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Quantum computing, along with quantum metrology and quantum communication, are
disruptive technologies that promise, in the near future, to impact different sectors of
academic research and industry. Among the computational challenges with great interest
in science and industry are the inversion problems. These kinds of numerical procedures
can be described as the process of determining the cause of an event frommeasurements
of its effects. In this paper, we apply a recursive quantum algorithm to a D-Wave quantum
annealer to solve a small scale seismic inversions problem. We compare the obtained
results from the quantum computer to those derived from a classical algorithm. The
accuracy achieved by the quantum computer is at least as good as that of the classical
computer.

Keywords: quantum computing, quantum annealing, seismic inversion, linear equations, binary optimization

1 INTRODUCTION

Seismic geophysics relies heavily on subsurface modeling based on the numerical analysis of
data collected in the field. The computational processing of a large amount of data generated in
a typical seismic experiment can take an equally large amount of time before a consistent
subsurface model is produced. Electromagnetic reservoir data, like CSEM (Controlled Source
Electromagnetic), petrophysical techniques, such as electrical resistivity and magnetic
resonance on multi-wells, and engineering optimization problems like reservoir flux
simulators, well field design and oil production maximization also need a strong
computational apparatus for analysis.

On the other hand, in the past decade, there has been much progress in the development of
quantum computers: Machines exploiting the laws of quantum mechanics to solve hard
computational problems faster than conventional computers. A concrete example of such
progress is the so-called quantum supremacy, that has been recently demonstrated using specific
purpose quantum computers [1–3]. The Geoscience field and related industries, such as the
hydrocarbon industry, are strong candidates to benefit from those advances brought by
quantum computing.

Currently, different quantum technologies and computational models are being advanced. Giant
companies like IBM, Google, and Intel are developing quantum computers based on
superconducting technologies [4]. Other companies are also putting considerable effort into
building a fully functional quantum computer based on Josephson junctions, such as the North
American Rigetti, whereas, the also American IonQ and the Austrian AQT are working on
computers based on trapped ions [5]. The Canadian company D-Wave, leader in the
computational model known as quantum annealing [6], is already trading quantum machines,
and the also Canadian Xanadu is providing cloud access to their photonic quantum computer [7, 8].
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Recent reviews comparing superconducting and trapped-ion
technologies and different cloud-based platforms can be found
in Refs. [9, 10], respectively.

In the field of Geoscience, recent works have used quantum
annealers to hydrology inversion problems [11, 12]. In those
works, it was shown that, although the size of the problem that
can be solved on a third-generation D-Wave quantum annealer is
considered small for modern computers, they are larger than the
problems solved with similar methodology with Intel’s third and
fourth generation chips. It is also important to mention that
optimization techniques are widely used in seismic inversions,
but usually classical algorithms get stuck in local minima.
Previous works [13–15] have indicated that quantum
annealing can be advantageous to solve seismic problems.
However, the potential applications of quantum computing in
Geoscience has so far been largely unexploited in the specialized
literature.

In this work, we present a formulation of a seismic problem
as a binary optimization, and one small scale subsurface seismic
problem is solved using the D-Wave quantum annealer
available in the Amazon Braket service. We have evaluated
the performance of the quantum computer comparing the
results obtained to those derived from a classical computer.
Our analysis was focused on the accuracy. It was found that the
accuracy achieved by the quantum computer is at least as good
as that of the classical computer for the problem we have
studied.

This paper is organized as follows. In Section 2 we introduce
the basic idea of quantum annealing. In Sections 3, 4, we present
the formulation of a seismic inversion as a binary optimization
problem and the methods used, respectively. In Section 5, the
results obtained in the D-Wave quantum annealer are shown. In
the last section, we draw the conclusion.

2 QUANTUM ANNEALING

In the literature, there are many different quantum
computational models developed. Currently, three main
models of quantum computing are being considered: The logic
gate model, or circuit model, boson sampling, and the adiabatic
model. The gate model is an universal quantum computation
model that is performed programming a step-by-step instruction
build from basic building blocks, known as quantum gates,
similar to the classical circuit model [16]. This model is
exploited by companies such as IBM, Intel, Rigetti, IonQ,
AQT, and Google. Boson sampling computers consists in
sampling from the output distribution of bosons in a linear
interferometer [8, 17]. There is strong evidence that such an
experiment is hard to be simulated in classical computers, but it is
efficiently solved by special purpose photonic chips. The adiabatic
computation model [18, 19] is a model in which the
computational problem is mapped into a Hamiltonian, in such
a way that the solution of the computational problem is encoded
in the ground state of the quantum system represented by the
Hamiltonian Hfinal. The computation is performed starting from
the ground state of a known Hamiltonian Hinitial. The

Hamiltonian is slowly modified towards to the target
Hamiltonian Hfinal. During the process, the total Hamiltonian
of the system is given by

H p( ) � 1 − p( )Hinitial + pHfinal, (1)

where p ∈ [0, 1]. According to the adiabatic theorem, if the
evolution is performed adiabatically, the quantum state of the
system remains in the instantaneous ground state throughout the
entire process.

The adiabatic model is equivalent to the gate model [20],
i.e., any problem that can be computed in the gate model will also
be computable in the adiabatic model. This statement is valid for
certain types of k − local Hamiltonians [20]. For example,
considering a system of n qubits, we can perform universal
adiabatic computation by choosing [21].

Hinitial � ∑
i

δiσ
x
i , (2)

Hfinal � ∑
i

Hiσ
z
i +∑

j>i
Ji,jσ

z
i σ

z
j +∑

j>i
Ki,jσ

x
i σ

x
j , (3)

where σki , with k � x, y, z, is one of the Pauli matrices of the ith

qubit, δi and Hi are local transverse and longitudinal fields,
respectively, and Ji,j and Ki,j are coupling constants.

The adiabatic model can be viewed as a special case of the
quantum annealing computing. In quantum annealers, the
Hamiltonian change is not adiabatic. Therefore, quantum
annealing is a heuristic type of computation. The D-Wave
computer is a quantum annealer that uses Ising chains

Hfinal � ∑
i

Hiσ
z
i +∑

j>i
Ji,jσ

z
i σ

z
j . (4)

The quantum annealing performed with Ising chains is
unlikely to implement universal quantum computation [22].
Therefore, D-Wave annealers are more restrictive than the
universal adiabatic model. Quantum annealing with Ising
chains can be applied to a class of computational problems
known as NP-hard problems [23]. It is believed that quantum
annealing will be able to find better approximate solutions or find
such approximate solutions faster then classical computers [22].
Here, it is also important to mention that the advantage of
quantum annealers over classical methods is still under debate
[24–26]. Recent works have proposed that, in some cases,
quantum annealing is advantageous over classical computing
[27–30], on the other hand, no advantage was reported in
Refs. [24, 31]. The origin of the possible speedup is also under
debate. Quantum tunneling is often claimed to be the key
mechanism underlying possible speedups of quantum
annealing. However, recent work has found numerical
evidence that quantum tunneling processes can be efficiently
simulated byMonte Carlo methods [32]. There is also evidence to
suggest that it is unlikely to achieve exponential speedups over
classical computing solely by the use of quantum tunneling [33].
The role of the temperature in the performance of quantum
annealing has been also studied in [34].

To solve a problem in the D-Wave quantum annealer [6], it is
necessary first to express the problem to be solved as an Ising
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problem or as a quadratic unconstrained binary optimization
(QUBO), which is equivalent to Ising but defined on the binary
values 0 and 1, whereas the Ising problem is defined on the binary
values ±1/2. The QUBO problem can be written as the
minimization of the quadratic function

f q( ) � qTQq, (5)

where q ∈ {0,1}n, Q is a n × n upper (lower) triangular matrix
and the vector qT � (q1, q2, . . . , qn) contains n binary
variables. QUBO problems are commonly used in machine
learning and many important computational problems can be
translated to a QUBO formulation as well [35]. Examples of
problems that have been addressed with a D-Wave quantum
annealer are: the classification of human cancer types [36],
traffic optimization [37], transcription factor DNA binding
[29], metamaterial designing [38] and Higgs boson data
analysis [39].

Recently, there has been a growing interest in quantum
algorithms for systems of linear equations, Ax = b, where A is
a n × n matrix and b is a unit vector. Such algorithms may find
applications in different research areas, including Geoscience. In
the quantum gate model, the quantum version of such problem is
called Quantum Linear Systems Problem (QLSP) [40, 41], and it
is defined as the problem of preparing the state

|ψ〉 � ∑n
i xi|i〉������∑n
i |xi|2

√ , (6)

where x � (x1, x2, . . .)T is the solution of Ax = b.
In 2008, Harrow, Hassidim, and Lloyd (HHL) proposed a

quantum algorithm for the QLSP problem [42]. Given some
assumptions [43], the run time of HHL is O(k2s2 log(n)/ϵ) where
k is the condition number of the matrix A, defined as the absolute
value of the ratio between the largest and smallest eigenvalues of
A, s is the sparsity of A, defined as the number of nonzero entries
per row, and ϵ is the desired precision.

After the initial HHL proposal, several improvements were
achieved: the condition number dependence was reduced from
k2 to k log 3(k) [44], the error dependency was reduced from 1/
ϵ to a polynomial function in log(1/ϵ) [45], and a sparsity-
independent runtime scaling was achieved in [46]. The QLSP
problem can also be solved using iterative quantum solvers in
runtime O(k2 log(k)/log(1/ϵ)) [47] and with runtimes
O(k log(k)/ϵ) and O (k2 log(k)/ϵ) using the evolution
randomization method, a simple variant of adiabatic
quantum computing where the parameter p in (1) varies
discretely, rather than continuously [48]. The best general-
purpose classical conjugate gradient algorithm to solve Ax = b
has the runtime O(nks log(1/ϵ)). Here, we must emphasize a
fundamental difference between classical and quantum
algorithms. While the conjugate gradient returns the
solution vector x, quantum algorithms return a quantum
state, Eq. 6, that approximately contains all the components
xi of the solution vector x. It is possible to obtain any specific
entry xi by measuring the output state (6), but in general, it will
require repeating the algorithm many times, which would kill

the exponential speedup. Still, quantum algorithms can be
used as subroutines in different applications [40, 43].

In quantum annealers, the problems of solving a system of
linear equations and a system of polynomial equations were
previously studied in [49–51] and [52], respectively. Unlike
the previously mentioned quantum algorithms, quantum
annealing solves Ax = b completely, i.e., it returns the vector
x. To compare the performances of a quantum annealer and a
classical computer, we must take into account the cost to prepare
the problem, i.e., the procedure to map Ax = b into a QUBO or
Ising problem, the cost to perform the annealing, and also the cost
to post-process the results. The performance of quantum
annealers to solve linear systems was studied in detail in Ref.
[50]. It was shown that quantum annealers might be competitive
if there exists a post-processing method that is polynomial in the
size of the Matrix A with a degree less then 3.

3 SEISMIC INVERSION WRITTEN AS A
QUBO PROBLEM

We considered the propagation of sound waves in a multi-layered
medium, as shown in Figure 1. Multiple sources produce sound
waves that can be reflected in the interface of each layer.
Assuming that the wave propagation can be modeled as
narrow beams or rays, the sound trace originated in the ith

source reaches the ith detector after the time interval

ti � 2∑i
j�1

dij

vj
, (7)

where dij and vj are the distance traveled by the sound waves and
the sound speed in the jth layer, respectively. If we consider the
thickness of each layer as hj and the distance between two
consecutive sources (detectors) as Δi, we can write dij � hj/
cos θj where θj � arctan(Δj/hj).

The layered model described above is commonly used in
seismic explorations, either offshore or onshore [53]. In
seismic experiments the goal is to determine the velocities {vj}
from the time intervals {ti}, by solving the system

Ms � t, (8)

where tT � (t1, t2, . . . , tm), sT � (1/v1, 1/v2 . . . , 1/vm) is the
slowness vector, M is a m × m lower triangular matrix with
nonzero elements given byM.,j � 2hj/cos θj, and m is the number
of layers.

In order to use a quantum annealer to solve the above seismic
problem it is necessary to translate the problem into a QUBO
formulation. To proceed, first, we rewrite the system (8) as a
minimization problem with the objective function

f s( ) � ‖Ms − t‖2, (9)

where s ∈ Rm. Next we write the slowness vector as s � s0 + L(x −
I), where L defines the bounding limits of s, 0 ≤ xi < 2 ∀ xi,
IT � (1, 1, . . .) and the vector s0 is an initial guess for s. The
objective function f(s) is rewritten as
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f x( ) � ‖Mx − b‖2, (10)

where x ∈ Rm and b � (t + LMI −Ms0)/L. The matrixM and the
vector b are parameters of the objective function while the vector
x must be converted into a binary format. Here we discretized
each xi variable with the R-bit approximation

xi � ∑R−1
r�0

qi,r2
−r. (11)

To formulate our QUBO problem, we construct a new binary
vector q and a new real matrix A in order to form the binary
system of equations Aq = b. It is straightforward to reformulate
this system as a binary optimization problem [49–51], whose
solution vector, q*, is given by

qp � arg min
q∈ 0,1{ }R×m

‖Aq − b‖2 (12)

� arg min
q∈ 0,1{ }R×m

qTQq + C, (13)

where

Qii � ∑m
k�1

AkiAki − 2Akibk, (14)

Qij � ∑m
k�1

2AkiAkj, for i< j, (15)

and C � ∑m
k�1b

2
k is an additive constant that does not change the

ground state.
The precision of the solution depends on how many binary

digits are used to represent the real variables of the problem, a
solution with good precision would consume a large number of
qubits of the quantum hardware. Here we have used a recursive
approach similar to what was used in [49] to improve the
precision of floating-point division. Our recursive approach is
described in the Algorithm 1, using such an approach we could
improve the solution of a system of linear equations with 46 real
variables, using just a few qubits to represent each variable. Next,

we will show in our example that using R � 3, in Eq. 11, and
carrying 20 iterations is sufficient to reach a good solution.

Algorithm 1. Function to solve the system of equations Ms � t.
The vector s0 is the initial guess for s, ϵ is the tolerance,Nmax is the
maximum number of iterations, and L defines the interval where
we expect to find the solutions (see text).

4 METHODS

We have performed the quantum computation with the D-Wave
computer provided by the Amazon Braket service. Currently,
there are two versions of quantum annealer available in Amazon
Braket. The first is the D-wave 2000Q version, this computer
contains 2041 working qubits. The connections among the qubits
are represented by a graph called Chimera [54]. In this topology,
each qubit is coupled to no more than 6 other qubits. We can call
Chimera as a graph of degree 6. The second version is the
D-Wave Advantage system, it is a more advanced computer
with 5,436 working qubits disposed in a Pegasus graph with
degree 15 [55]. A QUBO problem can also is represented by a
graph, where each vertex of the graph corresponds to a binary
variable qi. When the QUBO problem is represented by a graph
with degree greater then 6, for Chimera, or 15, for Pegasus, it is
necessary to embed the QUBO graph onto the chip topology. The
present seismic problem, for example, is represented by a full

FIGURE 1 | Schematics of seismic data acquisition. Sound traces created in the ith source Si are detected at Di after the time of travel ti. This figure depicts a
simplified scheme with only m � 3 layers, but we have considered up to m � 46.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7482854

Souza et al. Application of Quantum Annealing to Seismic Inversion

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


graph, where each vertex is connected to all other vertices. In this
work, the embeddings were obtained using a heuristic algorithm
[56] provided by D-Wave.

Errors during the computation are important issues to be
considered. In quantum annealing, the computational
problem is encoded into the ground state of the Ising
Hamiltonian (4), the gap between the ground state and the
excited states is a key property of the system. If the gap is too
small, thermal excitations and non-adiabatic transitions can
induce transitions, as a consequence, the computer will
output an excited state, which can be viewed as a
computational error [57]. In addition, the wrong
implementation of the Hamiltonian (4) may result in the
wrong ground state [57]. We have noticed that the ground
state was achieved with high probability. Therefore,
unwanted transitions due to thermal fluctuations or non-
adiabatic evolution do not represent an important issue in
our case. The annealing time used was 20 μs, the minimal and
default value of the D-Wave machine. To post-process the
output we use default D-Wave’ routines.

In our implementation, analog errors are the most important,
i.e., inaccurate implementations of the parameters Hi and Ji,j
described in the Eq. 4. To reduce the impact of analog errors, we
have used 10 spin-reversal transforms, also known as gauge
transformations [58, 59]. This type of transformation is based
on the fact that the structure of the Ising problem is not affected
when the following transformations are applied:Hi→ giHi and Ji,j
→ gigjJi,j, where gi � ±1. The original and transformed problems
have identical energies. However, the sample statistics are affected
by the spin-reversal transform because the quantum hardware is a
physical object subject to errors.

5 RESULTS

We have applied the above formulation to solve a small scale
underwater seismic inversion problem. Artificial data were
generated by simulating sound traces in ocean. We have used
the sound speed profile of the Philippine Sea, available to public
[60], as shown in Figure 2. From the simulation, we obtained the

FIGURE 2 | Acoustic sound traces. In the (A), we show the sound speed profile of the Philippine sea [60]. In the (B), we show the results of numerical simulations of
sound traces with incident angle θ0 � 80o and, in the (C), we show the seismic model used. The thickness of each layer of the model matches the position where the
corresponding sound trace is reflected. For clarity, we only show the simulations involving only 4 sources (receptors).

FIGURE 3 | Seismic inversion obtained in the quantum annealer for different iterations. The black curve is the original sound speed profile and the blue curve is the
result of the inversion obtained in the quantum annealer.
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travel times between the sources and detectors. The seismic
inversion model was constructed using 46 layers while the real
variables were digitalized with R � 3 bits. This model yields 138
binary variables, for the present type of problem, it is the
maximum number of variables that we can embed in the
working graph of the D-Wave Advantage system available in
Amazon.

To perform the seismic inversion we have considered that all
layers in the model match the position where the sound wave is
reflected, as shown in Figure 2. The solution is presented in
Figure 3, as can be seen, good results are obtained with 20
iteractions. We have also performed the inversion with a classical
computer running the forward substitution algorithm to invert
the lower triangular matrix in Eq. 8. When classical and quantum
inversions are compared, we found that the relative error between
themwas ≈ 10−4, as shown in Figure 4. This result shows that the
quantum computer using the recursive approach to solve a
system of linear equations has enough control to find
solutions with good precision.

The results could also be compared to the benchmark
provided by the condition number of the numerical problem
at hand. When performing a numerical inversion procedure on
the lower triangular matrixM to recover the solution s in Eq. 8, a
straightforward estimation of the lower bound of the relative
error ϵs in s arising from the relative error ϵt in the righthand side
vector t due to the numerical conditioning of M is given by [61].

ϵs � κ∞ϵt, (16)

where κ∞ is the condition number given by

κ∞ ≥
maxj hj/ cos θj( )
minj hj/ cos θj( ). (17)

Therefore, the condition number relates the error associated
with t, ϵs, and the error of the solution s, ϵs. In this particular
application of seismic inversion, where distances are generally in
the scale of 103m, it is reasonable to assume that the figures are
accurate up to the order of ≈ 10m, with the next order of
magnitude (1m) giving the scale of the error ϵt. Given that the
error ϵt can be estimated as ≈ 10−3 and the condition number is
κ∞ ≈ 1, then we can estimate ϵs ≈ 10−3 from (16). This shows that
the error of the quantum approach comes from the inversion
problem by itself and is of the same order as the classical approach.

6 CONCLUSION

Quantum computing represents a fundamentally different
paradigm, an entirely different way to perform calculations.
The Geoscience field and related industries are strong
candidates to benefit from it. However, the performance of
Geoscience inversion problems on current available quantum
computers has so far been largely unexploited.

In this paper, we have solved a seismic inversions in a
D-Wave quantum annealer. The seismic problem was written
as a system of linear equations and then translated into a
QUBO formulation. The results presented here indicate that
the current available quantum annealers can solve a seismic
inversion at a relatively small size with nearly the same
accuracy as a classical computer. The proof-of-principle
computations performed here show some promise for the
use of quantum annealing in Geosciences.

The practical use of quantum annealing in Geosciences will
require the ability to solve large problems. To address this issue,
decomposer tools have been proposed to divide a large problem into
small subproblems which can be solved individually by the quantum
hardware [62–64]. Using such approach, it is possible to solve a
large-sized problem using just a limited number of available qubits.
Another interesting approach is the reverse annealing. Within this
method, one starts from known local solutions which can be
obtained in a classical computer. The annealing is performed
backward from the known classical state to a state of quantum
superposition, then proceeding forward it is possible to reach a new
classical state that is a better solution than the initial one. Recently, it
has been shown that it is possible to refine local solutions with
recursive applications of reverse annealing [65–68]. We believe that
the development of hybrid quantum-classical methods, such as
mentioned above, will be essential to solve complex seismic
problems on quantum annealers in the near future.

Finally, we should mention that the problem solved here is well-
conditioned, however, often Geoscience problems are ill-conditioned.
An interesting question is whether quantum computers can solve ill-
conditioned problems efficiently. In Ref. [69], it was theoretically
proposed that preconditioning methods can expand the number of
linear systems problems that can achieve exponential speedup over
classical computers. In future works, we plan to study the
performance of the quantum annealers to solve ill-conditioned
problems. Another attractive prospect for future work is the
implementation of Geoscience problems in gate model computers,
based either on superconducting or trapped ions technologies.

FIGURE 4 | Comparisons between classical and quantum solutions. In
the (A), we show the χ2 test between the quantum annealing solution and the
classical solution. The relative error between the classical and quantum
solutions is shown as a function of the ocean depth in the (B).
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