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Accurate particle detection is a common challenge in particle field characterization with
digital holography, especially for gel secondary breakup with dense complex particles and
filaments of multi-scale and strong background noises. This study proposes a deep
learning method called Mo-U-net which is adapted from the combination of U-net and
Mobilenetv2, and demostrates its application to segment the dense filament-droplet field
of gel drop. Specially, a pruning method is applied on the Mo-U-net, which cuts off about
two-thirds of its deep layers to save its training time while remaining a high segmentation
accuracy. The performances of the segmentation are quantitatively evaluated by three
indices, the positive intersection over union (PIOU), the average square symmetric
boundary distance (ASBD) and the diameter-based prediction statistics (DBPS). The
experimental results show that the area prediction accuracy (PIOU) of Mo-U-net reaches
83.3%, which is about 5% higher than that of adaptive-threshold method (ATM). The
boundary prediction error (ASBD) of Mo-U-net is only about one pixel-wise length, which is
one third of that of ATM. And Mo-U-net also shares a coherent size distribution (DBPS)
prediction of droplet diameters with the reality. These results demonstrate the high
accuracy of Mo-U-net in dense filament-droplet field recognition and its capability of
providing accurate statistical data in a variety of holographic particle diagnostics. Public
model address: https://github.com/Wu-Tong-Hearted/Recognition-of-multiscale-dense-
gel-filament-droplet-field-in-digital-holography-with-Mo-U-net.
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1 INTRODUCTION

Gel propellant, with the merits of high specific, strong density impulse [1, 2], smooth ignition [3],
stable combustion [4] and good storage condition [5, 6], shows great potential in the field of rocket
propellant for its unique properties. Recent years, studies on gel propellant involve formation [7],
atomization [8, 9], flow characterization [10, 11] and combustion [12–14]. In practice, gel propellant
is atomized in crossing flow and then combusts, and particularly, secondary atomization in
downstream can dramatically influence the mixing and combustion efficiency [15]. Thus, the
spatial-temporal evolution of the breakup of gel droplet, including morphology, droplet and
fragment size and velocity, is of essential significance. The breakup process of a Newtonian
droplet varies with the Weber number (We � ρυ2ι/σ, where ρ is the fluid density, υ is the
characteristic velocity, ι is the characteristic length, σ is the surface tension coefficient of the
fluid) and Ohnesorge number (Oh), and can be divided into five modes (vibrational, bag, multi-
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mode, sheet thinning and catastrophic breakup), with distinctive
transition on the shape and size of broken droplet fragments [16].
As a typical non-Newtonian fluid, the secondary breakup of a gel
droplet differs from that of a Newtonian one. Moreover, the
extreme breakup condition of a gel propellant droplet under a
high internal flow of a rocket, with We even over one thousand,
makes the breakup complicated and subsequently its
characterization more challenging.

To quantify the droplet breakup process, several advanced
optical particle instruments have been applied to measure the
droplet, e.g., phase Doppler analyzer (PDA) [17, 18] and Malvern
particle size analyzer (MPSA). PDA can only deal with spherical
particles and MPSA can only measure the one-dimensional
particle descriptor, that is, equivalent size. However, the
breakup of a gel droplet generates a large amount of irregular
fragments, filaments and nonspherical droplets, and their
morphological characterization, especially in 3D, are vitally
important to have an insight into the mechanism of gel
droplet breakup process. Digital in-line holography (DIH), as
a real 3D imaging technique, can measure geometric parameters
of particles, including 3D position, diameter and morphology,
and 3D velocity when combined with particle imaging/tracking
velocimetry (PIV/PTV) strategy, and thus suits to droplet
dynamics characterization. Based on DIH, Radhakrishna, et al.
[19] obtained the size and velocity of droplets with different We
ranging from 30 to 120, explored the breakup pattern and thus
gave the percent of required minimum reflux velocity, Prasad,
et al. [20] explored the impact of density on cloud dynamics and
examined two particle clouds with similar granularity and
morphology and thus provided a measurement of velocity and
concentration before ignition, Liebel, et al. [21] combined
transient microscope and successfully demonstrated the time-
resolved spectroscopy of gold nanoparticles to lay a foundation
for single shot three-dimensional microscopic imaging on any
timescale. One of the common challenges in filament-droplet
field characterization during secondary breakup is accurately
detecting and segmenting the object from background.
Nowadays, threshold algorithms [22] especially adaptive-
threshold methods (ATM) [23–25] are widely employed. The
threshold value is calculated based on models originally derived
from image by direct photography, while the reconstructed slice
image in DIH has intrinsic twin-image noises. Besides, the liquid
filaments with various morphology and multi-scale droplets pose
additional challenge to their segmentations. These factors
deteriorate the performance of threshold-based algorithms.

In nature, the segmentation of the reconstructed holographic
image is equivalent to semantic segmentation in the field of deep
learning. Fully convolutional neural network (FCN) [26] opened
the door of deep learning to the field of semantic segmentation,
and several models, e.g., Deeplab [27], Segnet [28], E-net [29],
U-net [30] etc., were proposed. Among them, U-net is a classic
network for semantic segmentation, and it is also embedded in
various popular large models as a classic network backbone.
Especially, U-net was widely used in the semantic
segmentation of medical images owing to the mixture of low
level features and high level features [30]. Tuning the loss
function and data augmentation through cropping and

rotating the initial image, can increase the accuracy and the
robustness of the deep neural network prediction. The
application scenario of this method is extended to DIH and
become a feasible approach to segment the reconstructed
holographic images. Altman, et al. [31] completed the
characterization and track of hologram to recognize and locate
the colloidal particles and thus eliminated the proprieties of it
with deep convolutional network. Midtvedt, et al. [32] developed
a weighted average convolutional network to analyze the
hologram of single suspended nanoparticle and quantified the
size and refractive index of a single subwavelength particle. But
until now, these works mainly focus on relatively large [33, 34],
spherical object [35, 36], sparse small particle field [37–39] or
other objects (e.g., fiber internal structure [40], cell identification
[41]), yet few focused on dense particle field consisted of liquid
droplets and filaments with various morphological shapes like gel
atomization field. And the combination of digital holography and
deep learning methods were also extended to other particle-like
objects, Belashov, et al. [42] utilized holographic microscopy
combined with cell segmentation algorithm using machine
learning to characterize the dynamic process of apoptosis and
the accuracy achieved 95.5% and Wang, et al. [43] segmented
some terahertz images of gear wheel and used average structural
similarity to get the relatively best results which were proved to be
better than some traditional segmentation algorithms in
their paper.

This study combines semantic segmentation model based on
deep neural network with the holographic images of gel
secondary atomization field and proposes Mo-U-net to deal
with this segmentation task. Experimental results show that
Mo-U-net has a superior performance in overall, local
boundary, internal structure prediction and particle retrieval of
different scales than ATM in different conditions. Therefore,
using the Mo-U-net can lay a solid foundation for the later
mechanism analysis in droplet breakup, which also provides a
feasible approach to segmenting other kinds of holograms.

2 EXPERIMENTAL SETUP

The experimental setup for gel droplet breakup in a crossing
flow measured with DIH is shown in Figure 1. A gel droplet
with a size ranging from 1.74 to 2.58 mm was produced by a
needle generator, and then fell into a high-speed crossing flow,
with a velocity ranging from 63.7 m/s to 118.2 m/s. All gel
samples were distributed on the same day, with a density of
1,356.8 kg/m3 and a surface tension of 24.56 mN/m. The droplet
was then accelerated and was broken up into filaments and small
droplets, with the We spanning from 514 to 1768 and Reynolds
number (Re) from 1.078 ×104 to 2.033 ×104. The experiments
were carried out under five conditions as shown in Table 1. In
this table, d means the droplet diameter, ]c is the central velocity
in the flow field, Re is the Reynolds number (Re � ρVL/μ, where
ρ, μ are the density and dynamic viscosity coefficient of the fluid
respectively, and V and L are the characteristic velocity and
length of the flow field). The breakup processes of the gel
droplets were visualized by a 25 kHz high-speed DIH system.
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A laser beam of λ � 532 nm wavelength was first generated by a
pico-second pulsed laser, passed through a spatial filter, and
then collimated into a plane wave. The plane wave traveled
through the test region and illuminated the filament-droplet
field. Part of the beam was scattered as the object wave and
interfered with the reference wave without being scattered to
generate the hologram with size of M ×N � 1,280 × 800, and
equivalent horizontal and vertical pixel size Δx and Δy of 28 μm

in this study. The holograms obtained in this study are shown in
Figure 2A.

The recorded hologram noted as Ih(m, n) was then
reconstructed by angular spectrum method [44] as follows

Er(k, l, zr) � F −1 F R · Ih(m, n)[ ] × exp −i 2πzrλ

��������������������
1 − λm

MΔx( )2

− λn
NΔy( )2

√√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭ ,

where Er (k, l, zr) denotes the complex amplitude of the
reconstructed image, zr and (k, l) denotes the reconstruction
distance from the recording plane and the pixel coordinates of the
reconstructed image respectively. And R � 1, denotes the
reference light for reconstruction of DIH. h (m, n) is the
hologram, and (m, n) is the pixel coordinate in the hologram.

In this study, 301 sections between 210 and 240 mm in the Z
axis were reconstructed with 0.1 mm spacing in order to obtain a
full 3D droplet field information while keep a relatively high
reconstruction speed. Because the depth of field (DoF) of the

FIGURE 1 | Schematic of the high-speed DIH system for measuring crossing flow atomization of gel droplet.

TABLE 1 | Parameters of five experimental conditions.

case d (mm) νc (m/s) We Re

1 2.58 ± 0.01 63.7 514 1.096 × 104

2 2.58 ± 0.01 92.9 1,092 1.598 × 104

3 2.58 ± 0.01 118.2 1768 2.033 × 104

4 2.13 ± 0.03 92.9 902 1.319 × 104

5 1.74 ± 0.02 92.9 737 1.078 × 104

FIGURE 2 | Experimental data for crossing-flow atomization of gel particles. Images with black boundary are the primitive images. Images with red boundary on the
left upper side are enlarged ones of what the red dotted box frames. The subgraph (A) is the raw hologram obtained by the high speed camera. The subgraph (B) is one
of the slices from a reconstructed hologram. The subgraph (C) is the EFI generated from all reconstructed slices.
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holographic imaging system is calculated to be about 290 μm
[45], as long as the section spacing is shorter than the DoF, then
all particles in experimental space can be focused on certain
section and if the spacing is too small, the time of reconstruction
maybe extremely long. Due to the limited depth of field of
reconstructed image, each reconstructed slice only had a few
droplets in-focus, as shown in Figure 2B. So it is necessary to
reconstruct multiple sections of particle field. To facilitate the
subsequent droplet recognition and locating as well as speed up
this process, the whole reconstructed 3D particle field was fused
into one image called extended focus image (EFI) as shown in
Figure 2C, using a region-based image depth-of-field extension
algorithm [46]. The gel filament-droplet field in the EFIs has the
following characteristics. 1) Due to the characteristics of digital
in-line holography, the foreground twin-image is generated in the
background of EFI accompanied with the bright and dark
background stripes. They interfere with the gray distribution
of the local foreground and produce some noises in the final
recognition result. 2) In complex dense filament-droplet field, the
twin-images generated by the foreground of EFI interfere with
each other and form complex, changeable and irregular noises,
which cripple the segmentation effect of classical threshold

method based on gray statistics. 3) The shapes of gel filaments
in EFIs are variable, and the scale span of gel filaments is very
large (hundreds of microns to a few centimeters). These two
factors make the general processing method based on geometry
and morphology unfeasible, and increase the difficulty of
threshold segmentation methods.

Thus, in this study, the EFIs will be processed with a deep
neural network called Mo-U-net to overcome the difficulties
mentioned above.

3 METHODS

3.1 Model Setup
U-net consists a shrinking path named encoder and an expanding
path named decoder. The shrinking path is used to extract the
context information of the image while the expanding path is
used to reconstruct the foreground and the background of the
image precisely according to the information. The symmetrical
two paths form a structure like “U” for which this network is
called “U-net” [30]. Because of the complex segmentation scene
and fine segmentation requirements, U-net adopts layer skipping

FIGURE 3 | The structure of Mo-U-net. The blocks and arrows marked as gray areas denote the parts that are pruned in actual use.
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link, which fuses the bottom information extracted by the
encoder with the corresponding high-level feature map from
the decoder layer by layer to make up for the lost features in
encoding.

As is shown in Figure 3, the Mo-U-net used in this study, is
based on the structure of U-net, and is improved in two aspects.
1) The original four down sampling blocks is replaced with a
network named Mobilenetv2 [47] as our new encoder.
Mobilenetv2 completely discards the pooling layer to retain
more low-level features in down sampling and replaces normal
convolution with depth-wise separable convolution and point-
wise convolution, which enables a more precise and faster
segmentation. And it is also consistent with the segmentation
characteristics of the gel filament-droplet field in EFIs. 2) Block7
to 14 from Mobilenetv2 are removed to simplify the encoder and
only two up-sampling and feature fusing process are kept to
simplify the decoder for the timeliness of image processing and
finite computing resources. Since the features of gel droplets and
filaments are primitive in this study, a network with relative small
capacity and few skipping connection will be qualified enough to
extract adequate semantic information for fine segmentation
while saving quantities of training time due to its fewer
parameters.

3.2 Dataset Establishment and Data
Augmentation
The dataset for neural network training generally includes input
images and true values which are also called ground truth in
image segmentation field. In this study, the dataset is established
in two steps. In the first step, the ATM [48] is used to preprocess a

batch of EFIs to obtain relatively rough ground truth. Then, the
obviously defective truth value labels are ruled out while the rest is
regarded as the ground truth for training and testing. The reasons
for this are as follows. 1) The current image processing method
cannot make pixel-wise ground truth, and manual calibration
costs a lot of time, which is unfeasible for subsequent experiments
and industrial applications. 2) Different from the traditional
threshold and regression algorithm, owing to the gradient
back propagation and batch processing mechanism, deep
neural network shows great robustness in noisy learning (the
process of learning from a dataset containing partial error
samples is usually called noisy learning), and has been verified
in many experiments [49]. A total of 2,167 images were collected
in the experiment. After filtered by ATM, a total of 2021 images
with rough ground truth were obtained as shown in Figure 4.

The second step is data augmentation. The EFIs obtained in
experiment have some defects, which can be mainly divided into
three aspects. 1) Uneven spatial distribution. As the red box
shown in Figure 5B, the spatial distribution of the droplet particle
field is of great unevenness. Under the experimental conditions,
most of the gel droplet particle field is concentrated in the upper
and the right parts which may cause a positional bias to network
when training, thus affecting the generalization ability. 2) Black
long-strip noise. The blue box in Figure 5B shows that, due to the
limitation of lens range, black noise with long strip shape appears
on the edge of the image. Although it is not a droplet, the ATM
will mistake it as a foreground, which is harmful for the feature
learning. 3) Dot-like black noise. From the yellow box in
Figure 5B, the static dot-like black noise appears because
some particles are attached to the cavity wall after being
blown away during experiment. Although such noises donot

FIGURE 4 | Rough ground truth produced by the ATM.
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belong to the dynamic particle field, its characteristics are the
same as real particles in the EFIs. So it will not affect the learning
of the characteristics of the EFIs of gel filaments and particles, and
there is no need for extra calibration.

To deal with the first two main defects, the original dataset is
augmented in two corresponding ways. 1) The image size is
cropped from 1,280 × 800 to 672 × 672 to remove the unqualified
boundary. 2) The images are rotated by 90°, 180° and 270°

respectively and then added to the dataset. So the spatial
distribution of the dataset can be normalized. Finally, a dataset
contains 8,084 images with 672 × 672 resolution is obtained, as
shown in Figure 6. Although the image is cropped in the
experiment, the model after training does not strictly limit the
input image size. If only the size meets the integer times of 224
and with the same height and width, the model can adjust to it
after a fine tune with a very small cost.

3.3 Train Setting
In order to achieve good segmentation performance, the train
strategy is set as follows. A pre-training weights is firstly used to
accelerate the model convergence and improve the
segmentation accuracy. The weights obtained from the
famous image dataset ”ImageNet” [50] is used as pre-training
weights of the Mobilenetv2 in the experiment. Then we use
transfer learning strategy to fine tune. In detail, the initial
learning rate of the model is set to 0.001 during training and
the encoder layer with pre-training weights is frozen to improve
the model performance and speed up the training process.
Besides, cross entropy loss (CEL) function and Adam
optimizer [51] are selected to accelerate the model
convergence. An early stop strategy (stop training when the

loss value is no longer decreased) and a linear decreasing
learning rate strategy (when the loss is no longer decreased,
the learning rate will be changed, in the experiment, the patient
is set to three epochs, and the change ratio is 0.1) are employed
to ensure that the model can be closer to the optimal solution,
and avoid over-fitting in the later training. Finally, the network
is trained for 100 epochs to ensure an adequate train.

4 RESULTS AND DISCUSSIONS

4.1 Training and Validation
The dataset mentioned in Section 3.2 is divided into train set and
validation set by 8:2 ratio to train model and validate its
performance respectively. Based on the environment of
tensorflow2.4.0, the Mo-U-net is trained with 2 T P100-PCIE-
16 GPUs. And a Mo-U-net without pruning is also trained in the
same case to evaluate the effect of the improvements mentioned
in Section 3.1. As a result, Mo-U-net with pruning cost 8.5 min
per epoch to train on average while Mo-U-net without pruning
cost 14.6 min per epoch to train on average, which means a nearly
41% saving of training time by using pruning. Besides, the
following test result shown in Section 4.3 also proves that
pruning will not affect the performance of the model in this
study. And to show the improvements by using Mobilenetv2, an
original U-net is also trained in the same condition. The result in
Section 4.3 shows that the original U-net also achieved excellent
performance of 82.66% PIOU and 1.1721 ASSD, exceeding the
performance of ATM in five working conditions. This shows that
deep learning method has considerable advantages for the
segmentation of complex dense droplet-filament-mixed field in

FIGURE 5 | Defective dataset. The subgraphs in column (A) are the images chosen randomly from the dataset with the same defects. The subfigure (B) is the
specific defects. The red frame denotes where the uneven spatial distribution of droplets are, the blue frame denotes the black noises with long black strip shape and the
yellow frame refers to the black noise with a dot-like shape.
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EFIs. However, it can still be modified. On this basis, Mo-U-net
proposed in this study has achieved better performance in PIOU
(area segmentation accuracy) and ASSD (boundary segmentation
error) than the original U-net, especially in the extreme complex
disaster crushing of gel droplet (working conditions 4 and 5). This is
precisely because we use the Mobilenetv2 to replace the four basic
convolutional encoding blocks of the original U-net. After
improvement, the Mo-U-net obtains a deeper coding path to
form a stronger capacity of representation, so it can extract
higher-level semantic information. Therefore, it will have better
generalization ability and robustness in the face of complex scene
in segmentation.

4.2 Morphological Analysis
As shown in Figure 7, Mo-U-net has the ability to segment the
foreground and background of the EFIs after training. To have a
more lucid assessment between the performances of the Mo-U-net
and the ATM, a comparison is conducted by the validation set. The
experimental results show that the Mo-U-net outperforms the
ATM in area, boundary and multi-scale droplet recognition.

1) As for the prediction of inner structure, Mo-U-net outdoes
ATM. As the orange circles shown in Figure 8, in the
experimental conditions, Mo-U-net can precisely
recognize a big lump of gel droplets and the internal
structure while ATM couldnot, e.g., ATM lost internal
structures of eight areas from just five small blocks in
Figure 8. This shortcoming is caused by its segmenting
mechanism. ATM mainly segments the image according to
the gray values in its selected region. However, in the EFIs of
gel atomization field, the dense diffraction fringes of twin-
images would decrease the gray values of the droplets and
filaments with hollow parts inside, which leads to an
incorrect threshold. Besides, from Figures 8B–E, there
exist many inner structures of various scales. Even
though it is possible to get the nearly identical inner
structure through adjusting the size of processing block,
extending the precise results to the whole image is far more
difficult. But such a complex problem is actually an easy task
for Mo-U-net. In Figure 8, inner structures of the gel
droplet were well predicted whatever the scale.

FIGURE 6 | Dataset with data augmentation. The subgraphs (1) to (4) in column (A) are the original images chosen randomly from the dataset which has been
cropped into 672×672. The column (B) to D refer to the augmented images generated by rotating the original images by 90°,180°and 270°respectively.
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Fundamentally, the way Mo-U-net forms its criteria to
segment the image determines its superior performance.
The criteria comes from the context information from the
whole image scale, which is wider and deeper than the
statistics information depending on gray values of ATM.
Thus, Mo-U-net can utilize not only the features of gray
values in only one region or one image but also the overall
distribution features to judge whether the pixel is
foreground or not.

2) In terms of complex liquid filament morphology predicting,
Mo-U-net shows an outstanding performance. As the green
circles shown in Figure 8, ATM is quite sensitive to the
brightness change when segmenting consecutive and
slender liquid filaments. In details, only if there is some
bright spots, ATM will ”cut off” the filament in this
position (e.g., Figure 8E). What is more, the noises in the
vicinity will harm the ATM segmentation and bring about a
contractile boundary (e.g., Figures 8A,C,D total loss of
filament (e.g., Figure 8B). These weaknesses can also be
overcome by Mo-U-net. Assisted by the global information
mentioned in Section 4.2(1), it can locate most of the liquid
filaments, get rid of the interference from noises and omit the
tiny brightness change of liquid filaments. The last two
strengths account for the consecutive and complete liquid
filament prediction.

3) Mo-U-net displays its distinguishing properties when
predicting small droplets. ATM usually performs poorly to
segment the droplets only with several pixels. Especially, in the
EFIs of dense droplet and filament field, the tiny droplet itself
has lower gray contrast and is interfered by the noises. For
both of these two reasons, ATM can easily omit tiny droplets
in the selected regions. As the blue circles shown in Figure 8,
ATM lost a large number of small droplets in the dense field
while Mo-U-net does well and is able to make up for this
shortcoming by using the information including gray
changing and particle distribution learned from other EFIs
in the same train set.

4) Besides, Mo-U-net shares a same excellent performance on
the prediction in sparse region with that in dense field. As
the purple box shown in Figure 8, ATM will mistake the
background to foreground in a high probability. In sparse
region, gray values of background will be the main factor to
choose the threshold. If there is no droplet and the gray
values of background is lower in the chosen region, ATM
will be more likely to mistake some areas in the background
with low gray values to foreground. However, Mo-U-net
has a superior performance in distinguishing the particles
from both bright and dark background, because the
criterion for judgement comes from the global
information learned by the Mo-U-net when training,
which provides hundreds of samples containing different
kinds of background situations. So the Mo-U-net can make
full use of these information and give a more accurate
prediction result.

The comparison of Mo-U-net and ATM demonstrates that
Mo-U-net is qualified enough to the segmentation of dense
filament-droplet field in the EFIs. And predictions of Mo-U-
net are closer to the reality in large droplet, filament morphology
andmulti-scale particles, which are relatively unfeasible for ATM.

4.3 Quantitative Analysis
4.3.1 Test Dataset
In order to evaluate the performance of the Mo-U-net and ATM
objectively and precisely, a batch of data is selected from five
working conditions mentioned in Section 2 that have never
participated in the model training process as a test set.
Meanwhile, to guarantee the reliability of the evaluation
metrics and the validity of subsequent analysis, the previous
ground truths produced ATM are examined and corrected
artificially. The test set consists 25 images with 672 × 672
resolution.

4.3.2 Evaluating Metrics
In this study, the quantitative evaluation of the model
segmentation performance can be divided into three parts 1)
the Positive Intersection over Union (PIOU), 2) the Average
Square Symmetric Boundary Distance (ASBD), 3) the Diameter-
Based Prediction Statistics (DBPS). These three metrics judge the
performance from the perspective of global, local and multi-scale
so as to comprehensively demonstrate the advantages and
disadvantages of Mo-U-net segmentation results.

FIGURE 7 | The overview of Mo-U-net predicting performance.
Subgraph (A) shows the input image of filament-droplet field in case 5.
Subgraph (B) is the superposition of theMo-U-net prediction and input image,
in which the predicted pixels are painted red.
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FIGURE 8 |Morphological comparison. The prediction of adaptive-threshold method is called ATM pred, the prediction of Mo-U-net is called Mo-U-net pred. The
subgraphs (A) to E belong to case 1 to case 5 respectively. The subgraphs with red boundary are the enlarged ones of what the red boxes frame, meanwhile the blackish
green refers to ATM pred and the purple denotes Mo-U-net-pred.
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1) The prototype of PIOU used in this study is MIOU, a metric
proposed to measure the similarity between two sets. MIOU is
defined as follows

MIOU � 1
kc

∑
i

pii
Ti +∑jpji − pii

,

In this formula, kc denotes the number of category, in this
situation kc is two, pii means the number of pixels which are
marked as the category i in both label and predicted output, pij is
the number of pixels which are marked as the category i in label
while marked as other category j in predicted output, i and Ti
denote the number of all pixels and the number of pixels of
category i in labels respectively.

In fact, the EFIs in this experiment have an extreme sample
imbalance, which means the number of samples in certain category
is far more than that in other categories. In this study, samples
denotes pixels. As shown in Figure 9, the average ratio of positive
to negative samples is 0.065. In some specific circumstances, the
ratio even reaches an exaggerated point of 0.01 (100 times). Thus,
in such a condition, the normal MIOU will have a poor
performance because it takes both the foreground (droplet) and
background into consideration. Consequently, whether
segmentation of the foreground which we really concern about
is right or not makes nearly no contribution to the results.
Therefore, we proposed PIOU to deal with the problem. PIOU
is a special form of MIOU, which only considers the intersection
and union ratio of the required classes through calculating the area
of positive samples in predicted results and in ground truth. In this
study, PIOU can be defined as follows

PIOU � pii
Ti + pi − pii

.

2) Average Symmetric Boundary Distance (ASBD) can serve as a
powerful evaluation metric to measure the consistency of the
boundary between the prediction and the ground truth. In this
study, we use the ASBD to assess the performance of our model
in boundary segmentation to show its ability to obtain the micro

characteristics. The smaller the value is, the more accurate the
predicted boundary is. The ASBD is defined as follows

ASBD � ∑ d SA − S(A)( ) +∑ d(SB − S(B))
S(A) + S(B) ,

where A and B denote foreground and background respectively,
SA and SB mean certain predicted marginal pixels in the
foreground and the background respectively, S(A) and S(B)
denotes all true marginal pixels in foreground and
background, the function d (·) is used to calculate the shortest
distance between an input pixel and the corresponding true set of
that pixel. In this study, a pixel-width distance in the EFIs denotes
a 28 μm distance in reality.

3) In this study, a Diameter-Based Prediction Statistics (DBPS) is
used to measure the segmentation performance of the model for
gel filaments and particles in different scales. When testing, the
number of droplets is first calculated based on their diameter in
Mo-U-net prediction and artificial ground truth. Then two
histograms based on the diameter and number of droplets are
drawn to show the distribution of Mo-U-net predictions and the
artificial ground truths. The closer the fitting curves of the two
histograms are, the better the model prediction is.

4.3.3 Metrics Analysis
According to the three evaluating metrics in Section 4.3.2, a
comprehensive comparison can be obtained between our model
and ATM in terms of the performance from three perspectives of
global, local andmulti-scale when segmenting the gel atomization
field in the EFIs. The test set is utilized to assess Mo-U-net and
ATM respectively and get the statistical results. The results of
PIOU and ASBD are shown in Table 2while the result of DBPS is
shown in Figure 9.

From Table 2, it is clearly illustrated that Mo-U-net has
superior performance in both PIOU and ASBD whatever the
working condition is.
Considering the overall segmentation effect (PIOU), these two
methods both achieve around 80% but Mo-U-net surpasses ATM

FIGURE 9 | Statistical histogram of positive and negative samples of dataset. In this study, a pixel from a droplet is called a positive sample, and a pixel from the
background is called a negative sample. Same P/N means images have the same ratio of positive to negative samples.
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nearly 5%, which is coherent with 1) (3) 4) in Section 4.2. And
when judging some pixels with obscure meanings, ATM can only
make use of the extracted gray values in its processing block while
Mo-U-net can utilize the features learned from the whole train
set. With the adequate understanding of fundamental
distribution, Mo-U-net performs better than ATM.

As Table 2 shown, the ASBD of Mo-U-net is over 60% lower
than ATM. That means when using Mo-U-net, the boundary loss
of segmentation can be decreased from nearly a droplet-width (a

small droplet in the EFI always contains four or more pixels)
distance to a pixel-width distance in the EFIs. This metric shows
the ability of these two methods to segment fine structure e.g., the
inner structure and the boundary of filaments in Section 4.2. The
specific reason can be divided into two aspects as follows. On the
one hand, whether ATM recognizes the pixel as foreground or
background completely depends on whether its gray values
surpasses the threshold or not, which accounts for the rough
edge with some serrated areas, skin needing and boundary
defects. On the other hand, Mo-U-net will not only consider
the pixel gray values but also the adjacent edges and the regional
shape so that it can segment the boundary more smoothly and get
a more precise prediction of the inner structure than ATM.

As shown in Figure 10, under five different conditions, Mo-U-
net has a very similar size distribution of multi-scale droplets to the
artificial ground truth. Specifically, in most experimental
conditions, they share a homologous peak area around 50 μm,
and the nearly same decreasing tendency from 100 μm. However,
in the range of 50–100 μm in diameter, there is a discrepancy in
particle number between Mo-U-net prediction and the artificial
ground truth. As shown in Figure 10, the number of the droplets
75 μm diameter predicted by Mo-U-net is lower than the artificial
ground truth (more than a dozen droplets got lost) in general.
Particularly, as shown in Figure 10, in case 1 and case 2, the
number of the droplets around 50 μm diameter predicted by Mo-
U-net surpasses the artificial ground truth in the same time. These
phenomena may be related with low image resolution. In fact, in
the EFIs, 50 μm denotes only two pixel-width and 75 μm denotes
only three pixel-width respectively. That is to say, Mo-U-net only
mistakes one pixel when predicting a three pixel-wise droplet and
the mistaken three pixel-width droplets are then reduced to two
pixel-width droplets. It is why the number of droplets around
75 μm diameter is relatively lower compared with the artificial
ground truth while that of droplets around 50 μm diameter is
relatively higher in case 1 and case 2. The reasons are also
consistent with the result of ASBD in Table 2, which shows the
disparity of the boundary between Mo-U-net prediction and
artificial ground truth is around one pixel-width. Besides, as
mentioned in the morphological analysis in Section 4.2 and
metrics analysis in above, as a “teacher”, ATM suffers a low
accuracy and will cause unexpected defeats in micro-droplets
segmentation. Therefore, trained with the ground truth
produced by ATM, Mo-U-net can hardly gain the capability to
conduct a perfect segmentation in micro-droplets. Generally

TABLE 2 | The test results of PIOU and ASBD.

Metric PIOU ASBD

Methods ATM U-net Mo-U-net (NP) Mo-U-net (P) ATM U-net Mo-U-net (NP) Mo-U-net (P)
Case 1 0.7502 0.8182 0.8031 0.8018 6.8226 0.9751 0.9831 1.1110
Case 2 0.7625 0.7929 0.8108 0.8005 2.3286 1.2872 1.0718 1.2337
Case 3 0.8712 0.9076 0.9061 0.9035 2.6958 1.1000 1.0197 1.1034
Case 4 0.8076 0.8147 0.8441 0.8369 1.4781 1.2135 0.9857 1.0975
Case 5 0.7399 0.7996 0.8349 0.8259 3.0487 1.2850 0.9954 1.1241
AVE 0.7863 0.8266 0.8398 0.8337 3.2748 1.1721 1.0111 1.1339

In this table, the U-net denotes the original model without our improvement, the Mo-U-net (NP) denotes the Mo-U-net without pruning, the Mo-U-net (P) denotes the Mo-U-net with
pruning, AVE means an average result of all cases.

FIGURE 10 | The result of DBPS. The subgraphs (A) to (E) denotes case
1 to 5 respectively.
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speaking, the prediction provided by Mo-U-net is basically
consistent with the real size distribution of gel dense filament-
droplet field in the EFIs, which can offer a relatively accurate
statistical information of size distribution for subsequent research
and analysis in droplets.

In all the three metrics, Mo-U-net shows a better performance
in area prediction and boundary segmentation than ATM, and
shares a coherent size distribution of multi-scale droplets to the
artificial ground truth. These results are consistent with what
morphological analysis claims in Section 4.2, which proves that
Mo-U-net can automatically learn the characteristics provided by
a large number of positive samples, and ignore small amount of
noises in the real ground truth. In the final test, the model shows
better performance than the ground truth produced by ATM, and
gives an eloquent proof that neural network can be “better than its
teacher”.

5 CONCLUSION

This work has investigated a deep neural network called Mo-U-
net and its application to the segmentation of dense gel filament-
droplet field in digital holography, with progresses as follows.

• A Mo-U-net model is proposed to segment dense filament-
droplet field. The model is mainly based on the U-net and
modified by two steps as follows. Firstly, the original four
down sampling blocks of U-net are replaced with
Mobilenetv2 to retain more low-level features when
encoding. Secondly, the model is pruned by cutting off
all the down sampling blocks below the sixth block and only
reserve two corresponding up sampling blocks to reduce the
parameters of the model. As a result, Mo-U-net achieves a
high accuracy in segmentation while saves 41% of training
time compared with the Mo-U-net without pruning.

• A morphological comparison is conducted by the
validation set to assess the segmentation performance
between the Mo-U-net and the ATM. The experimental
results show that, the Mo-U-net achieves a finer boundary
segmentation in large droplet, a more precise internal
structure prediction in filament with complex
morphology and a stronger ability in recognizing multi-
scale particles than the ATM.

• Three metrics contain PIOU, ASBD and DBPS are proposed
for a quantitative evaluation between the Mo-U-net and the
ATM. The test results show that the area prediction accuracy
(PIOU) of Mo-U-net reaches 83.3%, which is about 5% higher
than that of adaptive-thresholdmethod (ATM). The boundary
prediction error (ASBD) of Mo-U-net is only about one pixel-
wise length, which is about one third of that of ATM. AndMo-
U-net also shares a coherent size distribution (DBPS)
prediction of droplet diameters with the reality.

In EFIs, complex background noises, changeable shape of
filaments and large span geometric size distribution are the
main obstacles for the classical algorithm to deal with the
particle detection task. However, the proposed model can

adjust to it well. 1) Mo-U-net, as a specific neural network is a
data-drivenmodel which can avoid the difficulty to judge whether
the pixel belongs to the foreground from the mechanism. It learns
the distribution law under the data itself so that can deal with the
problems that not be handled by morphology alone. 2) Mo-U-net
extracts various information in the EFI by convolution, including
multi-dimensional global information, shape and spatial position
which enriches its segmentation basis, suppresses the influence of
background noises and finally overcomes the limitations of
traditional gray-statistics-based threshold methods. 3) Mo-U-
net gains the predicted foreground and background
segmentation image by deconvolution, step skipping and
fusion methods. The combination of multi-level semantic
information enables it to get a satisfied internal structure
prediction. And there are many other similar scenarios. For
example, in swirl atomization [52], there are vertical stripe
noises caused by the spatial modulation of reference light and
transmitted laser; interference between reference light and
droplet diffraction light and irregular spots produced by the
superposition of a large number of droplets and the
surrounding interference fringes. The model is foreseeable to
have a great performance in these tasks. At the same time,
the Mo-U-net’s extensive information source also makes it
not confined to the segmentation and recognition of
holographic image of particle liquid filaments. It can also be
expanded to medical imaging, biological cells, material
defects and other fields of small dense objects. As long as a
relatively good dataset can be obtained, a robust performance can
be expected after a fine tune.
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