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A 2 × 2 terahertz photoconductive antenna (PCA) array detector with high efficiency
synthesis characteristic that improves the signal-to-noise ratio (SNR) of the detected
signals has been reported in this paper. By processing the substrate material through a
special micromachining process, the current signal generated by the adjacent antenna
elements as opposed to that generated by the antenna gap is eliminated. Experiments
show that the amplitude of the current signal output by the PCA array detector is consistent
with the amplitude of the synchronous superposition of the current signals output by
antenna elements, and the synthesis efficiency of the device achieves 93.7%. At the same
time, the antenna array detector has low current noise, and its highest SNR is 62 dB under
the excitation of different light energy, which is related to the number of antenna array
elements.
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INTRODUCTION

There are mainly two ways to detect terahertz (THz) time-domain waveforms: electro-optic (EO)
crystal and photoconductive antenna. The principle of the former is based on the Pockels effect of
crystals [1, 2]. A thinner EO crystal can provide a wider spectrum, but at the same time it leads to a
decrease in detection sensitivity [3]. Compared with the photoconductive antennas, the EO detection
requires more optical elements, higher cost and larger system size. THz waves detection by PCAs is
the inverse process of the THz waves generation by PCAs. The performances of large spectral width,
small size and ease of use make photoconductive antennas attractive for commercialization. In
addition, pasting a silicon lens on the back of antennas will improve the detector’s ability to collect
THz waves and obtain a higher SNR [4]. Although a single THz PCA has been widely used in THz
time-domain spectroscopy systems, it still has shortcomings in detecting weak terahertz signals and
improving the SNR. In theory, connecting multiple PCAs in parallel to form a PCA array detector
can make use of the THz electric field as much as possible to improve the SNR and detection
sensitivity of the PCA array detector. Although the PCA array detector with hundreds to thousands
antenna elements have been proposed and developed [5, 6], the synthesis efficiency of PCA array was
not discussed in detail in the previous work, which is important to improve the detection efficiency.
When the PCA array is used as a detector, it faces the same problem when it is used as an emitter.
That is, the photo-generated carriers generated in the substrate materials between adjacent antennas
move directionally under the action of the terahertz electric field, forming a current opposite to the
current generated in the antenna gap, the reverse current will reduce the generation efficiency of THz
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waves. The same phenomena will also reduce the synthesis
efficiency of the PCA array detector [7]. At present,
techniques to avoid the reverse current between adjacent
antenna elements include employing shielding substrate
between adjacent elements or using a micro-lenses array to
split and focus the probe beams on the gaps [8, 9]. However,
electrons transition from the valence band to the conduction
band with the excitation of laser, the electrons generated in the
antenna gap still can move to other antenna gaps due to the
diffusion motion and the drift motion in response to the THz
electric field. Therefore, these solutions cannot fundamentally
solve the problem of reverse current between antenna elements.

In this work, a THz PCA array detector that eliminates the
reverse current between the adjacent antenna elements is
designed and fabricated, and its outstanding synthesis
efficiency and signal-to-noise ratio have been demonstrated by
comparing with a single antenna element.

ANTENNA DESIGN AND EXPERIMENTAL
SETUP

Antenna Design
The structure diagram of the 2 × 2 PCA array detector is shown in
Figure 1A. Its substrate is low-temperature-grown GaAs (LT-
GaAs) with a thickness of 1 μm grown on (100) semi-insulating
(SI)-GaAs at 250°C using MBE system. AuGeNiAu electrodes
were deposited on the substrate by e-beam evaporation, and was
metalized by rapid annealing to form an ohmic contact. The
antenna element has a dipole length (L) of 250 μm, a dipole gap
(g) of 50 μm, a dipole antenna width (d) of 30 μm, an electrode
width (w) of 370 μm, and an electrode length (h) of 990 μm. The
activation area of antenna element is 0.03 mm × 0.05 mm and
the distance between adjacent antenna elements is about 10 μm.
The pickup circuit designed in the experiment can not only
output the synthetic signal of a PCA array detector, but also

each signal of each antenna element by connecting different
output ports.

Experimental Setup
In this paper, a THz time-domain spectroscopy system is used for
measure the performance of the THz PCA array detector. A Ti:
sapphire laser (Spectra-physics, MaiTai XF–1) with a center
wavelength of 800 nm, a pulse width of 70 fs, and a repetition
frequency of 80 MHz is used to excite the detector and the
emitting antenna. The LT-GaAs PCA emitter with a gap of
150 μm was excited by a pump beam with the power of
200 mW and the voltage applied to the emitter was 300 V.
The polarization direction of the THz electric field was parallel
to the electrode gaps of the PCA array detector. The THz wave
was focused on the PCA array detector through an off-axis
parabolic mirror, and the diameter of focused THz beam
measured by the knife edge method is 2.09 mm. The probe
beam was focused to a spot with the diameter of 3 mm on the
PCA array detector. The THz pulse and the laser pulse illuminate
the PCA array detector vertically on the same side, as shown in
Figure 1B. The output signal was recorded by a lock-in amplifier
(SR830).

RESULTS

In order to explain that photo-generated carriers move freely
throughout the semiconductor, an unmicromachined antenna
array, which is similar to the interdigitated PCA detectors, was
used for the verification experiment, we focused the laser with a
power of 800 mW laser on the gap of one antenna element, and
the diameter of the focus is 93 μm, the dark state resistance of the
antenna was reduced from 1.1 GΩ to several MΩ. The resistance
of other antenna elements in the unlit area was reduced by two
orders of magnitude. In addition, the resistance between adjacent
antenna elements was also reduced by two orders of magnitude,

FIGURE 1 |Construction and use of 2 × 2 photoconductive antenna array: (A) Design structure of 2 × 2 photoconductive antenna array. (B) Schematic diagram of
irradiation by laser and terahertz wave.
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indicating that the photo-generated carriers generated in one
antenna gap are not limited to movement in this antenna gap. On
the contrary, due to the THz electric field, the reverse current can
be formed between the adjacent antenna elements, which causes
the synthesis efficiency of the PCA array detector decrease.
Therefore, the masking process between the array elements for
the interdigitated PCA array detector cannot prevent the reverse
current between the array elements. In this experiment, we
cutting the substrate material of adjacent elements by high
power laser, and rearranged the elements with proper distance
to eliminate the reverse current between adjacent antenna
elements, and the photo-generated carriers generated by the
antenna elements were restricted from moving to other
antennas. When one antenna element was triggered by laser,
the resistance of other antenna elements does not change.

When the PCA array detector was excited by the probe beam
with the power of 120 mW, the THz time-domain waveforms of
the each antenna element and PCA array detector are shown in
Figure 2A. The amplitude of THz time domain waveform of the
PCA array detector is far greater than that of the antenna
elements A, B, C and D when they work alone. Due to the
difference of the antenna elements’ performance and the uneven
irradiation of laser and THz waves, the amplitudes of the time-
domain waveforms output from each element antenna are
different. At the same time, there is a time difference among
the waveforms of antenna elements, and the largest one is about

300 fs between A and D. The reason is caused by the optical path
difference between the probe beam and the THz beam received by
each antenna element.

In addition, the bandwidth of the PCA array is same as that of
the antenna elements. The resonant frequency of the antenna
elements is the same as that of the antenna array, and all of them
are 0.25 THz, which is marked in Figure 2B.

The output photocurrent of the PCA array detector under
THz wave excitation can be calculated as,

Ji(t) � eμ∫ETHz(t′)Ni(t − t′)dt′
Where, e is the electronic charge, μ is the electron mobility of LT-
GaAs, ETHz is the incident THz electric field, and Ni(t) is the
number of photo-generated carriers on the ith photoconductive
antenna element. Due to the low carrier lifetime of LT-GaAs,
Ji(t)∝ ETHz [10, 11]. Since the PCA array detector is a parallel
structure, the theoretical output current is:

JArray(t) � ∑n
i�1

Ji(t)

Where n is the number of element antennas, JArray(t) is the
current output by the PCA array detector, ∑n

i�1 Ji(t) is the
synchronous superposition of the output current when that
each antenna element works independently, as shown in
Figure 2C. But in the experiment, JArray(t) is always smaller

FIGURE 2 | Terahertz wave was detected by photoconductive antenna array: (A) Time-domain signals of antenna elements and array; (B) Frequency domain
signals of antenna elements and array; (C) Synthesis efficiency of the antenna array.
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than ∑n
i�1 Ji(t). Since there is no reverse current between adjacent

antenna elements, JArray(t) /∑n
i�1 Ji(t) is the synthesis efficiency of the

antenna array, and its efficiency reaches 93.7% in this paper. Since
there is no reverse current between adjacent antenna elements, the
time-domain signal output by the PCA array detector is
approximately equal to the synchronous superposition of the
time-domain signal output by all antenna elements.

Generally, the output noise current of the photoconductive
detector mainly comes from Johnson-Nyquist noise and shot
noise [12, 13]. The root mean square (RMS) value of the noise
current output form the symmetrically pumped PCA array
detector is as follows:

i �
������������
4kBTGp(t)Δf

√
�

��������������
4kBT
hυL2

ηe(τnμn + τpμp)P0

Δf

√√
where kB is the Boltzmann constant, T is operation temperature in
kelvin, h] is the energy of the probe photons, ηe is the
photoconductor external quantum efficiency, τn and τp are
lifetimes of electrons and holes in the semiconductor, μn and
μp are electron and hole mobility, P0 is the DC component of the
envelope surface of the optical probe, and Δf is the detection
bandwidth. The data of RMS noise of the antenna elements and
PCA array are listed in Table 1. The noise of the array antenna is
lower than the average noise of the elements, that means the PCA
array plays the role in reducing the overall noise.

Figure 3A and Figure 3B show the time-domain waveforms
and frequency-domain spectra detected by the PCA array
detector under different probe power, the signal amplitude
increases with the increase of the probe power. When the
probe power is only 1 mW, the PCA array detector still shows
a good response curve. When the probe power increases from
1mW to 120 mW, the THz linear increases. When the probe
power is greater than 120 mW, the amplitude tends to be
saturated. This saturation is caused by the screening effect,

TABLE 1 | The amplitude and RMS noise of the time domain signal of the antenna
elements and the array detector.

Antenna Amplitude (A) RMS noise (A) SNR

Unit A 2.55624E-10 4.40724E-13 55
Unit B 2.37891E-10 8.67724E-13 49
Unit C 2.8485E-10 9.18471E-13 50
Unit D 1.96796E-10 7.01004E-13 49
Antenna array 8.5384E-10 6.45848E-13 62

FIGURE 3 | The response of the PCA array detector under different probe power. (A) Time-domain spectrum; (B) Frequency domain spectrum; (C) The noise
current of the PCA array detector; (D) SNR of the PCA array detector.
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which is related to the carrier density generated on the GaAs
surface. The influence of the screening effect on the PCA emitter
has been reported [14, 15], and its influence on the PCA detector
can be expressed as [16].

E(t) � ETHz(t) − P(t)
αε

ETHz(t) is the incident THz electric field, ε and α are the dielectric
constant and geometric factor of GaAs, respectively. P(t) is the
polarization caused by the separation of electron-hole pairs, and it
increases as the density of photo-generated carrier increases. The
detection bandwidth of the PCA array detector is about 2.5 THz,
which is the same as that of a single antenna. At the same time, the
noise data of the detector was measured while the terahertz source
was working normally. The SNR is proportional to the laser
power when the probe power is lower than 120 mW, and the
maximum SNR of the detector reaches 62 dB at 120 mW. When
the power of probe beam exceeds 120 mW, the noise of the
detection current increases and the SNR decreases due to the
carrier shielding effect, as is shown in Figure 3Cand Figure 3D.

CONCLUSION

In summary, we proposed a PCA array detector with high
synthesis efficiency. According to experimental verification
and theoretical analysis, the reverse current between the
array elements is eliminated, and the synthesis efficiency of
the PCA array detector reaches 93.7%. At the same time, the
results show that the detector has a low noise, which is lower
than the average noise of the elements. The bandwidth of the
PCA array detector is about 2.5 THz. Within the probe power of
0–120 mW, the THz amplitude of detector shows a linear

growth trend. When the probe power exceeds 120 mW, the
signal amplitude tends to be saturated and the current noise
increases due to the carrier shielding effect. The detector has a
maximum SNR of 62 dB at the probe power of 120 mW power.
The concept of the proposed PCA array detector can be widely
used in both large size and small size PCA array detector to
improve its detection efficiency.
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