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Laser-induced magnetization dynamics in a perpendicularly exchange-coupled TbFeCo/
GdFeCo bilayer film are studied by using pump-probe magneto-optical Kerr
spectroscopy. An ultrafast modulation effect on local magnetization orientation is
observed. Such ultrafast magnetization reorientation in the GdFeCo layer is revealed to
be triggered by the femtosecond laser pulse and driven by the effective exchange field.
These processes occur within a timescale of hundreds of picoseconds, in which the field-
and fluence-dependent dynamical behaviors are demonstrated. In addition, an atomistic
Heisenberg model is proposed for studying the laser-induced magnetization dynamics by
using micromagnetic simulation. The simulated results agree with the experimental
phenomena and further reveal the underlying mechanism. These results show an
approach for ultrafast manipulation of the local magnetization orientation in
perpendicularly exchange-coupled structures.
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1 INTRODUCTION

Exchange-coupled composites (ECCs) have attracted much interest due to their designable
magnetic properties from combining individual material with different properties [1, 2] and also
potential applications in magnetic recording [3, 4], magnetic sensors [5, 6] and magnonic devices
[7, 8]. In particular, many research works focused on the perpendicular ECCs which have high
thermal stability, reduced switching field, and thus excellent applied potential for ultrahigh-
density magnetic recording [9–11]. On the other hand, laser-induced magnetization dynamics in
magnetic system is also an active field. Introduction of the ultrashort laser pulses can lead to
infusive effects, such as further reduce coercivity and remarkably accelerate magnetization
reversal for magnetic recording [12–15]. Therefore, studying laser-induced or -modulated
ultrafast magnetization dynamics in perpendicular ECCs is demanded for developing related
applications.

Amorphous ferrimagnetic rare earth-transition metal (RE-TM) alloy films, such as GdFeCo and
TbFeCo, are one kind of the most-concerned materials for ultrafast magnetic applications [16–18].
Typically, GdFeCo and TbFeCo can be used as the free and pinning layers, respectively, in
perpendicular ECCs due to their dissimilar spin-orbit coupling and perpendicular magnetic
anisotropy (PMA) [2, 19]. RE-TM ECCs have attracted attentions also due to their applied
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potential in magnetic super resolution (MSR) for magneto-
optical readout [20–22], but observation of the related
dynamical process has not been reported.

In this paper, we investigate the laser-induced magnetization
dynamics in a perpendicularly exchange-coupled TbFeCo/GdFeCo
bilayer film by using pump-probe magneto-optical polar Kerr
spectroscopy. We observe an ultrafast modulation effect on local
magnetization orientation in the GdFeCo layer which is triggered by
the femtosecond laser pulse and driven by the effective exchange field,
and also first demonstrate the dynamics. In addition, an atomistic
Heisenberg model is proposed for studying these laser-induced
magnetization dynamics by using micromagnetic simulation.

2 EXPERIMENT

The sample studied here is a TbFeCo(40 nm)/GdFeCo(50 nm)
coupled bilayer film prepared on a glass substrate by magnetron
sputtering. The TbFeCo layer with high PMAhas a strong coercivity
(Hc) of∼7 kOe, while the GdFeCo layer has weakmagnetocrystalline
anisotropy and hence possesses in-plane magnetization.

The laser-induced magnetization dynamics are measured by
using a time-resolved pump-probe magneto-optical Kerr
configuration. Linearly polarized laser pulse train with a central
wavelength of 800 nm, a duration of 100 fs, and a repetition rate of
1 kHz is generated from a Ti:sapphire regenerative amplifier and
split into the pump and probe beams. Both the two beams are
almost incident normally on the surface of GdFeCo layer with a
pulse fluence ratio of pump to probe larger than 30. The focused
spot diameter of the pump beam is ∼150 μm, while the probe spot
located at the center of the pump spot is set to be nearly a half
smaller to decrease the temperature gradient within the probed
area. The probe beam reflected from the sample is divided into two
orthogonally polarized components by aGlan prism tomeasure the
polar Kerr rotation by using a differential detector combined with a
lock-in amplifier. A variable magnetic field generated by an
electromagnet is applied perpendicularly to the sample plane.
All measurements are performed at room temperature.

3 RESULTS AND DISCUSSION

Considering the light penetration depth, the polar Kerr signal in
our experiment mainly comes from the out-of-plane
magnetization component in the upper half part of GdFeCo
layer. Note that for RE-TM materials, the Kerr signal probed
at 800 nm is contributed from the magnetic moment of TM
atoms [18], namely FeCo atoms here. As shown in Figure 1A, the
out-of-plane polar Kerr hysteresis loop presents the hard-axis
hysteresis of GdFeCo layer. Due to the competition between the
demagnetizing field and the effective bias field from exchange
coupling [2, 10], a nonuniform magnetization distribution is
formed in the GdFeCo layer. The slight hysteresis under small
external field just presents the different magnetization states of
GdFeCo layer originated from the opposite saturation states of
TbFeCo layer.

Figure 1B shows the laser-induced magnetization dynamics
measured under pump fluence of 9.8 mJ/cm2 and external field
(H) of ±8 kOe which is larger than Hc of TbFeCo layer. Only
ultrafast demagnetization and magnetization recovery can be
observed in the dynamical process. The magnetization
recovery time is ∼460 ps, showing a slow heat-diffusion process.

Next, field-dependent magnetization dynamics are measured.
Anomalous dynamical phenomena are observed in a range of
small field. In Figure 2A, it seems that the trace for H � 1.6 kOe
still only presents the typical dynamical processes of ultrafast
demagnetization and magnetization recovery. However, the
decay curves for −800 Oe, −320 Oe, and 0 Oe all cross their
initial magnetization states. With decreasing H, the crossing
amplitude increases, while the crossing time decreases from
462 to 176 ps. In the case of 0 Oe (without external field
applied), the crossing amplitude seems even larger than the
demagnetization amplitude. This anomalous behavior could
not be attributed to the magnetization precession, a strong
evidence is that the crossing time increases with increasing H,
whereas the time period of magnetization precession should
decrease with increasing H [23]. Then, what does it originate
from?

FIGURE 1 | (A) Normalized polar Kerr hysteresis loop of the GdFeCo layer. (B) Laser-induced magnetization dynamics measured under H � ±8 kOe and pump
fluence of 9.8 mJ/cm2. The Kerr signal is normalized to the static Kerr value at H � ±8 kOe.
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As mentioned above, because of the limited light penetration
depth, direct laser excitation on the TbFeCo layer can be
neglected. The femtosecond laser pulse mainly decreases the
transient magnetization of GdFeCo layer, and simultaneously
reduce the demagnetizing energy (Ed) and the exchange energy
(EA) [10]. These would change the equilibrium distribution of the
magnetization orientation in GdFeCo layer, leading to the
transient magnetization reorientation. Mostly in RE-TM layer,
the reduction of Ed is more obvious, so the magnetization
reorientation is expected to toward the orientation of TbFeCo
magnetization driven by the exchange field. Note that along the
vertical direction, the demagnetizing field in GdFeCo layer is
nonuniform, the vertical diffusion of laser heating should increase
the transient influence on demagnetizing field, and thus further
singularize the role of exchange field. Especially, if the transient
temperature is around the magnetization compensation point
[16], a remarkable reduction of Ed should also significantly
enhance this effect. Moreover, with H increased, the role of
exchange field in the total effective field become minor, and
thus the magnetization reorientation effect would be gradually
submerged by the magnetization recovery, leading to smaller
crossing amplitude and shorter crossing time.

Time dependence of the magnetization orientation can be
estimated via the relationMz(t) � |M(t)| sin θ(t), whereMz(t) is
the projection of magnetization on z axis (out-of-plane
component) and θ is the angle between magnetization
orientation and the sample plane. |M(t)| is the magnitude of
magnetization which is dependent on the transient temperature
and can be approximately obtained from the dynamic trace
measured under H � ±8 kOe as shown in Figure 1B [15].
Figure 2B shows θ as functions of the delay time extracted
from Figure 2A. Here we can clearly see an ultrafast
modulation effect on the local magnetization orientation in
GdFeCo layer. Note that those are only the average results of
the nonuniform magnetization distribution in the probe depth.

Such modulation effect of θ can be only observed under relatively
small field (H < ∼1 kOe). The max change of θ is ∼6.1° and occurs
at ∼300 ps after laser excitation without external field applied.
Evidently, recovery of θ originates from the recovery of Ed and EA.

To further demonstrate the role of exchange field in the
dynamics, we compare the transient traces measured with
opposite saturated magnetization states of the TbFeCo layer
(denoted by the sign of MT) and opposite directions of H,
respectively, as shown in Figure 3A. As expected, oppositeMT

results in opposite direction of magnetization reorientation,
even with the same condition of external field and laser fluence.
This is also another strong evidence for excluding the
magnetization precession as the origin of the observed
dynamical phenomena. It is clear that the initial state of
magnetization in the probed area is dominated by H, while
the direction of magnetization reorientation is controlled by
MT, implying that just the exchange field drives the
magnetization reorientation after laser excitation. This
result agrees with that of the steady measurements for MSR
[20], but here we first reveal the dynamics and related
timescale.

Figure 3B shows the dynamics measured under the same H
and MT but different laser fluence. The higher fluence not only
leads to a more remarkable demagnetization, but also a larger
crossing amplitude and a shorter crossing time, showing that
increase of the laser excitation energy can accelerate the
magnetization reorientation. This result further demonstrates
the laser modulation effect of the local magnetization
orientation.

4 MICROMAGNETIC SIMULATION

In order to further understand the mechanism of above
experimental phenomena, we construct an atomistic

FIGURE 2 | (A) Laser-induced magnetization dynamics measured under different external field and a constant pump fluence of 9.8 mJ/cm2. (B) Average
magnetization orientation angle θ as functions of delay time. The dashed lines in both (A) and (B) denote the initial state before excitation. The sign of MT shows the
saturated state of the TbFeCo magnetization.
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Heisenberg model for describing the magnetic states of FeCo
atoms in GdFeCo layer of the sample, which comprises of nearest
ferromagnetic exchange interaction (J), anisotropy (A), and
effective magnetic field (Bz) terms [24, 25]:

H � −J∑
i,j

mi ·mj − A∑
i

(m2
i,x +m2

i,y) − Bz ·∑
i

mi, (1)

where the magnetic moments are imposed on a two-
dimensional square lattice with periodic boundary
conditions, with mi � (mi,x, mi,y, mi,z) denoting the
magnetic moment at site i in the xy-plane. We consider an
easy-plane magnetic anisotropy (A > 0) in the GdFeCo layer as
revealed by the experimental observation. In
phenomenological sense, such an easy-plane anisotropy
naturally arises from the strong magnetic dipolar
interactions (demagnetization energy) in the system. The
inter-layer exchange coupling can be parameterized by an
exchange bias field acting on the FeCo atoms in the GdFeCo
layer, which orients towards the same direction with that of
MT. For simplicity, the exchange bias field here is included
into the external magnetic field as an effective magnetic field
Bz � Bzez normal to the xy-plane.

In the simulations, we first study the temperature dependences
of equilibrium magnetic properties of GdFeCo layer using the
Langevin Landau-Lifshitz-Gilbert stochastic equation [24, 25]
(see Simulation methods in the Supplementary Information).
The temperature-dependent behaviors are monitored by
evaluating the thermal-averaged magnetization <M> and

magnetization components <Mz > along the z-axis, which

are defined as <M> � 1
N2 < (∑

i
Si,x)

2 + (∑
i
Si,y)

2 + (∑
i
Si,z)

2 >
and <Mz > � 1

N < ∑
i
Si,z > , where Si � (Si,x, Si,y, Si,z) denotes a

classical Heisenberg spin with unit length at site i, N is the

number of spins, and <. . .> refers to the thermal average for
the equilibrium states at a given temperature T. The simulated
results in Figure 4A show that the magnetization <M>
decreases from 1.0 at T � 0 to ∼0.0 at high temperature
with T increases, corresponding to the transition from
ferromagnetic state at low T to paramagnetic state at high
T. In addition, the reduced <Mz > − T curve exhibits
that |<Mz > | rises smoothly when T < Tc and drops down
when T > Tc with T increases. This indicates that the out-of-
plane reorientation of magnetization occurs with increasing
temperature when T < Tc [26–28], and just agrees with the
experimental results.

To proceed, we simulate the laser-induced ultrafast
magnetization dynamics by employing the
Landau–Lifshitz–Bloch (LLB) equation [29–32], in which the
temperature of atomic spins are determined by using the three-
temperature model [33–35] (see Simulation methods in the
Supplementary Information). In this scheme, the system is
first relaxed by solving the LLB equation under the effective
magnetic field Bz for reaching the equilibrium state. Then we
carefully tracked the dynamics of out-of-plane components of
magnetization (Mz � 1

N ∑
i
mi,z) from the initial equilibrium state

after the laser excitation.
Figure 4B presents the evolutions of Mz as functions of

time, and one can see that a sharp demagnetization occurs
after excitation of laser-pulse heating. Subsequently, Mz

gradually recovers to its equilibrium state. In this
process, the intriguing behavior of magnetization
reorientation appears and consists with our
experimental observation.

In our experiments, Mz shows a slow recovery with
complete recovery time larger than 600 ps. In this sense,
one may understand the Mz dynamic behaviors from the
equilibrated temperature-dependence of <Mz > in

FIGURE 3 | (A) Laser-induced magnetization dynamics depended on the directions of exchange bias field and external field. The sign ofMT shows the saturated
state of the TbFeCo magnetization which reflects the direction of exchange bias field. The arrows denote the direction of magnetization reorientation. (B) Comparison of
magnetization dynamics measured under different excitation fluence.
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Figure 4A, considering that the system becomes quasi-
equilibrium states in the process of magnetization
recovery. Thus, the orientation of spins gradually tends to
the quasi-equilibrium direction depended on transient
temperature, leading to Mz crossing its initial state. With
the subsequent recovery of transient temperature,
Mz gradually recovers to the equilibrium state. Note that
the crossing amplitude decreases and the crossing time
increases with increasing |Bz|, agreeing well with the
experimental observations in Figure 2A.

5 CONCLUSION

In summary, the laser-induced magnetization dynamics
and the ultrafast modulation effect on local
magnetization orientation in a perpendicularly coupled
TbFeCo/GdFeCo film are studied by using time-resolved
magneto-optical Kerr spectroscopy. The magnetization
reorientation in the GdFeCo layer is triggered by the
femtosecond laser pulse and driven by the effective
exchange field. These processes occur within a
timescale of hundreds of ps. We discuss the field- and
fluence-dependent dynamical behaviors, and propose an
atomistic Heisenberg model to study the dynamics by
using micromagnetic simulation. The simulation agrees
with the experimental phenomena and further reveals the
underlying mechanism. These results show an approach
for ultrafast manipulation to the local magnetization
orientation in perpendicularly exchange-coupled
structures via changing exchange bias state and laser
fluence.
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FIGURE 4 | (A) Simulated thermal-averaged out-of-plane magnetization component <Mz > and magnetization <M > of equilibrium states as functions of
temperature T, under Bz � −0.174 J/μs (μs is the atomistic magnetic moment). Here <Mz > is normalized in the unit of |<Mz (Tc)> |, with <Mz (Tc)> representing the
out-of-plane magnetization at Curie temperature Tc. (B) Simulated laser-induced dynamics of out-of-plane magnetization component Mz under different effective
magnetic field Bz. Here Mz is scaled in the reduced unit of MB(T � 0 K), which denotes the magnetization under magnetic field Bz and temperature T � 0 K. The
initial values of Mz before excitation are marked by the blue dashed lines.
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