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In this contribution, the main guidelines that, in the opinion of the authors, will address
bioinspired technologies in the next future are discussed. The topics are related to some
specific subjects. The presented perspectives could be useful to remark how bioinspired
technologies can be applied to solve every day problems in a low cost and sustainable
way. Moreover, all the considerations reported hallmark the need of changing the
paradigm to design innovative bionspired systems. Efficient and alternative bioinspired
systems cannot be designed by only looking at macroscopic scale as observed in nature.
The efforts of this paper are oriented towards providing a wide perspective on bioinspired
technologies as complex systems where nonlinear phenomena are fundamental elements.
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1 INTRODUCTION

The main guidelines for the design of bioinspired advanced systems will be presented in this paper.
The approach is generally oriented to the paradigm of biomimetics [1, 2] that consists in the
examination of nature, its mathematical models, the various biological processes and then in the
identification of all the elements emulating or taking inspiration from nature to solve human
problems. The discussion presented in this communication is mainly related to research, presenting
projects developed by the authors during the last decades [3–5]. Therefore, the paper does not discuss
all the problems related to bionspired approaches. This paper can be considered a platform of
discussion and perspectives and aims at proposing the paradigm of complex systems as an effective
point of view on Bioinspired Technologies. The ideas are fixed points that derive from laboratory
experiences, continuous discussions developed in the scientific community, projects with industrial
partners, interdisciplinary knowledge integrated with modern silicon technologies, coupled to the
complex system science.

The contribution is organized as follows. In Section 2 some aspects and applications based on the
main principles of living systems considered of great interest for potential applications are presented,
with some of them that already shown their capabilities for solving real problems. Focus will be given
to the Cellular Nonlinear Networks (CNN) [6]. Moreover by using analog circuits strictly related to
the Central Pattern Generator (CPG), innovative systems inspired by insect locomotion are
presented [7].

In Section 3, the main principles that make living systems efficient are discussed. In particular
both the active role of noise [8] and of imperfection [9–11] will be remarked. In considering new
design paradigms, the previous two items are particularly relevant. A further general principle that
can drive the design of dynamical bioinspired systems is synchronization [12, 13]. In Section 4, the
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challenges and the opportunities of fully bioinspired technologies
will be discussed with reference to several other aspects. Further
remarks regarding the Neural Networks and innovative concepts
in distributed memories will be dealt with [14, 15]. The previous
topics will be related to the concept of the active matter [16, 17],
both looking to the active waves and the cooperative behavior. In
Section 4 of this paper several examples of real living systems that
could be source of inspiration for new technologies will be
outlined. In particular the case of plant revolution [18–20] will
be remarked.

The conclusive remarks will summarize the discussed
concepts and the main ingredients in order to conceive
innovative classes of bioinspired technologies.

2 PROPERTIES OF LIVING ORGANISMS
FOR INNOVATIVE REAL-WORLD
CHALLENGES
In this Section, we will focus on peculiar properties related to the
locomotion of living systems and how to use them in order to
actuate robotic systems. In order to face this aspect, we want to
introduce a bioinspired device on which the locomotion pattern
generation is based, the Cellular Nonlinear Network (CNN).

2.1 The Cellular Nonlinear Network
Paradigm
In introducing the CNN paradigm, the notion of emergent
properties of a complex dynamical system is particularly
important. This concept gained popularity due to the actual
powerful performance of computers and to the internet era,
this notion has a long history being related to the evolution,
the self-organization and to the interaction among population of
entities that could be said cells. With this term we indicate simple
units that, thanks to their cooperation, lead to an emergent
behavior, that cannot be explained observing and analyzing
the behavior of the single units.

The history of emergence starts from the David Hume’s
Dialogue concerning Natural Religions [21] and reached a
mature level with the ideas of Gell-Mann [22] and Kauffmann
and Mainzer [23, 24]. Definitely, in electronic and information
technologies the concept of emergence has been widely applied by
Leon Chua, in his theory of CNN architecture [25]. Leon Chua
conceived the CNN concept in the 1988. The idea has been
inspired by living systems and in particular by the synergetic
properties of elementary units said cells that are locally connected
as observed in living systems cells.

After the original paper by Chua and Yang in 1988 [25],
different scientific communities dedicated their efforts to CNN
studies, regarding both theoretical aspects and applications in
different fields. CNN studies stimulated the improvement of
technologies and VLSI design. A lot of books on CNNs have
been published and the topic is still nowadays a fundamental one
in various conferences and scientific societies. Since the
beginning, every 2 years a conference dedicated to CNN
studies has been regularly organized. Moreover, the CNN

universal chip represents a milestone in information
technology: it is a fully programmable 128 × 128, 0.35 μm
CMOS cell processor, where the main features are the digital
interface of the analog core interfaced with an array of photo-
sensors for direct optical image and video processing. The chip,
reported in the Figure 1, has been realized during the FP4 project
DICTAM—Dynamic image coding using tera-speed analog IC
visual microprocessors, with the participation of the University of
Catania and STMicroelectronics.

Even if high standard technologies lead to very sophisticated
and fast devices (about 1015 operations per second), the absolutely
simple and reliable concept of CNN allow scientists, researchers
and practitioners to realize parallel analog architectures in their
labs with low-cost components. This is the additional power of
CNNs: each of us, each student can build his CNN with few
components in his home lab! Our efforts in this review will be also
devoted to give self-contained information and material to
do this.

In its standard definition a CNN architecture consists of a
rectangular array of M × N identical cells C(i, j) where (i, j) with
i � 1, 2, . . .,M and j � 1, 2, . . ., N indicates the spatial coordinates
of the single cell, i indexing the rows and j the columns.

A schematized representation of a CNN is reported in
Figure 2A in which each cell is locally linked with the others
within a connection radius equal to one. This means that each cell
communicates locally with the nearest ones. In a general
architecture a radius greater than one can also be considered.
Indeed, the local connectivity permits the real-time propagation
of the system variables to all cells. Information propagates
similarly to a wave inside the network. Each cell, which is a
continuous-time dynamical system (in the original CNN
formalization it is a first-order system), is characterized by the
following signals:

• The input signal Vuij;
• The state variable signal Vxij;
• The output signal Vyij.

FIGURE 1 | Photograph and list of chip characteristics of the 128 × 128
CNN-UM chip developed during the FP4 DICTAM project.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7500902

Arena et al. Bioinspired Technologies for Future Trends

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The elementary electrical circuit of a single cell is reported in
the inset of Figure 2A. It is a first-order dynamical circuit in
which the state variable is the voltage across capacitor C and the
output nonlinearity is realized through the nonlinear resistor Ry
whose current-voltage characteristic implements the saturation
function

Vyij �
1
2
(|Vxij + 1| − |Vxij − 1|) � f(Vxij) (1)

As concerns the other elements in the considered circuit, they
are voltage-controlled current generators and, in particular:

• Ixu(i, j; k, l) � B(i, j; k, l)Vukl is the current generated by
the generator controlled by the input voltage Vukl where B(i,
j; k, l) is a space dependent mathematical operator.
Generically, it depends both on i, j and on the contour of
the single cell;

• Ixy(i, j; k, l) � A(i, j; k, l)Vykl is the current generated by
the generator controlled by the output voltage Vykl where
A(i, j; k, l) is a space dependent mathematical operator.
Generically, it depends both on i, j and on the contour of the
single cell;

• Iij is a constant current generator.

Given these definitions, and referring to the circuit in
Figure 2A, we apply the current Kirchhoff law to the generic
cell C(i, j) to get:

C
dVxij

dt
� − 1

Rx
Vxij + ∑

C(k,l)∈Nr(i,j)
A(i, j; k, l)Vykl

+ ∑
C(k,l)∈Nr(i,j)

B(i, j; k, l)Vukl + Iij (2)

with 1 ≤ i ≤ M and 1 ≤ j ≤ N, while Nr(i, j) represents the r-
neighborhood of cell C(i, j) defined as

Nr(i, j) � C(k, l)|max |k − i|, |l − j|≤ r, 1≤ k≤M & 1≤ l≤N{ }
(3)

The operators A and B are labelled feedback and control
template. Altogether A and B are referred to as the cloning
templates. In practical applications space invariant templates
and a 3 × 3 neighborhood (radius of influence r � 1) are
usually considered.

We adopt the following notation:

• Boundary cells: those cells belonging to the first and last
columns and rows;

• Corner cells: those cells located at the corners of the CNN.

The choice of appropriate boundary conditions is a
fundamental point in problems of partial differential
equations. In fact, the CNN represents a discrete-space,
continuous-time system. Boundary conditions are applied
considering a frame of additional cells around the M × N
CNN, as represented in Figure 2B where the light gray cells
compose the frame of a 5 × 5 CNN. The state variables of
additional cells are set according to the following possible
choices:

• Fixed, or Dirichlet, boundary conditions: the additional cells
provide an output set to a constant value;

• Zero-flux, or Neumann, boundary conditions: the
additional cells are constantly updated so that each of
them provides an output which is equal to that of the
proximal cell of the actual boundary;

• Periodic, or toroidal, boundary conditions: the additional
cells replicate the output of the actual boundary at the
opposite side of the CNN.

By using the convolution operator and normalizing with
respect to the time constant RxC, the equation of each CNN
cell becomes:

dxij

dt
� −xij + ApYij + BpUij + I (4)

with 1 ≤ i ≤ M and 1 ≤ j ≤ N.

FIGURE 2 | Cellular Nonlinear Networks. (A) Each cell C(i, j) of the array is connected with its neighbors and realized by the nonlinear circuit shown in the inset. (B)
Additional cells (in light gray) are used to represent the boundary conditions of the cells of a 5 × 5 CNN (in dark gray).
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The model introduced with Eq. 4 describes the dynamical
behavior of a generic M × N CNN whose cells can be considered
as placed over a two-dimensional plane. This model is often
indicated as single-layer CNN. Thus, in the single-layer model,
each cell has a single state variable. Furthermore, it is worth to
note that in Eq. 4 the cloning templates and the bias are
considered as being space invariant. Due to the fact that the
main applications of CNNs make use of this assumption, in the
following sections cloning templates are considered space
invariant. The model can be generalized to multiple state
variables considering several stacked single-layer CNNs. A
multi-layer CNN (or ML-CNN) can be also viewed as a
single-layer CNN in which each cell has several state variables.
Within the same cell any interaction between the state variables
can occur, whereas the cell-to-cell interaction remains local, that
is, restricted to the r-neighborhood.

The CNN scheme represents an analog system made by a huge
number of differential equations. Let us consider, for example, a
128 × 128 CNN, its dynamics includes more than 13,000 state
variables. The corresponding nonlinear dynamical system is solved
in real-time in few milliseconds. This means that the steady-state
stable equilibrium point, if it exists, is reached in short time, with
high speed. Note also that we are considering nonlinear systems
with a great number of equilibrium points so that the end point
depends on the initial state and on the input signals. The previous
considerations lead us to consider CNNs as very powerful analog
circuits able to solve nonlinear partial differential equations.
Moreover, they can constitute associative memories.

Indeed, the power of CNNs derives from their architecture and
the nonlinear behavior of its dynamics. If we consider a CNN and
a r-neighborhood with r � 1, the system dynamics is determined
by the 9 coefficients of the template A and the 9 coefficients of the
template B. Including the bias constant current I, we have 19
parameters. Hence, by considering space-invariant cloning
templates, a powerful system with more than 10,000 equations
depending only on 19 parameters can be obtained!

By using different cloning templates A and B we can program
the CNN in order to obtain different operations. By choosing the
cloning templates we build a dynamical system whose steady-
state solution gives the desired processed information starting
from a matrix of initial conditions and of input signals. The key
point in the development of CNN systems is to create a suitable
family of cloning templates that solves some basic operations.
Then, executing one after the other such simple tasks, complex
algorithms for image processing can be implemented.

Four aspects of CNNs must be remarked:

• They have been conceived as nonlinear image processing
architecture;

• The images to process are used to initialize inputs and/or
state variables, thus the size of the CNN should be fixed to
reflect that (in pixels) of the considered image;

• Gray-scale images must be normalized in the range [−1, 1],
where −1 maps white, 1 maps black and 0 the average gray;

• From their intrinsic structure CNNs are solvers of partial
differential equations, that are discrete in space and
continuous in time.

Real-time image processing is a difficult computational task
such as, for instance, the times for classical segmentation and
interpolation operations depend on the processor used to
perform them. For their high performance in carrying out
parallel processing and their high speed of execution, CNNs
are a valid alternative method to the classical processing
techniques. The cloning templates A and B to perform
standard image processing have been derived heuristically
taking into account some guidelines that have been
successfully used in spatial digital filters. Furthermore, libraries
of standard templates are available [26].

To apply CNNs in the field of image processing, the simple
CNN model in Eq. 4 must be fed by a two-dimensional array of
data, typically a gray-scale digital image that is set as the initial
value (normalized in the [−1, 1] range) for the cell state variables.
This image is then processed as result of the dynamical evolution
of the CNN. Here for example if there is no input, then B(i, j; k, l)
� 0 or uij � 0. As the evolution of the CNN dynamical system
takes place, the state changes in a way that depends on the cloning
templates. As soon as a steady-state is reached, then the state
values (or the output) can be considered as the result of the
processing task, reinterpreting them as the processed image.
When B(i, j; k, l) ≠ 0 another array of data is available for
processing, such that it can be used as a second operand and other
tasks can be performed. In this way, the templates represent the
instructions given to the machine performing the operations,
while tje initial state and the input are the operands. More
complex processing can be obtained by iterating this type of
operations, using different templates in sequence, as it occurs for
data processed by various instructions in a computer program.
This duality between templates and computer instructions is the
principle underlying the so-called CNN Universal Machine
(CNN-UM).

One of the problems of CNNs, known as the learning and
design problem, is how to find the templates that correspond to a
given processing task. This problem is equivalent to build a
dynamical system with the constraint of the CNN model and
choose the templates in such a way that the dynamics of the
designed system evolves in the desired manner. Practically, we
have seen that the design problem is solved when a desired task
could be transformed into a set of local dynamical rules. The dual
learning problem is considered when the templates are obtained
by using learning algorithms aimed at finding the coefficients so
that pairs of inputs and outputs are matched.

Another interesting approach to select the cloning templates is
the direct mapping between a partial differential equation and a
CNN model. If an equivalence between the two models can be
established, then the templates are directly derived.

Let us consider the elementary CNN cell, that can be viewed as
a simple brick. Can we realize a general dynamical system by
coupling more than one cell? From the coupling of dynamical
cells, does the CNN generate a more complex dynamics? And
what kind of nonlinear dynamics can be obtained from a CNN,
taking into account that it is programmable and extremely flexible
circuit? Quite importantly, answering these questions defines the
class of circuits whose dynamics can be reproduced by the CNN.
In this way, the cell becomes the primitive of a class of dynamical
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circuits. To provide the guidelines to establish what we called
“procedure for the design of cells” a further definition of a new
(and more complete) class of CNNs must be given.

The state controlled cellular neural network (SC-CNN) is a
generalization of the standard CNN architecture obtained by
introducing a further template, namely Â indicated as the linear
feedback template, which encompasses in Eq. 4 a term related to
the state variables of the cells. The following model is referred to
as one-layer SC-CNN, using the convolution formalism described
above:

_xij � −xij + ApYij + ÂpXij + BpUij + I (5)

where 1 ≤ i ≤M and 1 ≤ j ≤N and the operators A and B represent
the feedback and control template, whereas the operator Â is said
the state template. The output nonlinearity is the standard PWL
one, as defined above. Here, we have not explicitly indicated the
space-dependence of the templates, although in many
applications they do depend on space.

The procedure to realize arbitrary dynamical circuits as SC-
CNNs is based on the following steps:

• Define the discrete component realization of SC-CNN cells;
• Generate nonlinear dynamics by using SC-CNN by using a
number of cells equal to the system order;

• Define a strategy to realize nonlinearity different from the
canonical PWL one;

• Implement the nonlinear systems with circuits based on the
SC-CNN cells.

These considerations lead to the conclusion that nonlinear
systems with complex dynamics can be realized by CNN cells. So,
although the cells are simple, that is, their uncoupled dynamics
displays a trivial behavior, coupling them, as the CNN philosophy
suggests, leads to the emergence of the complex dynamics.
Moreover, the paradigm of CNNs can be extended by
incorporating novel electronic devices which are at the same
time nonlinear and memory elements, the so-called memristors
[27, 28]. The use of such components allows CNN to be even
more efficient and leads to a easier implementation of the
integrated devices, as two key ingredients of CNNs
(nonlinearity and memory) are merged in a single component
opening the way to novel modeling paradigms [29].

2.2 The Reaction-Diffusion Cellular
Nonlinear Network
Many nonlinear phenomena such as solitons, autowaves, and
spiral waves appear in nonlinear active media and are of great
interest in biology, physics, neuroscience and many other fields
[30]. The model that characterizes them is the classical reaction-
diffusion equation:

_x � F(x, t) + D∇2x (6)

where x ∈ Rn is the state vector, F: Rn+1 →Rn represents the
reactive term, and D∇2x is the diffusive term including the

Laplacian ∇2x. Therefore a reaction that is modeled by the
nonlinear dynamical system

_x � F(x, t)
diffuses its effect in a medium thanks to the action of the diffusive
termD∇2x. If the phenomenon occurs in active media there is the
possibility that autowaves and active waves are generated.
Reaction-diffusion equations can be solved mapping their
dynamics on the CNN (or SC-CNN) architecture. We start
describing the model of a universal cell that could represent
the local reaction of an electronic cell.

Let us consider the following non-autonomous model:

_x1 � −x1 + (1 + μ + ε)y1 − sy2 + i1
_x2 � −x2 + sy1 + (1 + μ − ε)y2 + i2

(7)

Let us assume μ � 0.7, s � 1, ε � 0, i1 � −0.3, and i2 � 0.3 and
integrate the system dynamics. In Figure 3A,B the temporal
evolution of the two state variables x1 and x2 and the limit cycle
described in the phase plane are shown. The oscillations are
clearly periodic, but the waveform is far to be quasi-sinusoidal.

A specific feature is observed: oscillations occurs with a slow-
fast dynamics. This can be clearly seen by looking at Figure 3B
where the trajectory in the phase plane is reported using markers
taken with a constant sampling time. The density of markers is
not constant along the cycle, meaning that portions of the cycle
are fastly spanned (lower density) while other portions are slowly
spanned (higher density). This is a key feature of many reaction-
diffusion models and it is the reason why the model in Eq. 7,
characterized by the slow-fast dynamics, is particularly suitable to
realize a RD-CNN generating complex phenomena such as
pattern formations and autowaves propagation.

It is here important to remark that the spiking dynamics
observed in the CNN is also typical of other systems, as for
example the laser with feedback recently revisited in [31]. This
universal model, first proposed in 1986, has the same
potentialities as the CNN model and of several other
paradigmatic dynamical systems, hallmarking the importance
of spiking dynamics in the implementation of control systems
inspired to biological systems.

Once identified Eq. 7 as a potentially good model to mimic
reaction-diffusion systems, we consider it as the dynamical
system governing the M × N cells of a two-dimensional array.
The equations of the global system are written as:

_x1ij � −x1ij + (1 + μ + ε)y1ij − sy2ij + i1ij +D1(y1i+1,j + y1i−1,j

+ y1i,j−1 + y1i,j+1 − 4y1i,j)
_x2ij � −x2ij + sy1ij + (1 + μ − ε)y2ij + i2ij +D2(y2i+1,j + y2i−1,j

+ y2i,j−1 + y2i,j+1 − 4y2i,j) (8)

with 1 ≤ i ≤M and 1 ≤ j ≤ N. The system represents a RD-CNN,
and, in particular, a two-layer CNN, where the cells interact each
other via two diffusive terms, each term acting in one of the two
layers and associated with its own diffusion coefficient (D1 orD2).
The model is reformulated in the standard two-layer CNN
form as:
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_xij � −xij + Apyij + I (9)

where xij � x1i,j x2i,j[ ]T, yij � y1ij y2ij[ ]T, and I � I1 I2[ ]T.
This reaction-diffusion CNN can be considered a reference for

modeling, by means of circuits, different processes and
phenomena. In fact, it can emulate both autowaves and
Turing patterns which are the basis of the bioinspired robot
locomotion system.

2.3 Bioinspired Locomotion
An important finding of neurobiological studies is the fact that
coordinated motion is generated by the central nervous system
(CNS) via specific patterns of motor neuron impulses. Muscle
commands form a motor program that is structured before the
movement begins and is sent to muscles with the proper timing
assuring that a predefined motion sequence can be carried out,
also in the absence of feedback from peripheral sensors [32]. The
structure devoted to generate the motor oscillators in vertebrates
and invertebrates is the Central Pattern Generator (CPG). This
structure is capable of generating either plateau potentials or
oscillations for rhythm generation, but also of driving the
transition among various types of locomotion (walking,
running and swimming) [33].

The CPG can be viewed as a complex of two groups of
neurons. Local pattern generating neurons (LPGNs) are
devoted to produce the rhythmic movements driving the
mucles in animals or, more in general, e.g., in bioinspired
robots, the locomotion effectors. These neurons are controlled
by a higher level neural centre where the command neurons

(CNs) are located. These are devoted to select a specific
locomotion pattern among those possible, eventually also
relying on sensorial feedback. This allows the output of the
pattern generator to adapt to the environment [34, 35]. The
hierarchical organization of the CPG can be schematized as in
Figure 3C that shows as the CNs, as a result of sensory or central
excitation, activate the LPGNs that then produce the appropriate
timing signals needed by the specific locomotion pattern elicited
by the CNs.

The model of the neural signal processing occurring in the
CPG (in particular, the excitation and propagation of impulses in
nerve membranes) is based on nonlinear RD PDEs. This
observation is crucial as it enables its implementation via
CNNs that, as we have seen, are arrays of programmable and
easy realizable electronic analog circuits.

CNNs offer the possibility of an analog implementation of the
autowaves, required in the LCPG, and the Turing patterns, used
in the CNs, such that the whole control system of locomotion is
based on solving nonlinear PDEs in a spatial medium. The signals
obtained in the CNN are then used to control the joints of the
robotic structure. The idea of using Turing patterns to model the
CNs was introduced by Arena et al. [36]. Here, the core
mechanism is that the Turing pattern reflects the specific
locomotion pattern adopted. Instead, the LPGNs do not
produce stationary patterns, but autowaves that are then used
to trigger the muscle/motor system (more specifically, in the
structures considered in the following the signals generated by the
CNN cells are used to drive servomotors). A first example of a
CNN-based CPG is shown in [37] where the CNN consists of

FIGURE 3 | The Central Pattern Generator realized via CNNs. Dynamical behavior of the model (7): (A) temporal trend of the two state variables of a cell, and (B)
trajectory of a cell in the phase plane. (C) Schematic representation of the Central Pattern Generator, which is divided into an ensemble of local neurons controlling the
actuators of the locomotion pattern, and an ensemble of command neurons selecting the locomotion pattern to implement, on the basis of stimuli from higher neuronal
centers or of sensor feedback.
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FIGURE 4 | (A) A series of frames illustrating motion of the worm-like robot. (B) Regular locomotion leg cycles and (C) irregular leg cycles due to CNN ring damage
in the hexapod robot. The image sequences were obtained by recording, in a long-exposure photo, the light emitted by LEDs mounted on the robot foots. The red trace
is associated to the front leg trajectory, the green one to the middle leg, and the yellow to the hind leg.
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nine cells that can generate up to eight stable patterns. These are
associated to different locomotion patterns finally implemented
by a one-dimensional array of cells (the LPGNs) where
propagation of the autowave front takes place. This control
system was applied to drive several robots, and in particular
the worm-like robot illustrated in Figure 4A and the hexapod
robot of Figure 5. Figure 4B,C shows the macroscopic wave-
front propagation that takes place along the longitudinal robot
axis, from the back to the front side, pushing the robot in the
forward direction [38], in two diverse scenarios, where the neural
system is intact and when it is damaged. The result is particularly
striking as, even in the presence of severe fault, the hexapod is still
able to move.

The case of the hexapod robot is particularly interesting also
from the point of view of the implementation of diverse
locomotion patterns. Insects, in fact, display extraordinary
adaptation capabilities that manifest in several ways: one of
them is their ability to readapt the locomotion pattern to the
environment, here stereotyped via the implementation of three
distinct gait patterns. Each gait is initiated by the CNs and in
particular by one of the Turing patterns that can be generated. A
first example is shown in Figure 6, that is obtained by setting an
initial condition V0 � −0.15V on the cell A22. Via the classical
mechanism of diffusion-driven instability underlying Turing
patterns, this initial condition lets the other cells, initially set
at zero (the equilibrium point), move from this point until,
eventually, inhibition restores stability and the checkerboard
pattern emerges ([37] for details). Hence, this pattern
represents the equilibrium point for the six CNN cells. This
Turing pattern corresponds to the fast gait, also known as

alternating tripod, that is illustrated in Figure 7A. Each
horizontal bar represents the time that each leg spends
detached from ground (white part), or on the ground (black
part) [33]. This is not the only gait implemented in the hexapod
robot, on the contrary as shown in Figure 7B,C, the hexapod can
move also according to the medium or slow gait. To realize all
these patterns, the scheme of Figure 7D is adopted. Each cell of
the 2 × 3 CNN is associated to a leg of the robot, and, for this
reason, the cells have been labeled with the corresponding leg
name. In the LPGNs where there is another CNN structure (the
one generating autowaves), then the same signal needs to drive all
the legs that belong to the same group as derived from the Turing
pattern. For instance, for the fast gait, there are two groups of
cells; the gait can be achieved by connecting the three legs, L1-R2-
L3, to the same CNN cell (say A0), and the second set of legs, R1-
L2-R3, to a CNN cell where the autowave signal has a phase shift
of 180° with respect to A0. When another locomotion gait is
selected by the CNs (via another Turing pattern), then in the
LPGNs different pathways, involving a different number of
neurons, will be activated, as shown in Figure 7D.

In more detail, the key elements of the control system are: a
ring of neurons (realized by a CNN) where an autowave front
propagates, a set of connections between given neurons and the
motion effectors (in this particular case, a leg movement is elicited
by firing in these neurons), and the possibility of changing the
number of neurons within the loop, without affecting the cell
structure. Since the cell dynamics is not changed, the speed of
propagation of the wavefront is determined by the number of
neurons within the loop, being the speed faster for a lower
number of cells. Therefore, implementing the fast gait requires
a chain of neurons in a number smaller than those required for
the medium gait, that in turn requires fewer neurons than the
slower gait. As shown in Figure 7, the fast gait can be obtained by
connecting L1-R2-L3 to the cell A0 and the other legs to the cell
A3 which has a phase shift of 180°. The ring consists of six
neurons as the cells A5 and A0 are connected. For the medium
gait, instead, the ring includes the cells from A0 to A9 such that
the speed of the autowave front will be smaller and each leg will
move at a slower frequency. Finally, in the slow gait the loop
includes neurons from A0 to A11. In this simple way, exploiting
the adaptivity of a reaction-diffusion CNN in modulating the
speed of the wavefront as a function of the number of neurons, all
three gaits are efficiently implemented.

The intrinsic robustness that derives from the use of spatio-
temporal phenomena in the control system and the adoption of
experimental analog setup pave the way to unexpected emergent
properties. To illustrate them, we consider the fast gait and show
that it proves to be particularly robust to faults in the cell circuits.
The type of faults that is here considered is damaging one cell
such that the ring is no more intact. Different behaviors are
observed according to which cells are damaged. In particular,
moving from simulations, where the initial conditions have to be
properly selected to observe the autowave propagation, to real
circuits, we notice that setting the initial conditions is no longer
required as typically we find a dominant cell that triggers the
onset of wave propagation. The dominant cell discriminates the
different behavior that can be obtained. Indeed, if the ring is split

FIGURE 5 | Rexabot: the Reaction-Diffusion walking hexapod. Each leg
has two degrees of freedom, each actuated by a servomotor. The robot
kinematics is designed so that both leg joints can be driven by the same
output of a CNN cell. Motion coordination among the legs is obtained at
the level of the CPG.
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in correspondence of the dominant cell, the locomotion rhythm is
lost and legs are moved in irregular periods, due to the fact that
the leading cell will start the oscillation at irregular times.
Alternatively, different spurious wavefronts can also be
observed. This behavior is reflected into complex locomotion
patterns where the robot generally succeeds in the locomotion,
but with a different sequence of leg movements with respect to
that with the intact ring. We think that the results of these
experiments carried out in our laboratory provide a clear
evidence of emergent properties of the self-organizing
dynamics of spatially-distributed systems.

It is interesting also to discuss the strategy to turn the robot. To
change the robot direction (e.g., turning towards right), it is
possible to let the leg R1 (belonging to the tripod R1-L2-R3)
follow a longer trajectory with respect to the others. Using the
CNN framework, this is straighforward if, rather than moving
this leg at the same time of the other two legs by connecting it to
the CNN cell A3, it is connected also to the cell A2. Doing so, R1
will move earlier than the others, such that to implement the
desired change of direction.

Our attention has been mainly devoted to illustrate the CNN
implementation of LPGNs and how they are connected to the
robot legs so as to realize different types of gait. The CNs are only
used to generate specific Turing patterns under the feedback from
higher neuronal centers or from the environment. Here, for CNs
we used a 2 × 3 CNN, which, as demonstrated in [39], can
generate up to three stable patterns. If a larger number of patterns
is required, then the size of the CNN should be increased. For
instance, a 3 × 3 CNN can generate up to eight different
configurations, a 4 × 4 CNN up to 16, a 5 × 5 CNN up to 32,
and so on. The number of stable configurations grows as 2dwhere
d is the size of the array employed. Once again, local connectivity
and modularity are key to obtain the desired dynamics.

Another interesting feature of the CNN implementing the
CNs is that the transition from one pattern to another can be
elicited by acting only on a small number of cells. For example, to
elicit the checkerboard pattern it is sufficient to set the initial
conditions of only one state variable, despite the whole structure
has a larger number of state variables (twelve). Similar results
hold in larger structures, thus constituting another evidence of

FIGURE 6 | Turing pattern associated to the fast-gait. The pattern is characterized by two equilibrium values (depicted in black or white), which define the two
groups of legs that have to move simultaneously: the tripod R1, L2, R3 and the tripod L1, R2, L3.

FIGURE 7 | The three gaits implemented in the hexapod robot: (A) fast, (B) medium, and (C) slow. (D) Scheme of the locomotion pattern generator network
implementing the three gaits. Each gait is realized implementing rings of different sizes in the CNN structure, the smallest one associated to the fast gait, and the largest
one associated to the slow gait.
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the synergetic effects where the so-called regulative variables
enable the whole complex system to reach a given order [40].
These considerations are particularly relevant as a given stable
configuration can be attained by choosing one or more regulative
variables. Consequently, the greater the number of regulative
variables employed concurrently, the shorter the time to reach the
steady-state configuration. In our case, each regulative variable
can be connected to a different sensor, so that the robot may
change the type of locomotion in a faster way when many stimuli
concurrently arrive at the CNs.

We notice here that using CNNs to generate and control
locomotion of biologically inspired robots contrasts with the
approach often adopted where control is performed in a
highly sequential, digital and algorithmic way. With the CNN,
the locomotion problem is solved in real-time, via the use of
circuit emulator of nonlinear PDE solvers. In this sense, the CNN
approach resembles biological locomotion that is a complex
spatio-temporal phenomenon.

Thanks to the possibility of programming the templates, the
proposed architecture is particularly flexible and can be adapted
to other robotic structures. The same idea of switching the
templates also enables other approaches where the cells/
neurons are always linked to the same legs and the
locomotion patterns are changed by reconfiguring the
connections among cells in complex topologies [7, 41, 42] and
the units composing the distributed control system can be
generalized to consider other dynamics [43, 44]. Finally, it is
worth mentioning that not only biological locomotion schemes
can be reproduced with this approach, but also low cost analog
and programmable circuits that could pave the way to a new
control technology can be designed and realized [45].

From another point of view, robot locomotion can be
controlled by using innovative brain-computer interfaces [46].
These technologies merge the use of nonlinear time-series
analysis with efficient control algorithms, thus remarking the
possibility to link the complex system of the human brain with the
complexity of robot locomotion.

3 GUIDELINES AND PRINCIPLES THAT
MAKE LIVING SYSTEMS EFFICIENT

In this Section, two concepts will be emphasized: the crucial role
that noise plays in living systems and the effects of imperfections
will be discussed. Both noise and imperfections are considered
negative effects in ideal linear systems [47, 48], but both are
necessary in the evolution and in the biological development of
the living system. Moreover, it will be shown that the efficiency of
several biological systems are positively affected by both noise and
imperfections.

3.1 The Effect of Noise
Could noise in biological systems lead to new classes of
bioinspired devices? Noise is considered an undesired effect in
several systems. Examples are the acoustic noise, the thermic
noise in electronic devices, the effect of noise in
telecommunication, the effect of the noise in linear control

systems. The efforts of engineers are directed towards limiting
the drawbacks of the noise. The tremendous efforts that is
generally done in order to increase the measurement systems
precision is due to the effect of the noise [49].

Consider nowwhat happens in the living systems. Generally in
the last century, biologists looked at the noise from a qualitative
point of view taking conclusions only from observations.
Therefore, in order to get more information, more
experiments had been done and the statistics help a lot to get
the correct interpretation of data. The recent studies [9, 50], both
in nonlinear dynamics and in the emergent behavior of nonlinear
distributed systems, lead to consider fluctuation and noise in
biology in a different way. The noise is therefore considered not a
drawback.

Many biological functions take advantages from stochastic
fluctuations: consider for example the positive effect of noise in
the evolution. Therefore, noise in biology is considered now in a
positive way [8], addressing also information science in the
perspectives to consider it an added values in some
applications [51]. In biological systems and, in particular, in
the cell dynamics, even if the noise is considered due to the
increasing entropy that limits the channel information
capabilities, noise has a surprising constructive role: evolution
acceleration, increasing the fitness of the population and the
information capabilities of the signal pathways.

The route from qualitative biology to quantitative biology,
made bymodels and networks, informed us with many important
general concepts that could be useful when transferred in systems
engineering. Why do not consider the possibility of exploiting
noise in nonlinear systems, looking at the positive effects that
from it could derive? In order to reinforce the fundamental role of
noise in biology, we have to look at the gene expression
mechanism and in the transcription and translation
mechanisms where the chemical master stochastic equation
[51] addresses the biology, both in the large area in model
based biology and in the specific area where innovative
processing information systems could be conceived.

Moreover, the role of noise both in morphogenesis and in the
population fluctuations is an intriguing theme that leads to
reconsider positively the noise in real-world specific
applications. The living cell is a small world of intense and
continuous signals transmission. Even if from a macroscopic
point of view the noise does appear to have a negligible aspect,
being the cell a complex network made by the connections of
nonlinear units, noise plays a fundamental role in its hidden
communication paths [8]. A particular consideration arises today
in evaluating the key role that spatiotemporal fluctuations play in
several biological systems [52], allowing to conceive new
approaches in order to open an intriguing area of application
in network analysis and control.

Therefore the quantitative approach of biology stimulates the
evaluation of the emergent aspects of noise and makes the
biology models examples of impressive challenges to inspire
new approaches and new systems, in the electronics and
information technologies. The key aspect in this discussion is
based on the research efforts made in biology considering today
essential the nonlinear dynamics behavior and the self-
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organization principles. Moreover let us consider the case of
unicellular organisms, such as the bacteria, that switch from
normal state to spores. This switching phenomenon is classical
in nonlinear dynamical systems in the presence of noise. Could
the switching simple organism be considered like electronic
memories? Or could be the classical electronic memories
realized by living organisms working in the presence of
noise? Considering again the developments of multicellular
organisms, this is illustrated in modern morphogenesis as a
symmetry breaking phenomenon, as explained by Turing [53].
It is the key principle of pattern formation. This is enabled by
noise that triggers various switching phenomena in nonlinear
dynamical systems. All these phenomena belong to the class of
Reaction-Diffusion CNN, discussed in the previous section
[54, 55].

Therefore biologically inspired CNN architecture in silicon,
and noise opens another point of view in biology and suggest
the idea of incorporating in the CNN circuits the principle of
wave computation and wave memory based on the effect of
noise in the CNN circuits. The stochastic resonance is a
phenomenon of certain nonlinear systems that permits to
detect the systems response thanks to the presence of
suitable level of noise in the input. This characteristic is
completely in agreement with the role of noise in biological
mechanisms that encourage to design new systems for
communication and to design signal detection equipments
based on added noise systems [56, 57].

Let us consider how noise can have a positive effect in
control theory by considering the simple system reported in

Figure 8A. The feedback loop includes a dead-zone
nonlinearity that prevents subthreshold inputs to be
retrieved at the output of the system. Including a feedback
noise signal with a suitable level, the stochastic resonance
scenario that is triggered by the insertion of noise allows
the subthreshold input signal to be reconstructed at the
output, as shown in Figure 8B.

Stochastic resonance is a revolutionary approach from an
engineering point of view, since leads to design new devices
that improve their behavior thanks to the noise, also in agreement
with the message given by the biological world. In the next
subsection this concept is further explored.

3.2 Imperfections
Rita Levi Montalcini wrote one of her more important books on
imperfection [58]. In such contribution, she wrote this statement
on imperfection:

“Imperfection has always allowed continuous mutations
of that wonderful and very imperfect mechanism that is
the human brain. I believe that imperfection is more in
keeping with human nature than perfection.”

Imperfection is therefore a fundamental component of
evolution. From amphibians to Homo Sapiens, the vertebrates
brain has always let itself to an improvement, to a change, while in
invertebrates it was born so perfect that it did not enter the game
of mutations, so much so that the trilobites, which lived hundreds
of millions of years ago, are essentially not different from insects,

FIGURE 8 | Stochastic resonance in nonlinear systems. (A) Closed-loop system with the inclusion of feedback noise. (B) The subthreshold input signal (lower
panel) can be retrieved at the output of the closed-loop system (higher panel) when a suitable amount of noise is included.
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or from today’s arthropods. This is why imperfection “deserves
praise”.

The philosopher Telmo Pievani in his book [59] remarks the
main importance of the imperfection:

We are the result of a series of imperfections that have been
successful. Our brains and our genome, two of the most complex
systems that nature has produced, are full of imperfections.

The imperfect structures let us understand how evolution
works. Nature does not work as engineers, who systematically
optimize their inventions, but as a craftsman who does what he
can with the material available, transforming it with imagination,
arranging and reworking it. Even the natural history, that has led
us this far, is a catalog of imperfections that have worked, starting
from that infinitesimal deviation into the primordial quantum
vacuum from which the universe was born. The philosopher of
science and evolutionist Telmo Pievani, one of the most
prominent Italian writers of science, has recently written a
surprising essay where Lucretius and XXI century science go
arm in arm. Tracing the history of imperfection is of great
importance.

Taking into account the above considerations, the emerging
concept of imperfect systems opens a new challenge in the area of
bioinspired ideas. With this term, we do not refer to uncertain
systems, but rather to systems, as it typically occur to real ones,
that differ from their abstract mathematical model for any source
of non-ideality. A few examples can be used to clarify this aspect.
Friction-less and conservative systems are useful theoretical
models in mechanics, however in real system it is friction that
allows wheels to move. Analogously, junctions and transistors are
not realized with “perfect” semiconductors, but on the contrary
their working principle requires the presence of impurities. More
in general, the imperfect dynamics are the source of the
fluctuations that in turn allow the systems to properly operate.
These imperfect dynamics can also be exploited to regularize the
system behavior, for example inducing synchronization in
imperfect systems coupled each other. Imperfect systems
appear in biology, physics, engineering but also in art and
many other fields. The importance of imperfections and
imperfect systems is today subject of intense debate, as the
efforts generally made to obtain perfect systems are often
destined to fail, whereas often a system is working thanks to
the presence of some level of imperfection.

A remarkable example are the patterns shown in Figure 9. The
three cases are related to systems from different scientific fields:
the oscillations in E. Coli populations [52], the oscillations of

FIGURE 9 | Synchronization induced by imperfections. Three examples
of arrays of nonlinear systems in which organized behavior arises thanks to
diversity and imperfections in the model. From top to down: coherent
oscillations in the dimension of populations of E. Coli, organized
collective motion of forced pendulums, and synchronized behavior of
imperfect rotating coils.

FIGURE 10 | Lamprey-like swimming robot: (A) the robot in operation
and (B) CNN chip implementing the lamprey robot CPG.

TABLE 1 | Dimension of the nervous system of simple living systems.

Animal Number of neurons

Rotifers (Wheel Animals) 200
Jellyfish 5600
Leach 11000
Pond snail 20000
Aplysia 20000
Lobster 10000
Spider 100000
Drosophila 250000
Ant 250000
Honey bee 960000
Cockroach 1000000
Frog 16000000
Human 86000000
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coupled pendulums [60] and the rotation of coils coupled in a
magnetic field [61]. In the three cases synchronization occurs
thanks to imperfections.

4 THE ACTIVE MATTER

The theme of active matters is widely studied [62] and the term is
essentially referred to the collective motion of animals, to their
collective behavior, to the collective phenomenon of cell
migration.

This concept is strictly linked to the paradigm of what has been
discussed when CNN architectures has been introduced. In fact,
CNNs are conceived to exploit the cooperative behavior of many
simple elements, that are electronic cells. They can be considered
as classical bioinspired high performance distributed electronic
analog processors. Often today the swarm of simple robots is
considered as a particular active matter. Active matter in living
systems includes the concepts of large numbers of active agents,

each consuming energy but that cooperating each other to
achieve a double aim; the first one is the emergent behavior,
that allows the agent swarm to perform tasks that the single agent
cannot achieve as single unit; the second one is that cooperation
allows the agent to save energy. Intrinsically, the swarm does
work out of the thermal equilibrium.

Of course, we have many relevant examples of active matter in
biology. The following examples reported here are only two
different cases where the role of active matter is impressive,
with not exactly known mechanisms so that the research on
this subject is fascinating and can inspire future inventions of
inspired biosystems and devices.

The discussion will be referred to three cases of collective
behavior that emphasize another key concept, important in
bioinspired systems: synchronization. Moreover, the case of
the effects of turbulence in fluids may inspire artificial
swimming systems where the recovery of force leads to
something similar to the active matter.

4.1 Case 1: Catopsilla
The observations of C. B. Williams [63] referring to the swarms
that cross each other without any collision is astonishing. After
about one century, even if a mathematical model can be derived,
the real conditions under which the swarm phenomenon occurs
is still unknown. There is a swarm of butterflies that fly together
and a swarm of locusts that penetrates inside the first without any
collision. The distance among the insects are only few
centimeters. Is a phenomenon that occurs because of the
induced turbulence of the flight of each agent of the swarms?
It appears that is what occurs in more immiscible fluids. If it is
true, such type of conditions can be created in the swarm of flying
robots without local control.

Moreover, in swarms of insects another unknown question
does appear. They cover some thousand miles, they reach the
target following light signals, but the target is reached even if this
signal is lost. This is one example of active matter from which
future bioinspired systems may arise. It is a very important
problem. A possible change of paradigm would lead to an
increase of knowledge and the peculiarities of flying swarms
can stimulate this new paradigm.

FIGURE 11 | Structures in nature: (A) a cobweb showing accurate regularity and (B) root system of a ficus.

FIGURE 12 | Schematic representation of a nanorobot based on
piezoelectric materials for the actuation of the legs. The control system is
based on a CPG implemented via a CNN chip. The top layer provides both a
medium for harvesting solar energy and for collecting sensorial stimuli.
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4.2 Case 2: Fireflies
The Borneo fireflies collective behavior has been described many
times. It is a fascinating show that exists thanks to the
phenomenon of bioluminescence. Millions of fireflies flash
synchronously. The precision of light synchronization is about
few milliseconds [64].

The implementation of networks of decentralized elementary
electronic circuits, further biological findings, advanced models,
and new discoveries in the field of active matter could pave the
way to realize innovative large-scale systems of synchronous
oscillators. May these systems be also useful for brain
understanding?

4.3 Case 3: Dolphins
Let us consider the dolphins swimming speed [65]. It is computed
on the basis of studies on their metabolic balance, that indicate that
the speed that dolphins should achieve based on these
considerations is smaller than that really achieved by them. Is
the turbulence in the water (which reduces the viscous dissipation)
the reason for which dolphins may recover some energy?

Looking at these three open problems an area of intense
activity emerges. Moreover even if the computer models today
could help the scientist, only experimental observations and really
new types of non invasive measurements could lead to reliable
answers. An example of such experiment is the lamprey
swimming robot [66] reported in Figure 10A, equipped with a
CPG based on the CNN chip shown in Figure 10B.

4.4 Towards Further Opportunities Looking
at Nature
In order to get ideas for the realization of innovative biosystems,
researchers must take into accounts that continuous observations
and appropriate considerations must be done. Indeed, infinite
sources exist that could help scientists. First of all, the full
knowledge of the simplest organisms is the main source of
appealing artificial realizations.

It is general opinion that in order to understand the real
capabilities of each bioinspired system, scientists and engineers
must look at the evolution of the biological organism taken as
example for the artificial application. If we are interested in
building intelligent motion control system, it is fundamental
to look at the number of neurons of some set of organisms
that realize the desired motion patterns. Therefore it is useful to
keep in mind the Table 1 that allow us to derive some useful
information. It reflects in part the animals evolution.

The number of neurons is generally referred as the quantity of
information that the nervous system can process. The case of
spiders is amazing. They have a limited numbers of neurons with
respect to the autonomous capabilities they show. Even if the fruit
fly and ants have about the same neurons of the spider, they are
social insects. The spiders have extraordinary movements
capabilities, therefore showing an excellent locomotion nervous
systems, it has been recently proved that they have learning
capabilities both in predation and in building [67], as shown by

FIGURE 13 | A green actuator. (A) Opening and closing of conifer cones scales due to humidity, (B–C) actuation of an electric switch by means of a closing
conifer pine.
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their capabilities to realize impressive cobwebs, like that reported in
Figure 11A. It is absolutely important to consider in artificial
systems and, in particular, in the design of artificial networks, that
an high number of neurons do not guarantee an optimal learning.
Few neurons but suitable patterns on interaction may lead to an
efficient learning. This is the spider lesson.

The following brief list of spiders could encourage the
interested people to get ideas for further bioinspired systems:

• Segestria: this is a genus of tube dwelling spiders, the tubes
bay branch and are often built in tree bark fissures.

• Argiobe basilica: their networks are similar in the shape to a
church dome.

• Argyrometa spider: underwater spider that organizes its life
underwater.

• Dolomedes fimbriatus: it establishes its living site near the
rivers.

• Atrax spider: is one of the most dangerous spiders. Only
recently the structure of its poison has been decoded in
terms of the tridimensional sites of its peptides.

• Epeira foemina also identified as Avenus Diadematus: its
characteristics is the elegant pattern in the body, nowadays
the structure of her web is still unknown, it produces 7 types
of threads.

• Deinopis also known as gladiator spider: it spins a small
uprights rectangular crivellate web on the prey.

The number of spiders and the diversity of distinguishing
actions that each genus shows is astonishing. The study of this
animal allows to get intriguing bioinspired ideas.

Moreover the following consideration related to the number of
neurons in the honey bee is interesting. It is a social insect, like the
ant, moreover the higher number of neurons indicate something
else. Researchers of the Queen Mary College proved that the
honey bee has the capability to create a mental image. Have honey
bee some type of consciousness?

As previously discussed in the case of distributed memories
without neurons, the plants could in future be source of quite
interesting bioinspired systems. This is due to the fact that the
distributed functions of the plants lead to the understanding of new
mechanisms of memory and to create the mathematical models of
the plant behavior. Plants memory is based on biochemical
mechanisms, they have robust distributed networks both to
process information and to suitably use the energy, as the giant
ficus reported in Figure 11B. Moreover the capabilities of the
network of the plant roots inspire us to conceive new families of
distributed sensors-actuators devices with high capabilities of self-
regeneration. Do you imagine a type of robots that depending on

FIGURE 14 | Patterns of microvessels: (A) wings of a dragonfly, (B) leafs of Poinsettia, ficus and ruscus hypoglossum, (C) microfluidic artificial device.
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the environment decides to improve its performance creating copies
of itself, or to extend continuously its number of legs or
manipulators? The mechanism of tropism, indicating grow and
timing movements with a biological automatism in response to the
environmental stimulus, makes the plant a reference in conceiving a
new class of systems. In fact the main tropisms, like the
phototropism, the gravimetric tropism, the contact tropism, the
hydropic tropism, the oxigenon tropism, the electrical tropism, and,
why not, the electromagnetic tropism, could be source of innovative
bioinspired systems and new signal processing devices.

These ideas lead to new class of robots referred to with the
term of plantoid [68]. This class of robots that can be displaced in
the soil like seeds, works like a plant root, being able to investigate
the soil and their characteristics. This is only an example,
moreover the studies of Stefano Mancuso [69] could be
stimulating in more areas and are intriguing in more applications.

5 CONCLUSION

In this contribution, some ideas and bioinspired applications,
realized during EU funded projects, have been reported. The
attention has been devoted essentially to the complex systems
point of view, while the wide area of bioinspired materials has not
been discussed in this work. Moreover, the main guidelines in
order to conceive new classes of bioinspired systems based on
nonlinear phenomena have been outlined.

This study is aimed at stimulating the interest in an analog
green transition based on analog and bioinspired processing
units, in order to conceive new devices and systems that
improve their behavior based on nature principles. Moreover,
the review is intended to investigate on the possibility of applying
complex dynamical systems in the realization of efficient and
green systems in a circular economy framework.

Much attention in the future must be devoted to the energy
transfer and we are looking forward to have new flexible solar
cells and silicon low voltage technologies, since they could be the
premise to realize innovative artificial bioinspired systems, like
the microrobot based on piezoelectric materials [70, 71] shown in
Figure 12. Light is fundamental for any bioinspired device [72].

The key points that we would like to remark is that a new class
of bioinspired systems must be supported by a complete
nonlinear dynamics point of view. In fact many of the
bioinspired systems of the last generation had been founded
on using simple nonlinear system approaches. Looking at the new
age of dynamical networks, the problems of collective behavior
agent based systems can be an appealing topic in order to create
innovative classes of bioinspired systems. The ideas of using the
active role of the noise and to look at imperfections in view of
what nature does, encourage us to conceive new classes of
bioinspired systems, also taking into account these aspects.
Distributed systems can be an even more appealing subject for
the new age of bioinspired systems.

Moreover, for low cost green applications in the area of
sensors and actuators, efforts must be devoted in
understanding natural structures. As an emerging example,
let us consider the conifer cone reported in Figure 13A. When

the conifer cone is submerged in water, the increase of the
internal humidity implies that the woody scales tends to close
the cone, in order to preserve the seeds. Therefore, conifer
cones can be used as natural actuators, for example actuating a
switch, as in Figure 13B,C, to turn off the diode.

The structure of fluids circulation both in plants and in
animals is a further appealing subject to take into account in
the conception of new bioinspired systems. The key problem is to
conceive innovative mechanical supports for the realization of the
vessels and in this direction an appealing source of inspiration
cames from plants and animals. Figure 14 reports astonishing
examples of microchannels in living systems in comparison with
a microfluidic device realized in our laboratories by using specific
techniques [73–77]. The microfluidic devices should also be
considered in future for the conception of artificial organs,
such as the pancreas [78].

The main idea is that the revolution core of the information
science and electronic technology has been given by the Cellular
Nonlinear Networks paradigm. At the time of their invention
(1988), internet was a dream and a global connection network
had not been perceived. Moreover, the concept of local
connectivity only gave at that time the revolutionary idea of
wave-based communication. We remark that the original
paradigm was from biology. It is therefore the CNN paradigm
the best performance challenge bioinspired system. The
realization of the hardware architecture based on the analog
paradigm, as nature is, proved that the emergent behavior of
CNNs is also due to the technological imperfections and to the
threshold effects inside the cells, making the system suitably
addressed also by noise [79].

Finally, we want to stress the concept that we must conceive
new systems based on the fact that a change in the design
paradigm must be done. Biosystems must be designed not
copying nature but interpreting nature philosophy [80].
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