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Purpose: A novel deep learning model, Siamese Ensemble Boundary Network (SEB-Net)
was developed to improve the accuracy of automatic organs-at-risk (OARs) segmentation
in CT images for head and neck (HaN) as well as small organs, which was verified for use in
radiation oncology practice and is therefore proposed.

Methods: SEB-Net was designed to transfer CT slices into probability maps for the HaN
OARs segmentation purpose. Dual key contributions were made to the network design to
improve the accuracy and reliability of automatic segmentation toward the specific organs
(e.g., relatively tiny or irregularly shaped) without sacrificing the field of view. The first
implements an ensemble of learning strategies with shared weights that aggregates the
pixel-probability transfer at three orthogonal CT planes to ameliorate 3D information
integrity; the second exploits the boundary loss that takes the form of a distance
metric on the space of contours to mitigate the challenges of conventional region-
based regularization, when applied to highly unbalanced segmentation scenarios. By
combining the two techniques, enhanced segmentation could be expected by
comprehensively maximizing inter- and intra-CT slice information. In total, 188 patients
with HaN cancer were included in the study, of which 133 patients were randomly selected
for training and 55 for validation. An additional 50 untreated cases were used for clinical
evaluation.

Results: With the proposed method, the average volumetric Dice similarity coefficient
(DSC) of HaN OARs (and small organs) was 0.871 (0.900), which was significantly higher
than the results from Ua-Net, Anatomy-Net, and SRM by 4.94% (26.05%), 7.80%
(24.65%), and 12.97% (40.19%), respectively. By contrast, the average 95%
Hausdorff distance (95% HD) of HaN OARs (and small organs) was 2.87 mm
(0.81 mm), which improves the other three methods by 50.94% (75.45%), 88.41%
(79.07%), and 5.59% (67.98%), respectively. After delineation by SEB-Net, 81.92% of
all organs in 50 HaN cancer untreated cases did not require modification for clinical
evaluation.
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Conclusions: In comparison to several cutting-edge methods, including Ua-Net,
Anatomy-Net, and SRM, the proposed method is capable of substantially improving
segmentation accuracy for HaN and small organs from CT imaging in terms of efficiency,
feasibility, and applicability.

Keywords: radiotherapy, convolutional neural networks, automatic segmentation, head and neck cancer, deep
learning

1 INTRODUCTION

Radiation therapy (RT) is a critical solution for head and neck
(HaN) cancer treatment [1]. Owing to the complex anatomical
structures and dense distribution of vital organs in the HaN
region, irradiation may cause damage to normal organs, which
are referred to as organs at risk (OARs). Modern radiotherapy
techniques, such as intensity-modulated radiation therapy
(IMRT), volumetric modulated arc therapy (VMAT), and
tomotherapy, are capable of delivering highly conformal dose
distribution to the tumor target area, which reduces radiation-
induced toxicity by sparing the OARs [2–5]. Consequently, the
accurate delineation of OARs is clinically imperative and crucial
to guarantee a safe and effective treatment, particularly for the
HaN region. The delineation of critical organ tasks are usually
performed manually by radiation oncologists on computed
tomography (CT) scans. In addition to the potential
inconsistency and uncertainties, the extensive number of
OARs involved, for example, more than 20 OARs in typical
nasopharyngeal cancer, demand substantial time, and labor to
process. Moreover, for small organs (e.g., lens) and elongated
organs (e.g., optic nerve), accurate segmentation remains
challenging, due to their limited fraction on the entire image,
in-homogeneity, and variation in size, shape, and appearance
among different subjects.

With the advancement of deep learning techniques [6–12],
learning-based segmentation, which relies on either 2D or 3D
models, has achieved state-of-the-art performance in HaN OAR
contouring based on various benchmark public datasets [13–17].
Typical deep neural networks with a U-Net backbone import a
medical image and export a set of probabilities for the entire
image [18]. The input image is processed sequentially by the
network blocks, with each block comprised of a convolutional
layer coupled with a max-pooling layer to increase the field of
view, while decreasing the resolution. Zhu et al. [19] proposed a
3D U-Net based approach, Anatomy-Net, to automate brain
organ segmentation. Due to the graphic processing unit
(GPU) memory constraints, Anatomy-Net was designed with
only one down-sampling layer to account for the trade-off
between GPU memory usage and network learning capacity.
Tang et al. [20] proposed a two-stage network that first
identifies the region of each OAR, and then performs the
segmentation of that region.

Challenges to these tasks can be found in the dual aspects
described below: 1) limited inter-slice representation. In deep-
learning–augmentedmedical image analysis, there was a trade-off
between the information integrity in 3D space and the field of
view based on the computation resource, for example, the

memory of GPU [13]; 2) limited intra-slice representation. In
the scenario of highly unbalanced segmentation, for example, the
size of the target foreground region is of several orders of
magnitude less than the background size, and the standard
regional losses that contain foreground and background data
with values that differ considerably may result in inferior
contouring as well as degraded final performance and training
stability [21, 22].

To circumvent the challenges above and further improve the
accuracy of automatic OARs segmentation on CT images for
HaN, a robust and clinically reliable segmentation strategy that
relies on a novel deep learning framework, Siamese Ensemble
Boundary Net (SEB-Net) was proposed. The SEB-Net integrates
an ensemble learning strategy with shared network weights and a
boundary loss to enhance the extraction of inter- and intra-slice
information, respectively. Concretely, the former technique
involves a set of learners that implement pixel-probability
transfers from three orthogonal views to maintain 3D
information integrity without sacrificing the field of view, and
the latter uses integrals over the boundary or interface among
tissues to mitigate the challenges related to regional loss in highly
unbalanced segmentation problems. In total, 188 cases with 24
HaN OARs were included in the collection of the training data,
which were carefully annotated by a senior radiation oncologist.
An additional 50 undelineated CT images were collected to
validate the clinical feasibility and effectiveness of SEB-Net for
delineating HaN OARs in radiation oncology practice.

2 MATERIALS AND METHODS

2.1 Siamese Ensemble Boundary Network
Figure 1 provides an overview of the architecture of the proposed
SEB-Net for automatic segmentation of OARs in HaNCT images.
As its name suggests, the SEB-Net leverages dual techniques,
i.e., themodel ensemble strategy with shared network weights and
the boundary loss, improve the consistency of inter-slice
segmentation and the representation accuracy of the OAR
boundaries, respectively.

2.1.1 Model Ensemble Strategy With Shared Network
Weights
A 3D CT volume generally yields smaller pixel spacing in the
anterior–posterior (AP) and left-right (LR) directions than the
superior–inferior (SI) direction, which may lead to a limited
representation of the small HaN organs (e.g., lens) at the cross
plane. Moreover, elongated OARs (e.g., optic nerve) are naturally
more readable and interpretable when viewed from the sagittal

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7431902

Wang et al. Deep Learning-Augmented Segmentation

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


and transverse planes. We proposed an ensemble of model
strategy utilizing shared network weights that exploits three-
plane information to improve contouring accuracy and inter-
slice consistency. In essence, this strategy follows a similar
approach that is used by a physician in radiology practice.

The specific process of the model ensemble is shown in
Figure 2. First, we cut out the 3D volume data (slice × 512 ×
512) within the skin, and then, we projected the 3D volume data
onto three 2D plane images (coronal, sagittal, and cross-sectional
plane) which were 256 × 256. The coordinate position of each 2D
plane in the 3D volume data during projection was recorded, to
enable the later recovery of 3D volume data from the 2D plane.
Then, the existing deep convolutional neural network (U-Net)
was used to predict a 2D auto-delineation of the three views in
256 × 256. According to the coordinate position recorded in
advance, the 2D predictions were backprojected in 3D. For each
view, similar operations were performed, and three 3D
predictions corresponding to the three views were obtained.
As a result, for each OAR voxel, three predicted values were
available. The predicted value was between [0,1], thus denoting
the probability of a voxel belonging to an OAR. Finally, we
averaged these three values to obtain the integrated

probability. If the average probability was greater than 0.5, the
voxel was considered to correspond to a certain organ, so this
voxel was attributed to this organ.

We used shared weights for the U-Net. The resulting network
was similar to the Siamese network which is different from the
network studied in other works [23]. Typically, an ensemble
model with different weights is better than one with same weights.
However, it is well known that a high-capacity network such as
U-Net requires a large dataset to avoid overfitting. The Siamese
strategy allows us to train a single U-Net with triple data.

2.1.2 Boundary Loss
The convolutional neural network (CNN)-based segmentation
methods could outperform traditional methods in terms of
adaptability, robustness, and computational efficiency, which,
however, generally suffer from limited high-texture
representations in highly unbalanced segmentations. As such,
we proposed a boundary loss that takes the form of a distance
metric on the space of contours rather than regions. Thus, the
imbalance may be resolved by using an integral over the interface
instead of the region. In reality, the enhanced representation in
boundary or interface regions may complement the regional
data [24].

The main idea is to increase the penalty for the erroneously
predicted boundary points. To this end, a boundary penalty term

− 1
N ∑

n
∑
k
|pnk − ynk| dnk was proposed and combined with the

commonly used cross-entropy loss − 1
N ∑

n
∑
k
ynk logpnk. The final

segmentation objective function is formulated as

objective � − 1
N

∑
n

∑
k

(ynk logpnk + λ
∣∣∣∣pnk − ynk

∣∣∣∣ dnk ) , (1)

where ynk and pnk are the prediction and the ground truth,
respectively; dnk is the boundary distance transformation value
(the farther from the boundary, the greater its value); and λ is

FIGURE 1 | Overview of the proposed SEB-Net, which inputs the three plane 2D images (i.e., coronal, sagittal, and transverse) and outputs the corresponding 2D
probability maps of OARs. The 2D probability maps are backprojected to the 3D space and then aggregated to exploit the three plane representations. A novel feature of
the boundary loss is proposed to train the network so that the organ boundaries are well-predicted.

FIGURE 2 | Illustration of model ensemble strategy with shared network
weights.
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used to balance the two terms. The cross-entropy term and
boundary term are calculated with respect to each pixel and
each organ. The results are summed and normalized by the
number of pixels N. The |pnk − ynk| in boundary loss
measures the deviation between the prediction and ground
truth for the n-th pixel and k-th organ. As illustrated in
Figure 3, the deviation will be amplified if its distance is far
from the ground-truth boundary, which will cause the network to
use the high-resolution information provided by the skip-connect
when a boundary is predicted far from the ground truth.

2.1.3 Ablation Studies
In addition, we designed various ablation experiments to
investigate the effectiveness of the proposed components of
our SEB-Net by removing its two components: shared U-Net
weights and boundary loss. We also compared the proposed

boundary loss against the other work using the boundary-
distance-based loss function [25].

2.2 Implementation Details
This SEB-Net relies on a conventional U-net backbone. U-Net is
considered to be one of the standard CNN architectures for image
segmentation. U-Net was used for model training. The network
architecture is illustrated in Figure 4. It consists of a contracting
path (left side) and an expansive path (right side). The
contracting path follows the typical architecture of a
convolutional network. It consists of the repeated application
of two 3 × 3 convolutions (unpadded convolutions), each
followed by a rectified linear unit (ReLU) and a 2 × 2 max
pooling operation with stride 2 for downsampling. At each
downsampling step, the feature channels double. Every step in
the expansive path consists of an upsampling of the feature map
followed by a 2 × 2 convolution (up-convolution) that halves the
number of feature channels, a concatenation with the
corresponding feature map cropped from the contracting path,
and two 3 × 3 convolutions, each followed by a ReLU. Cropping is
necessary because of the loss of border pixels with every
convolution. We rescaled the CT values to the range of [0, 1]
before feeding into the network. The whole framework was built
on PyTorch with one NVIDIA TITAN XP GPU [26].

2.3 Dataset and Experimental Setting
We collected CT images (including OARs involved in
radiotherapy) from 188 patients with HaN cancer for model
training and testing in this study. They received radiotherapy
from June 6, 2016 to January 31, 2020, at Tianjin Medical
University Cancer Hospital. All structures of the dataset were
modified and verified by a senior radiation oncologist, following
the guidelines of Ref. [27].

An additional 50 HaN cases were collected for clinical
evaluation. They were admitted to Tianjin Medical University
Cancer Hospital from April 4, 2020 to June 30, 2020. These
datasets included CT images that were not delineated by
oncologists and were used to assess the extent to which SEB-
Net can assist oncologists with clinical contouring.

FIGURE 3 | Mechanisms of boundary loss. The boundary prediction (p)
is supervised via its distance (dnk ) to the ground truth (y).

FIGURE 4 | Illustration of the U-Net architectures used.
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Table 1 provides statistics on the number, categories, and
mean organ volumes of the OARs in the dataset. The 24 HaN
OARs included the brain, brain stem, spinal cord, spinal cord
cavity, eyes (left and right), lens (left and right), optical nerves
(left and right), optic chiasma, pituitary, parotid glands, oral
cavity, mandible, temporomandibular joint left (TMJ L),
temporomandibular joint right (TMJ R), temporal lobes (left
and right), larynx, pharynx, trachea, and thyroid.

The organs were divided into three categories according to
their volume and complexity:

1) volume >30 cc and little difference between each slice of CT
delineation, automatic contouring can reduce the repetitive
work of manual delineation by oncologists;

2) 3 cc ≤ volume ≤30 cc, or significant difference between each
layer of CT delineation;

3) volume < 3 cc, for small organs, there are only a few layers of
CT images.

It is worth noting that although the temporal lobe has a
volume of 80 cc, there is a significant variation between each
layer of CT images. The coronal images were classified as
Class II due to their importance in accurate delineation by the
oncologist.

From the 188 groups of patient CT images, we randomly
selected 133 groups to test adjustments to the parameters of the
deep learning network, and the remaining 55 groups were
selected to evaluate the performance of the proposed network.
We used the NVIDIA TITAN XP GPU and the PyTorch deep
learning framework. The parameters of the deep learning neural
networks were adjusted using the random gradient descent
method, and the initial learning rate was set to 0.0001, with a

total of 50,000 adjustments, and the learning rate is reduced to 1/
10 of the original value after 10,000 iterations.

2.4 Evaluation Metrics
The volumetric Dice similarity coefficient (DSC) and the 95%
Hausdorff distance (HD) [28] were used to quantitatively
evaluate the accuracy of delineation coverage and the
delineated edge, respectively. The time spent on contouring
and added path length (APL) [11, 29] were used to evaluate
the clinical application of the proposed method. DSC and HD can
be formulated as

DSC � 2|A ∩ B|
|A| + |B| (2)

and

HD(A, B) � max(h(A, B), h(B, A)),
h(A, B) � max

a∈A
min
b∈B

‖a − b‖. (3)

Here, A represents the ground truth, B denotes the auto-
segmented structure, and A∩B is the intersection of A and B.
‖ · ‖ is the Euclidean distance, a and b are the points on the
boundary A and B, and h (A, B) is often called the directed HD.
95% HD is similar to maximum HD. However, 95% HD is based
on the calculation if the 95th percentile of the distances between
the boundary points in A and B. This metric was used to eliminate
the impact of a very small subset of inaccurate segmentations on
the evaluation of the overall segmentation quality.

TABLE 1 | Statistical table of organs at risk (volume unit: cm3).

OARs Category Mean volume

Brain I 1,312
Brain Stem I 27.5
Spinal Cord I 112.9
Spinal Cord Cavity I 36.7
Eye L II 9.3
Eye R II 9.4
Len L III 0.3
Len R III 0.3
Optical Nerve L III 1
Optical Nerve R III 1
Optic Chiasma III 1.2
Pituitary III 0.9
Parotid L II 29.8
Parotid R II 33
Oral Cavity I 122.9
Mandible I 78.9
Temporomandibular joint L II 3.3
Temporomandibular joint R II 3.2
Temporal Lobe L II 84.9
Temporal Lobe R II 90.4
Larynx I 49.3
Pharynx II 16.9
Trachea I 65.4
Thyroid II 20.2

FIGURE 5 | 3-D display of SEB-Net-based auto-contouring for HaN
OARs.
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3 RESULTS

3.1 Qualitative Evaluations
Figure 5 shows a vivid 3D representation of 24 OARs in HaN
region based on SEB-NET predictions. Figure 6 displays a
visual comparison of the segmentation of HaN OARs on
three CT plane images (coronal, sagittal, and cross-sectional
planes) using our method with contouring by the senior
radiation oncologist. As shown in the cross-section result,
except for a slight difference in the posterior horn of the right
parotid gland, there were few differences among the other
organs (oral cavity, mandible, pharynx, spinal cord, spinal
cord cavity, and left parotid gland). In the coronal plane,
with the exception of the right parotid gland and the TMJ
R, there is little difference in other organs (the brain,
temporal lobe, TMJ L, left parotid gland, pharynx,
trachea, and thyroid). In the sagittal plane, there was a
slight difference at the optic chiasma and oral start slices,
and little difference in the other OARs. Figure 7 details the
differences between the two methods regarding the small
organs (lens, optic chiasma, optic nerve, and pituitary). As
shown in Figure 6, the difference between the two methods
was minimal.

3.2 Quantitative Evaluations
Ua-Net [20], Anatomy-Net [19] methods, and SRM [30] were
used to compare and analyze the quality of SEB-Net contours
with the current level. The Ua-Net, which was introduced in
Nature Machine Intelligence in 2019, is one of the best current
deep learning automatic segmentation methods. The Anatomy-
Net, which was first described in Medical Physics in 2019, is a
deep learning automatic segmentation method that is dedicated
to the delineation of HaN OARs. The SRM, which was also
published in Medical Physics in 2018, is a novel automated HaN
OARs segmentation method that combines a fully convolutional
neural network (FCNN) with a shape representation model
(SRM). The delineated quality indexes for DSC of the four
methods are reported in Table 2. As shown in the table, SEB-
Net outperformed the other two methods for most of the
endangered organ predictions. The average DSC of the three
means on OARs was 0.871, 0.830, 0.808, and 0.771, respectively.
The SEB-Net improved the DSC by 4.94% over Ua-Net, 7.80%
over Anatomy-Net, and 12.97% over SRM.

As shown in Table 3, SEB-Net was significantly better than the
other three methods for the prediction of class Ⅲ small organs
(lens, optic chiasma, optical nerves, and pituitary). The average
DSC for the prediction of small volume organs by the four

FIGURE 6 | Comparison of HaN OARs segmentation using EB-Net-based auto-contouring (upper) and the physician manual delineation (lower).

FIGURE 7 | Comparison of segmentation of small organs using EB-Net-based auto-contouring (upper) with the physician manual delineation (lower).
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methods were 0.900, 0.714, 0.722, and 0.642 respectively. The
SEB-Net improved prediction by 26.05% over Ua-Net, 24.65%
over Anatomy-Net, and 40.19% over SRM.

Table 4 shows comparisons among the 95% HD of the four
methods. The mean 95%HD values of EB-Net, Ua-Net, Anatomy-
Net, and SRM were 2.87 mm, 5.85 mm, 24.76 mm, and 3.04mm,
respectively. 95% HD was used to evaluate the accuracy of
delineating edges, and EB-Net significantly outperformed the
other three methods in terms of edge prediction accuracy,
improving by 50.94, 88.41, and 5.59%, respectively. As shown in
Table 5, SEB-Net performed 95% HD significantly better than the
other three methods for small organs. The average 95% HD of the
four methods were 0.81, 3.30, 3.87, and 2.53 mm, respectively.

Table 6 reports the results in DSC and 95% HD of ablation
studies. We found that sharing network weights improved DSC
from 0.81 to 0.84, and 95% HD from 3.47 to 3.32 mm. By using
the cross-entropy term with the proposed boundary loss term, we
observed a 15.6% improvement in 95% HD and 3.5%
improvement in DSC. Compared to another method using

similar boundary-distance loss [25], our method achieved a
significantly higher DSC, but a comparable 95% HD values.

3.3 Clinical Application of SEB-Net
To further verify the extent to which the automatic delineating
based SEB-Net was helpful to oncologists during clinical
delineation, an additional 50 undelineated CT images were
used. First, a junior oncologist performed SEB-Net-based
contouring and manual-contouring, then a senior oncologist
rated the quality of the delineation as needing no revisions,
needing minor revisions, or needing major revisions for use in
dose–volume–histogram (DVH)-based planning [11, 31].

Table 7 shows the mean time required to complete an initial
delineation of a HaN cancer case by SEB-Net, and manual
methods for junior oncologists were 0.87 and 45 min,
respectively. The mean time required for senior oncologists to
modify the initial delineation was 8.28 and 4.1 min, respectively.
SEB-Net-based automatic delineation saved 81.36% of the time
used to perform manual contouring. The APL for senior

TABLE 2 | Average DSC comparison on the test.

OARs SEB-net Ua-net Anatomy net SRM

Brain 0.985 N/A N/A N/A
Brain Stem 0.859 0.881 0.826 0.870
Spinal Cord 0.872 0.856 0.803 N/A
Spinal Cord Cavity 0.889 N/A N/A N/A
Eye L 0.935 0.897 0.884 N/A
Eye R 0.935 0.919 0.892 N/A
Len L 0.888 0.793 0.772 N/A
Len R 0.914 0.746 0.78 N/A
Optical Nerve L 0.894 0.693 0.725 0.653
Optical Nerve R 0.907 0.718 0.729 0.689
Optic Chiasma 0.883 0.618 0.605 0.583
Pituitary 0.915 N/A N/A N/A
Parotid L 0.820 0.839 0.822 0.835
Parotid R 0.826 0.847 0.822 0.832
Oral Cavity 0.918 0.948 0.876 N/A
Mandible 0.928 0.925 0.919 0.937
TMJ L 0.761 0.824 0.816 N/A
TMJ R 0.794 0.837 0.817 N/A
Temporal Lobe L 0.855 0.848 0.866 N/A
Temporal Lobe R 0.875 0.8413 0.857 N/A
Larynx 0.896 0.933 0.83 N/A
Pharynx 0.818 N/A N/A N/A
Trachea 0.821 0.812 0.793 N/A
Thyroid 0.715 0.827 0.718 N/A
Average 0.871 0.830 0.808 0.771

TABLE 3 | Average DSC comparison for small organs on the test.

OARs SEB-net Ua-net Anatomy net SRM

Len L 0.888 0.793 0.772 N/A
Len R 0.914 0.746 0.78 N/A
Optical Nerve L 0.894 0.693 0.725 0.653
Optical Nerve R 0.907 0.718 0.729 0.689
Optic Chiasma 0.883 0.618 0.605 0.583
Pituitary 0.915 N/A N/A N/A
Average 0.900 0.714 0.722 0.642

TABLE 4 | Average 95% HD comparison on the test (unit: mm).

OARs SEB-net Ua-net Anatomy net SRM

Brain 1.15 N/A N/A N/A
Brain Stem 2.93 4.75 5.30 4.01
Spinal Cord 3.31 6.86 99.72 N/A
Spinal Cord Cavity 3.05 N/A N/A N/A
Eye L 1.00 2.44 2.97 N/A
Eye R 0.99 2.52 2.95 N/A
Len L 0.77 1.95 2.32 N/A
Len R 0.63 2.07 2.00 N/A
Optical Nerve L 0.64 3.31 5.28 2.52
Optical Nerve R 0.63 4.11 4.67 2.90
Optic Chiasma 1.05 4.58 4.45 2.17
Pituitary 0.93 N/A N/A N/A
Parotid L 4.75 6.98 19.29 3.97
Parotid R 4.36 6.26 20.67 4.20
Oral Cavity 1.90 7.38 12.79 N/A
Mandible 5.23 2.48 7.14 1.50
TMJ L 3.67 2.79 12.21 N/A
TMJ R 1.86 2.74 28.13 N/A
Temporal Lobe L 2.15 11.32 12.03 N/A
Temporal Lobe R 2.10 13.58 16.17 N/A
Larynx 2.40 6.15 64.29 N/A
Pharynx 2.02 N/A N/A N/A
Trachea 11.47 20.85 43.91 N/A
Thyroid 9.85 3.94 128.99 N/A
Average 2.87 5.85 24.76 3.04

TABLE 5 | Average 95% HD comparison for small organs on the test (unit: mm).

OARs SEB-net Ua-net Anatomy net SRM

Len L 1.00 2.44 2.97 N/A
Len R 0.63 2.07 2.00 N/A
Optical Nerve L 0.64 3.31 5.28 2.52
Optical Nerve R 0.63 4.11 4.67 2.90
Optic Chiasma 1.05 4.58 4.45 2.17
Pituitary 0.93 N/A N/A N/A
Average 0.81 3.30 3.87 2.53
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oncologists to modify the initial delineation by SEB-Net, and
manual methods was 132 and 66 mm, respectively.

Table 8 presents the statistics for different OAR modifications
by the senior oncologist in 50 cases after automatic delineation by
the SEB-Net. Among the 50 cases, 81.92% of all organs did not
need modification, 13.17% of all organs required minor revisions
and only the remaining 4.91% of the organs required major
revisions for clinical use.

4 DISCUSSION

4.1 Delineating Accuracy Analysis
To further illustrate the advantages of the SEB-Net model in the
OARs segmentation, we combined the two parameters (DSC and
95% HD) for analysis. Figure 8 reports the differences in DSC
and 95% HD difference for the SEB-Net and Ua-Net methods. A
DSC difference >0 indicated that SEB-Net is superior, while a
95% HD difference <0 indicated that the SEB-Net was superior.
As shown in the figure, the DSC difference between the two
methods was small (the left vertical axis represents the DSC
difference) with an average value of 0.035, thus indicating that the
SEB-Net-based DSC was better than that of the Ua-Net-based
method on average. The 95% HD difference between the two
methods was significant, with a mean value of −2.76 mm,
indicating that SEB-Net has better organ edge accuracy.
Except for mandible, TMJ L, and thyroid, the edge prediction
of OARs is superior to Ua-Net.

TABLE 6 | Ablation studies.

Ensemble + cross-entropy Ensemble + shared
weight + cross-entropy

Ensemble + shared
weight + cross-entropy

+ boundary loss
(SEB-Net)

Ensemble + shared
weight + HD
loss [23]

95% HD 3.47 3.32 2.87 2.69
DSC 0.81 0.84 0.87 0.66

TABLE 7 | Comparison of meantime and added path length required by different
methods to delineate a HaN tumor case at different stages.

Stage of delineation SEB-net Manual-contouring

Initial delineation time (min) 0.87 45
Revision time by senior clinician (min) 8.28 4.1
Total time (min) 9.15 49.1
Added path length (mm) 132 66

TABLE 8 | The statistics for different OAR modifications by the senior oncologist in 50 cases after automatic delineation by SEB-Net.

OARs No revisions case
(no revisions case/All

cases (%))

Minor revisions case
(minor revisions case/All

cases (%))

Major revisions case
(major revisions case/All

cases (%))

Brain 50 (100%) 0 (0%) 0 (0%)
Brain Stem 35 (70%) 15 (30%) 0 (0%)
Spinal Cord 47 (94%) 3 (6%) 0 (0%)
Spinal Cord Cavity 49 (98%) 1 (2%) 0 (0%)
Eye L 46 (92%) 4 (8%) 0 (0%)
Eye R 47 (94%) 3 (6%) 0 (0%)
Len L 42 (84%) 6 (12%) 2 (4%)
Len R 48 (96%) 1 (2%) 1 (2%)
Optical Nerve L 43 (86%) 5 (10%) 2 (4%)
Optical Nerve R 44 (88%) 4 (8%) 2 (4%)
Optic Chiasma 22 (44%) 17 (34%) 11 (22%)
Pituitary 45 (90%) 5 (10%) 0 (0%)
Parotid L 38 (76%) 9 (18%) 3 (6%)
Parotid R 39 (78%) 9 (18%) 2 (4%)
Oral Cavity 37 (74%) 12 (24%) 1 (2%)
Mandible 47 (94%) 3 (6%) 0 (0%)
TMJ 50 (100%) 0 (0%) 0 (0%)
TMR 50 (100%) 0 (0%) 0 (0%)
Temporal Lobe L 20 (40%) 18 (36%) 12 (24%)
Temporal Lobe R 12 (24%) 20 (40%) 18 (36%)
Larynx 39 (78%) 10 (20%) 1 (2%)
Pharynx 42 (84%) 5 (10%) 3 (6%)
Trachea 45 (90%) 5 (10%) 0 (0%)
Thyroid 46 (92%) 3 (6%) 1 (2%)
Total 983 (81.92%) 158 (13.17%) 59 (4.91%)
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Ua-Net performed significantly better than SEB-Net on TMJ,
probably due to the use of 3D deep neural networks, which are
advantageous for organs with large cross-sectional spans. In SEB-
Net, only three CT planes, coronal, sagittal, and cross-section
were used, and the addition of other planes (e.g., oblique plane)
would hopefully improve the performance of the EB-Net model
on TMJ prediction.

In addition, SEB-Net was significantly better than the other
three methods for the prediction of class III small organs (lens,
optic chiasma, optic nerves, and pituitary). The cause of high-
grade performance can be attributed to: 1) it is well known that an
ensemble model is usually significantly more accurate than a
single learner. Even if a weak learner is slightly better than a
random guess, a combination of the wake learners can achieve
strong performance in uncertain areas such as the small OARs; 2)
the ensemble strategy with shared network weights increases the
size of the training dataset, which correspondingly improves the
quality of the model. With the three-view ensemble, our 2D
model was trained with data samples three times more than a 3D
model. More training samples improved the performance of all
OARs, especially the small ones that may suffer from insufficient
training samples; 3) the size of the small OARs was several orders
of magnitude smaller than the other ones, which cause an
unbalanced learning problem in the terms of machine

learning. The boundary loss will penalize much more for the
small OARs, helping to recover the small prediction areas.

4.2 SEB-Net Clinical Application Analysis
For clinical application evaluation of SEB-Net, the ultimate
acceptability of contours was determined by the oncologist
judgment for clinical use. The three-point system which is the
most common exact rating systems was used [11, 31]. When
oncologists use the SEB-Net-based auto-contouring, a few or
partial modifications were needed for most of the organs. Our
model can solve the repetitive labor in the delineation of Class I
and Class II organs. The oncologist needs to focus on OARs such
as the optic chiasma and temporal lobes. Consider the possibility
that a number of optic chiasma layers in the CT images of each
case was small, and the training set data were insufficient. These
factors affected the model’s prediction accuracy. While the
temporal lobe was not very clear on CT images, demarcation
with the surrounding organs was not obvious, which affected the
model’s prediction accuracy. These issues can be resolved by
increasing the training set data or adding magnetic resonance
imaging (MRI) to train the deep-learning model. Our results also
suggest that many of the most commonly used geometric indices,
such as the DSC, are not well correlated with clinically
meaningful endpoints as indicated by Sherer et al. [11].

FIGURE 8 | Quantitative comparison of SEB-Net method with Ua-Net method. (A): Comparison of DSC. (B): Comparison of 95% HD.
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4.3 Limitations
This study has the following limitations. First, only CT images were
used to train network, and some anatomical structures, such as the
temporal lobe, have low contrast on CT, which is difficult to lineate
with CT alone. Therefore, it is important to integrate information
from other modal images (e.g., MRI). Second, the number of
standard reference contours was still low, which limits the
number of participants in the deep network. There is a need to
develop an industry-wide standardized dataset. Multicenter of CT
images and delineation can be used for deep learning training using
the proposed method in future studies to improve the cross-
domain adaptability and generalizability of the deep network.
Third, it is worth noting that the previously published results
were compared using different datasets. The comparison should
ideally use the same training and testing data. However, we aim to
achieve automatic segmentation of 24 OARs in HaN CT images.
Training new models using the published methods is extremely
time-consuming and heavy work. Despite this, we evaluated our
model against oncologists on the same dataset and our model
showed substantial improvement in terms of efficiency, feasibility,
and applicability. Additionally, combining the boundary loss term
with a 3D CNN having the strength to fully utilizing 3D volume
information is possible. However, because of the limitations of
GPU memory, computing power, and training samples, when
designing 3D CNNs for 3D image segmentation, the trade-off
between the field of view and utilization of inter-slice information
in 3D images remains a major concern. For instance, 3D CNNs
only have a limited field of view, whereas 2D CNNs can have a
much larger field of view. Our 2.5D model used three different
views to balance the two factors, thereby enabling us to employ a
more complex CNN while still providing contextual information.

5 CONCLUSION

In summary, we have proposed and demonstrated a new deep-
learning model (SEB-Net) for automatic segmentation in HaN
CT images. To improve model performance (especially small
organs), we proposed incorporating additional features. Multiple
planar CT images were added in the training work, and the
penalty weight of inaccurate edges was increased for the objective
function used in the training work. The new deep learning
method can accurately delineate HaN OARs, and its accuracy

is better than the most advanced method at present. SEB-Net-
based auto-contouring can save time for manual contouring. The
new model has certain clinical applicability and a strong basis for
clinical promotion.
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