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Properties of spin Seebeck effect (SSE) in a quantum dot (QD) connected to a topological
superconductor or semiconductor nanowire with strong spin-orbit interaction are
theoretically studied by the noneqilibrium Green’s function method combined with
Dyson equation technique. At low temperatures, Majorana zero modes (MZMs) are
prepared at the ends of topological superconductor or semiconductor nanowire, and
are hybridized to the QD with spin-dependent strength. We consider that the QD is
coupled to two leads in the presence of spin heat accumulation (SHA), i.e., spin-dependent
temperature in the leads. We find that the thermopower is spin-polarized when the
hybridization strength between the QD and one mode of the MZMs depends on
electron spin direction, and its spin-polarization can be effectively adjusted by
changing the magnitude of SHA. By proper variation of the spin-polarization of the
QD-MZM hybridization strength, magnitude of the SHA, dot level, or the direct
coupling between the MZMs, 100% spin-polarized or pure thermopower can be
generated. Our results may find real usage in high efficiency spintronic devices or
detection of the MZMs, which are under current extensive study. The present model is
within the reach of current nano-technologies and may by used in high efficiency spin
caloritronics devices.
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1 INTRODUCTION

In the last decades, generating and manipulating spin current in closed circuits or spin bias in open
ones by thermal bias have been successfully realized in experiments. This interdisciplinary subject of
thermoelectric effect and spintronics is referred to as spin caloritronics aiming at spin control in
terms of thermal means [1, 2]. In the usual thermoelectric effect, the Seebeck effect known as
generation of electrical current or bias voltage in response to a temperature difference between two
ends of a system is the most frequently investigated issue [3, 4]. The measured quantity is the
thermopower S �∑σSσ with Sσ � −ΔVσ/ΔT the spin-resolved one denoting induced spin bias voltage
ΔVσ by a temperature gradient ΔT. In spin caloritronics, the counterpart of Seebeck effect is the spin
Seebeck effect (SSE) [5]. It refers to the generation of pure spin current in the absence of charge
electrical current, or spin bias denoting spin-resolved chemical potentials. Since the interaction
strength between electron spins is much weaker as compared to the electrostatic force, and then the
SSE suggests a possibility of high-efficiency and low-energy nano-scale thermoelectric devices. It is
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also promising in the detection of small temperature difference in
low-dimensional systems [5], and has been extensively
investigated in the fields of spin current rectifier [6], magnetic
heat valves [7], quantum cooling [8], thermal spin-transfer torque
[9], thermovoltaic transistor [10], thermal logic gates and thermal
memory for quantum information processing [11]. After the
pioneering work of K. Uchida in 2008 [5], the SSE has been
continuously observed in various materials [12–21], including
magnetic metals, ferromagnetic insulators, ferromagnetic metals,
ferromagnetic semiconductors, nonmagnetic materials with a
magnetic field, paramagnetic materials, antiferromagnetic
materials, and even topological insulators.

In the definition of spin-dependent thermopower Sσ, the
generated spin bias voltage ΔVσ denotes the split mechanical
potentials as ΔVσ � Z(μσ − μ�σ)/2, and the spin-up and spin-down
electrons are individually at different states μσ due to the existence
of thermal bias ΔT. The spin bias is the driving force for electron
transport and induces spin-polarized currents. In fact, from the
Fermi-Dirac function fσ � 1/{ exp [(ε − μσ)/kBTσ] + 1}, one can
expect that the driving force for spin-dependent electronic
transport to come from a spin-dependent electrons’
temperatures Tσ, whose function is similar to the spin bias μσ.
This is called as spin heat accumulation (SHA) realizable by an
electric current from a ferromagnet into a nonmagnetic material
[7, 22–26]. Usually, the SHA emerges with the accompany of spin
bias voltage and is quite weak as compared to the latter. In recent
experiment [24], the magnitude of SHA can be enhanced to as
high as about several kelvins.

Very recently, thermoelectric effect [27–31] was proposed to
be used for detecting Majorana zero modes (MZMs), a kind of
quasi-particles of Majorana fermions having zero energy that can
be realized in nano-scale topological superconductors [32, 33].
They are of their own antiparticle and charge neutral [32–35], and
have potential applications in fault-tolerant quantum
computation and energy-saving spintronic devices [36]. Due to
their exotic zero-energy, chargeless properties, the detection of
them is the central topic in studies relating to MZMs. Currently,
the most important detection means is the electrical tunnel
spectroscopy by applying a voltage ΔV across the nanowire
with MZMs and to observe the associate current. The MZMs
induce a zero-bias anomaly in the differential of electrical
conductance [32, 33, 37], which is viewed as the evidence of
MZMs. But this zero-bias anomaly in the conductance may also
induced by some other mechanisms, for example, the Kondo
effect [35]. Therefore, some other schemes, including the
thermoelectric effect tuned by MZMs, were then continuously
proposed in recent years. It was proved that the electron-hole
symmetric nature of the MZMs which results in null
thermoelectric effect can be effectively broken in a structure
with a quantum dot (QD) coupled to topological
superconductor hosting MZMs [27, 28]. Large value of
thermopower satisfying Mott formula was proposed for
detecting temperature of MZMs [19]. Such a system is
possible to deduce information of the dissipative decay of
MZMs [29]. In a two-terminal structure with a QD
sandwiched between two leads and side-coupled to MZMs, a
global sign reversion of the thermopower induced by MZMs was

studied by López et. al. Such a phenomenon is caused by the
direct MZM-MZM coupling [28]. The sign change and abnormal
enhancement of thermopower by coupling between the QD and
MZMs were also studied in some subsequent works [30, 31].

In our recent work, we have proposed a scheme composing of
a QD side-coupled to MZMs to detect the SHA in terms of sign
change of thermopower [38]. The mechanism is that the
thermopowers of different spin components will change signs
at different temperatures due to the QD-MZMs coupling. The
SHA denoting spin-dependent temperature then can be inferred
by the change of spin-polarized thermopower varying with
respect to the magnitude of SHA. This task can also be
fulfilled by observing the charge thermpower, which is much
easier to be measured in experiments. In the previous work [38],
we proved that the transition temperature of the thermopower
depends on the QD-MZMs coupling strength, and the
ferromagnetism of the two leads connected to the QD. Above
or below the transition temperature, both 100% spin-polarized or
pure spin thermopower will emerge due to the influences of SHA
and MZMs. In the present paper, we study the properties of
thermopower in a QD connected to the left and right leads with
SHA, and also to a topological superconductor nanowire hosting
MZMs.We focus our attention of the spin-resolved thermopower
induced by the existence ofMZMs, which are coupled to electrons
on the QD with spin-dependent coupling strength. Our
numerical results show that 100% spin-polarized and pure
spin thermopower can be obtained by varying several system
parameters, such as spin-polarization of the QD-MZM
hybridization interaction, inter-MZM coupling strength,
magnitude of the SHA, and the dot levels.

2 MODEL AND METHODS

The system Hamiltonian we study can be written in the following
form [30, 31, 38].

H � ∑
kβσ

εkβc
†
kβσckβσ +∑

σ

εdd
†
σdσ + Ud†

↑d↑d
†
↓d↓ +∑

kβσ

(Vkβc
†
kβσdσ + H.c) + HMZMs,

(1)

where c†kβσ (ckβσ) is the creation (annihilation) operator for an
electron with momentum k, energy εkβ in the non-interacting
leads β � L, R. d†σ (dσ) is the electron creation (annihilation)
operator having gate voltage tunable energy level εd, spin-σ and
intradot Coulomb interaction U. The coupling strength between
the QD and the leads is described by Vkβ. The last term HMZMs in
Eq. 1 is for the MZMs formed at the ends of a topological
superconductor nanowire. Here we assume that the QD is side-
coupled to one mode of the MZMs and [39],

HMZMs � iΔMη1η2 +∑
σ

λσ(dσ − d†σ)η1, (2)

in which ΔM is the inter-MZM coupling strength with ηj �
η†j (j � 1, 2) and {ηi, ηj} � δi,j. The spin-dependent
hybridization strength between the MZM and electrons on the
QD is λσ. We transform the Majorana operator ηj to the regular
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fermionic operators f as [39] η1 � ( f † + f )/
�
2

√
and

η2 � i( f † − f )/
�
2

√
, and then HMZMs is rewritten as

HMZMs � ΔM f †f − 1
2

( ) + 1�
2

√ ∑
σ

λσ(dσ − d†σ)( f † + f ). (3)

In this paper, we study the thermopower in linear response
regime (infinitesimal bias voltage ΔV and temperature bias
ΔT) which is calculated from Sσ � −K1,σ/(eTσK0,σ), where the
integrals are [28–31],

Kn,σ � 1
Z
∫ (ε − μ)n −zfσ(ε)

zε
[ ]ζσ(ε) dε2π, (4)

in which Z is the reduced Planck’s constant, and μ � 0 is the leads’
chemical potential. The spin-dependent equilibrium Fermi
distribution function is written as fσ(ε) � 1/{1 + exp [(ε −
μ)/kBTσ]} with kB the Boltzmann constant and Tσ the spin-
dependent equilibrium temperature known as SHA in the leads.
Here we set the spin-resolved temperatures in the leads to be T↑ � T +
δT/2 and T↓ � T − δT/2 with T the system equilibrium temperature.
The transmission coefficient ζσ(ε) in the above equation can be
obtained by using the Dyson equation method combined with
Keldysh nonequilibrium Green’s function technique as [28–31],
ζσ(ε) � −2~ΓImGr

e,σ(ε), where ~Γ � ΓLΓR/(ΓL + ΓR) and the line-
width function ΓL(R) � 2π∑k|VkL(R)|

2δ[ε −εkL(R)] is independent of
electron spin for normal metal leads. The electron retarded Green’s

function in the transmission coefficient can be calculated by theDyson
equation method as [40, 41].

G �

gr−1e,↑ + iΓ/2 0 0 0
λ↑�
2

√ λ↑�
2

√

0 gr−1h,↑ + iΓ/2 0 0 − λ↑�
2

√ − λ↑�
2

√

0 0 gr−1e,↓ + iΓ/2 0
λ↓�
2

√ λ↓�
2

√

0 0 0 gr−1h,↓ + iΓ/2 − λ↓�
2

√ − λ↓�
2

√

λ↑�
2

√ − λ↑�
2

√ λ↓�
2

√ − λ↓�
2

√ ε − δM 0

λ↑�
2

√ − λ↑�
2

√ λ↓�
2

√ − λ↓�
2

√ 0 ε + δM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

,

(5)

where Γ � ΓL + ΓR, and the electron (hole) free retarded Green’s
function is calculated from the equation ofmotionmethod as [40, 41].

gre(h),σ �
1 − n�σ

ε ∓ εd
+ n�σ

ε ∓ εd ∓ U
. (6)

The interacting electron Green’s function then is obtained as
Gr
e,↑(↓) � Gr

11(33). The occupation number nσ in the above free

retarded Green’s function needs to be calculated self-consistently
from the equation of nσ � −2~Γ∫ dεfσ(ε)Gr

e,σ(ε)/2π.

3 RESULTS AND DISCUSSION

In the following numerical calculations, we set the band width in
the leads D � 40 as the energy unit, and fix ΓL � ΓR � 0.1. Other

FIGURE 1 | The spin-up electrical conductance G↑ in (A), and
thermopower S↑ in (B) as functions of the dot level εd for indicated parameters,
respectively. Due to the arrangement of λσ,G↑,P�0 �G↓,P�1,G↑,P�1/4 �G↓,P�3/4,
and G↑,P�1/2 � G↓,P�1/2. The same holds true for the thermopower, and
then we only illustrate the results of spin-up component.

FIGURE 2 | G↑ in (A) and thermopower S↑ in (B) as functions of system
equilibrium temperature T for the given parameters. The thermpower changes
sign by varying the temperature with the help of the MZMs.
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constants are e � Z � kB � 1, with the leads’ chemical potentials μL
� μR � μ � 0. Figure 1 shows the influences of QD-MZM coupling
strength on the electrical conductance and thermopower without
SHA (δT � 0). In numerical calculations, the spin-dependent
hybridization λσ is set to be λ↑ � λ(1 − P) and λ↓ � λP, with P the
spin-polarization of the QD-MZM hybridization [40]. For the
particular arrangement of λσ, we only present G↑ in Figure 1A
and S↑ in Figure 1B, the behaviors of the spin-down component
can be easily deduced. For P � 0, λ↑ � λ whereas λ↓ � 0, and G↑ in
Figure 1A shows the typical double-peak configuration due to the
Coulomb-blockade effect [30, 31]. The peaks’ height is half of its
quantum value e2/h. With increasing P, the magnitude of λ↑
decreases and the peak’ height of G↑ increases, accordingly. For
p � 1, the spin-up electrons on the QD are totally decoupled from
the MZM as λ↑ � 0 and then the peak of G↑ � e2/h. If the QD is
coupled to a regular fermion, the peak value of the electrical
conductance is zero, which is not shown here [39]. Such a change
of the conductance G induced by the QD-MZM coupling
originates from the half-fermionic properties of MZM and was
first found by Liu et. al., and is a strong evidence of the existence
of MZMs. [39].

Figure 1B shows the spin-up thermopower S↑ varying with
respect to the dot level εd for different value of spin-polarization of
QD-MZM coupling strength. For λ↑ � 0 (P � 1), the thermpower
has three zero points individually at εd � 0, εd � −U/2, and εd � −U
as shown by the green dash-dot-dot line [30, 31]. At the two sides

of each zero point, S↑ develops two sharp peaks with opposite
signs. From the calculation formulae of the thermopower and
Kn,σ, one can see that the integrand of K1,σ is antisymmetric with
respective to the chemical potential for symmetrical transmission
coefficient ζσ(ε). This indicates that, for λσ � 0 the magnitude of Sσ
will be obviously suppressed in left-right symmetrical system as
the tunneling of electrons will be compensated by the holes at the
three zero points [27–30], which leads to null thermoelectric
effect, i.e., zero thermopower. With increasing λ↑ (decreasing P),
the value of the thermopower at the zero points keep unchanged,
whereas at other dot level except for the electron-hole symmetric
point εd � −U/2, it fist decreases, reaching zero and then changes
its sign. Such a sign change of the thermpower induced by QD-
MZM coupling was also predicted by Chi et. al. in a recent work
[30, 31]. We emphasize that in their work, the spin-up and spin-
down electrons couple to the MZM with equal strength, i.e., the
coupling strength between the QD and the MZM is spin-
independent, and then the thermpower changes sign in the
whole dot level regime. In the present paper, however, the
consider the case of the spin-dependent QD-MZM coupling
and find that the thermopower will not change its sign around
Sσ � −U/2. The sign of Sσ can be reversed by varying the value of P
indicates that the electron or hole tunneling direction is tunable
by the MZM. As is known that the thermoelectric effect arises
from the thermal bias applied between the two leads. We assume
the left lead is hotter as compared to the right one, and then there

FIGURE 3 | Spin-up thermopower in (A), spin-down thermopower in (B), charge thermopower in (C) and spin thermopower in (D) as functions of SHA magnitude
δT for indicated parameters.
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are more electrons above the chemical potential in the left lead
and more empty states below the chemical potential. If the dot
energy level is below the chemical potential, electrons in the right
lead will transport to the left one and occupy the empty states.
This induces a positive thermopower. If the dot level is above the
chemical potential, electrons in the left lead will tunnel into the
right one and induces negative thermopower [27–29]. For non-
zero λσ, the electron energy levels are modified by the QD-MZM
coupling [39]. Therefore, electron transport is converted into that
of holes at different energy states, inducing sign change of the
thermopower. It is worth noting that the sign change of the
thermopower induced by MZM-MZM coupling ΔM was early
predicted [28] and proposed to be an detection means for the
existence of Majorana fermions. The sign change of the
thermpower by QD-MZM coupling may provide a more
feasible means to probe the existence of the MZMs as
compared to the direct coupling between the MZMs. This is
because that in experiments the value of ΔM is adjusted by the
length of nanowire hosting MZMs [32, 33]. For long enough
nanowire, ΔM vanishes. The strength of QD-MZM coupling,
however, can be adjusted in experiments by the capacitive
coupling of the tunnel-gate between QD and MZMs [32, 33].
The sign change of the thermpower can be explained as follows: in
definition of the thermopower and K1,σ, one can see that Sσ is
proportional to ∫εdε and is zero for symmetric ζσ(ε) when εd � 0
or − U. Because − zfσ(ε)/zε is symmetric with respective to ε � 0
and − U, the peaks of the ζσ(ε) induced by QD-MZM coupling in

the positive (negative) energy regime moves toward (away from)
the chemical potential. At low temperatures, the Sommerfeld
expansion of the Fermi function shows that the thermopower
obey the relationship of Sσ � S0εd/2λ

2
σ , and induces negative

(positive) thermopower at the corresponding dot level. Note
this relationship between Sσ and λσ is valid for only nonzero λσ.

Figure 2 presents spin-up conductance G↑ in (a) and S↑ in (b)
varying with the system temperature T for different values of P
(λ↑) and fixed λ � 0.05. Since S↑ � 0 at εd � 0, we then fix εd � −0.1.
Figure 2A indicates that at ultra-low temperature, the
conductance for p � 0 is G↑ � e2/2h showing the exotic half-
fermionic character of the MZMs [39], see the solid line. It is
worth of noting that the property of G↑ � e2/2h is independent on
the value of dot level. With increasing temperature, the thermal
motion of electrons becomes stronger and the impacts of QD-
MZM coupling is weakened. As a result of it, the value of
conductance is suppressed accordingly. When P > 0, the
coupling between spin-up electrons on the QD with MZM
becomes weaker, and then the conductance is also suppressed.
For P � 1, the spin-up electrons is free from interaction with the
MZM, and the conductance becomes normal as shown by the
green dash-dot-dot line. The thermopower in Figure 2B shows a
clear sign reversion at a particular system temperature T for small
spin-polarization of the dot-MZM coupling strength P [or,
equivalently large λ↑ � λ(1 − P)]. It is found that the
transition temperature of S↑ become lower with smaller λ↑.
For very weak λ↑, S↑ is positive in the whole temperature
regime. As was explained in our previous work, the sign
reversion of the thermopower is induced by the asymmetric
transmission in the presence of the QD-MZM coupling. Since
the sign reversion of the thermopower depends on both the
system temperature and magnitude of QD-MZM coupling, it
enable that one spin component thermopower is zero whereas the
other component is finite. In this way, a 100% spin polarized
thermopower can be obtained. It is also possible that the
thermopowers of the two spin components are of the same
amplitude but have opposite signs, i.e., a pure spin
thermpower without the accompany of charge thermopower.
In spintronics, 100% spin-polarized and pure spin
thermopowers are the corresponding currents or bias voltages.

We study influences of the SHA denoted by δT [7, 23, 24] on
the thermopowers at different dot levels in Figure 3. Here we set
p � 0.5 so as to λ↑ � λ↓ and S↑ � S↓ for δT � 0. It is found that S↑ in
Figure 3A and S↓ in (Figure 3B) respectively approach to positive
and negative values with increasing δT [38]. This is because the
spin-up and spin-down electrons are in different temperatures for
finite value of δT, and then have corresponding different
transition temperature of the thermpower. The charge
thermopower Sc � S↑ + S↓ in Figure 3C may also change its
sign at dot levels of εd � −0.3 and −0.2, whereas it keeps positive at
εd � −0.1. Interestingly, the charge thermpower Sc � 0 at about δT �
3T/4 for both εd � −0.3 and −0.2, which provides a feasible way of
changing the charge thermopower. In Figure 3D we present the
result of pure spin thermpower Ss � S↑− S↓. There are three
characters worth to be pointing out: one is that Ss shows the
perfect linear relationship with δT, which is ideal in detecting the
strength of SHA; and the other is that Ss is positive in the whole

FIGURE 4 | Thermopower for spin-up electrons in (A) and spin-down
ones in (B) as functions of the dot level for varying MZM-MZM coupling
strength ΔM for indicated parameters.
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range of δT. This indicates that a pure spin thermopower in the
absence of charge thermopower can be generated by properly
adjusting some system parameters, such as the dot level,
magnitude of SHA, QD-MZM coupling strength or its spin
polarization. At last, the magnitude of Ss is comparable to that
of the charge one, which is important in thermospin devices.

Finally in Figure 4 we present the influences of MZM-MZM
coupling strengthΔM on the spin-dependent thermopower. Themost
important property of the spin-up thermpower in Figure 4A is the
sign change induced by ΔM, which has also been found in some
previouswork [28, 30, 31, 38]. The sign change of the thermopower by
ΔM can also been explained in terms of the shape of the electronic
transmission function ζσ(ε), [1, 2] which not shown here. For the
particular value of P, the spin-down thermopower in Figure 4B keeps
unchanged. From the two figures one can see that S↑ and S↓ of the
same amplitude may be opposite in sign, which enable the emerge of
100% spin polarized or pure spin thermpowers.

4 SUMMARY

In conclusion, we study properties of spin-dependent
thermopower adjusted by MZMs in a QD connected to two
normal metal leads. Our numerical results show that the spin-
polarized thermopower will change its sign by varying the system
equilibrium temperature with the help of interaction between the
dot and one mode of the MZMs, which is useful in generating

100% spin-polarized or pure spin thermopowers. The SHA will
change the signs of spin-up and spin-down thermpowers with
enhanced magnitude. By the combined effect of the SHA and
hybridization between the dot and MZM, the spin-polarized
thermpower can be fully adjusted and enhanced, which is vital
in energy-saving nanoscale devices.
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