Saki A, Alam M, Ghosh S. Qure: Qubit Re-allocation in Noisy
Intermediate-Scale Quantum Computers. In: Proceedings of the 56th
Annual Design Automation Conference 2019 (2019). p. 1–6.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Alam and Ghosh. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 75513915

Alam and Ghosh QNet

https://doi.org/10.1109/islped.2019.8824907
https://doi.org/10.1103/physrevresearch.3.033056
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2021-01-25-386
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.1109/qce49297.2020.00041
https://doi.org/10.1109/msp.2012.2211477
https://quantum-computing.ibm.com/
https://github.com/Qiskit/qiskit-terra/tree/main/qiskit/test/mock/backends
https://github.com/Qiskit/qiskit-terra/tree/main/qiskit/test/mock/backends
https://qiskit.org/documentation/tutorials/simulators/
https://doi.org/10.1109/iiswc50251.2020.00018
https://doi.org/10.1103/physreva.102.042609
https://doi.org/10.1103/physrevlett.125.120502
https://doi.org/10.1109/iccd50377.2020.00016
https://doi.org/10.1063/1.3155372
https://doi.org/10.1063/1.3155214
https://doi.org/10.1038/s41534-018-0102-2
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1103/PhysRevLett.121.060502
https://doi.org/10.1145/3352460.3358265
https://doi.org/10.1038/s41534-020-00309-7
https://doi.org/10.1038/s41534-020-00309-7
https://doi.org/10.1103/physreva.103.042605
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1109/micro50266.2020.00029
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	QNet: A Scalable and Noise-Resilient Quantum Neural Network Architecture for Noisy Intermediate-Scale Quantum Computers
	1 Introduction
	2 Preliminaries
	3 Related Works
	4 Proposed QNet Architecture
	5 Evaluation
	5.1 Setup for Numerical Studies
	5.2 Results
	5.2.1 QNet Design-Space Exploration
	5.2.2 QNet Vs. Baseline
	5.2.3 QNet Vs. PCA + Baseline
	5.2.4 QNet Vs DRC

	6 Discussion and Future Outlook
	7 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

