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Growth in crystals can be usually described by field equations such as the Kardar-Parisi-
Zhang (KPZ) equation. While the crystalline structure can be characterized by Euclidean
geometry with its peculiar symmetries, the growth dynamics creates a fractal structure at
the interface of a crystal and its growth medium, which in turn determines the growth.
Recent work by Gomes-Filho et al. (Results in Physics, 104,435 (2021)) associated the
fractal dimension of the interface with the growth exponents for KPZ and provides explicit
values for them. In this work, we discuss how the fluctuations and the responses to it are
associated with this fractal geometry and the new hidden symmetry associated with the
universality of the exponents.
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1 INTRODUCTION

Symmetry and spontaneous symmetry breaking are fundamental concepts to understanding nature,
in particular to investigate the phases of matter. Since growth is one of the most ubiquitous
phenomena in nature, a question appears immediately “What are the symmetries associated with
growth?” In order to address this question, we shall look into the major growth field equations: the
Edwards-Wilkinson (EW) equation [1],

zh( �x, t)
zt

� ]∇2h( �x, t) + ξ( �x, t), (1)

and the Kardar-Parisi-Zhang equation [2],

zh( �x, t)
zt

� ]∇2h( �x, t) + λ

2
[ �∇h( �x, t)]2 + ξ( �x, t), (2)

where h: Rd × R+ →R denotes the interface heights at point �x ∈ Rd at the time tP0. Since h( �x, t)
displays different scale properties than those displayed by �x, we say that we have a d + 1 dimensional
space, in such a way that the growth of a film will be in 2 + 1 space dimensions. The parameters ]
(surface tension) and λ are related to the Laplacian smoothing and the tilt mechanism, respectively.
The stochastic process is characterized by the zero-mean white noise, ξ( �x, t), with:

〈ξ( �x, t)ξ( �x′, t′)〉 � 2Dδ(d)( �x − �x′)δ(t − t′), (3)
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where D is the noise intensity. The above equation is sometimes
called the fluctuation–dissipation theorem (FDT). The EW
equation was obtained [1,3] considering the basic symmetries
�x→ �x + �x0, �x→ − �x, t → t + t0, h → h + h0, and h → − h, i.e.,
independence of the frame of reference. Note that the symmetry
h → − h is violated for KPZ due to the presence of the nonlinear
dependence on the local slope [ �∇h]2. The KPZ equation describes
very well the dynamics of some atomistic models such as the
etching model [4–9] and the single-step (SS) model [10–14] in the
long wavelength limit. For atomistic models, we define our
Euclidean space as a d-dimensional hypercubic lattice within
the regionΩ ⊂ Rd, with volume V � Ld, where L is the lateral side.

Two quantities play an important role in growth, the average
height, 〈h(t)〉, and the standard deviation

w(L, t) � 〈h2(t)〉 − 〈h(t)〉2[ ]1/2, (4)

which is named as roughness or the surface width. Here, the
average is taken over the space. The roughness is a very important
physical quantity since many important phenomena have been
associated with it [1–15]. For many growth processes, the
roughness, w(L,t), increases with time until reaches a saturated
roughness ws, i.e., w(t →∞) � ws. We can summarize the time
evolution of all regions as follows [3]:

w(L, t) � ctβ, if t<< t×
ws ∝ Lα, if t>> t×,

{ (5)

with t×∝ Lz. The dynamical exponents satisfy the general scaling
relation:

z � α

β
. (6)

The set of exponents (α, β, z) defines the growth process and its
universality class [3]. Since the universality class is associated with the
symmetries, the breaking of the symmetry h→ − h turns out the KPZ
universality class different from that of EW. For example, for the KPZ
universality class, the Galilean invariance [2]:

α + z � 2, (7)

is a signature of KPZ.
In this way, the KPZ equation, Eq. 2, is a general nonlinear

stochastic differential equation, which can characterize the
growth dynamics of many different systems [4–9]; [16–19]. As
a consequence, most of these stochastic systems are
interconnected. For instance, the SS model [10–14], which is
connected with the asymmetric simple exclusion process [12], the
six-vertex model [13, 20, 21], and the kinetic Ising model [13, 22],
all of them are of fundamental importance. It is noteworthy that
quantum versions of the KPZ equation have been recently
reported that are connected with a Coulomb gas [23], a
quantum entanglement growth dynamics with random time
and space [24], as well as in infinite temperature spin-spin
correlation in the isotropic quantum Heisenberg spin-1/2
model [25]; [26].

Despite all effort, finding an analytical or even a numerical
solution of the KPZ equation (2) is not an easy task [27,28]; [29];

[30,31]; [32], and we are still far from a satisfactory theory for the
KPZ equation, which makes it one of the most difficult and
exciting problems in modern mathematical physics [33–41], and
probably one of the most important problems in non-equilibrium
statistical physics. The outstanding works of Prähofer and Spohn
[35] and Johansson [42] opened the possibility of an exact
solution for the distributions of the height fluctuations f(h,t)
in the KPZ equation for 1 + 1 dimensions (for reviews see
[37–42]).

In a recent work [43], the exponents were determined for 2 + 1
dimensions using

α �
1/2, if d � 1

1
df + 1

, if dP2,

⎧⎪⎪⎨⎪⎪⎩ (8)

where df denotes the fractal (Hausdorff) dimension of the
interface, which has been proved to be well associated with the
global roughness exponent α, and the well-known result [3]

α � 2 − df, (9)

for d � 1, 2. This yields for 2 + 1 dimensions

z � df � φ, α � 3 − 	
5

√
2

, β � 	
5

√ − 2, (10)

where φ � 1+ 	
5

√
2 is the golden ratio.

In this work, we discuss a FDT for growth in d + 1 dimensions
and the possible symmetries associated with the fractal geometry
of growth.

2 FRACTALITY, SYMMETRY AND
UNIVERSALITY

Note that, now we do not have just the triad (α, β, z) but the
quaternary (df, α, β, z), i.e., the fractal dimension and the
exponents. They are completely connected; thus, fractality,
symmetry, and universality are interconnected as well. Using
Eqs. 6, 7, 8, 9, we can determine (df, α, β, z). Therefore, for 2 + 1
dimensions, under any point of view, the exponents and fractal
dimension have been determined. However, there are questions
concerning the symmetries that we have not even touched. The
first question is why Eq. 8 has a distinct behavior for d � 1 and d ≠
1? The value α � 1/2 for d � 1, i.e. 1 + 1 dimensions, is known
since the KPZ original work [2]. It is a consequence of the validity
of the FDT (Eq. 3) for this dimension. Nonetheless, we have some
new elements for d > 1, and the explicit appearance of this new
non-Euclidean dimension requires a more detailed analysis of the
involved symmetries.

3 FLUCTUATIONS RELATIONS AND
FRACTAL GEOMETRY

In order to understanding deeply the fluctuation–dissipation
relation, we have to go back to the works of Einstein,
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Smoluchowski, and Langevin on the Brownian motion [44–51].
Langevin proposed a Newton equation of motion for a particle
moving in a fluid as [48]:

dP(t)
dt

� −cP(t) + f(t), (11)

where P is the particle momentum and c is the friction. The
ingenious and elegant proposal was to modulate the complex
interactions between particles, considering all interactions as two
main forces: the first contribution represents a frictional force, −
cP, where the characteristic time scale is τ � c−1 while the second
contribution comes from a stochastic force, f(t), with time scale
Δt ≪ τ, which is related with the random collisions between the
particle and the fluid molecules. The uncorrelated force f(t) is
given by

〈f(t)f(t′)〉 � 2c〈P2〉eqδ(t − t′), (12)

where 〈P2〉eq � mkBT, where kB is the Boltzmann constant. Note
that Eq. 12 was obtained by imposing that the mean square
momentum reaches a fixed value given by the equipartition
theorem, i.e., there is an energy conservation on the average,
which means a time translation symmetry. Later on, Onsager [52]
demonstrated that symmetries in the susceptibility (response
functions) were associated with the crystal symmetry.

More recently, it was observed [53] that even for 1 + 1
dimensions in growth process, Eq. 12 is not really a FDT, but
a relation for the noise intensity, so the FDT relation was
completed using the exact result of Krug et al. [10]; [11] for
the saturated roughness:

ws �
					
D

24]
L

√
, (13)

in 1 + 1 dimensions. This shows that the saturation is an interplay
between noise D, which increases the saturation, and the surface
tension ], which opposes to the curvature, acting as a “friction”
for the roughness. And therefore, the FDT for growth can be
written as [53]:

〈ξ(x, t)ξ(x′, t′)〉 � 2b]w2
sδ(x − x′)δ(t − t′), (14)

where b � 24/L. Moreover, since the noise and the surface tension
in the EW equation have their origin in the same flux, the
separation between them is artificial, and consequently, the
connection is restored. Thus, there is no doubt that Eq. 14
gives us a real FDT.

For the d > 1, there is a violation of the FDT for KPZ [2]; [32],
where the renormalization group approach works for 1 + 1
dimensions but fails for d + 1, when d > 1. The violation of
the FDT is well-known in the literature, in structural glass
[54–59], in proteins [60], in mesoscopic radioactive heat
transfer [61]; [62], and as well in ballistic diffusion [63–66].
Consequently, the place to look for a solution for the KPZ
exponents is the FDT for d + 1 dimensions.

For a solid, the crystalline symmetries are broken during the
growth process, which creates the interface with a fractal
dimension df [53]. Although a numerical solution of KPZ
equation was obtained with good precision [29] for d � 1, 2,

and 3, the exponents can be obtained in an easier way from
cellular automata simulations. For example, the stochastic cellular
automaton, etching model [4]; [7]; [8], which mimics the erosion
process by an acid, has been recently proven to belong to the KPZ
universality class [67]. Thus, it was used together with the SS
model to obtain the fractal dimension and the exponents with a
considerable precision [43].

Now, we want to discuss how the FDT is affected by the
interface growth. In order to do that let us use the SS model,
which is defined as follows. Let Ω be our d-dimensional lattice, at
any time t:

1. Randomly choose a site i ∈ Ω;
2. If h (i, t) is a local minimum, then h (i, t + Δt) � h (i, t) + 2, with

probability p;
3. If h (i, t) is a local maximum, then h (i, t +Δt) � h (i, t) − 2, with

probability q � 1 − p.

The above rules generate the SS model dynamics. Let ηij(t)
denotes the height difference between two nearest neighbors sites,
i.e., ηij(t) � hi(t) − hj(t). By construction, ηij(t) � ±1. That makes
the SS model analytically more treatable and easily associated
with the Ising model. Furthermore, changing the value of p
corresponds to changing the value of the tilt mechanism
parameter λ in KPZ equation. In particular, for p � q, the
average height is constant, which characterizes the EW model.

In Figure 1, we show the evolution of the noise intensity with
time, for a 2 + 1 SSmodel. Time is in units of normalized time t/t×.
We use the above rules, periodic boundary conditions, p � 1, a
1,024 × 1,024 lattice, and we average over 10, 000 experiments. In
the upper curve, we exhibit the applied white noise with a mean
squared value equal to 1. In the lower curve, we show the effective
noise, i.e., the remaining noise after it has passed through the filter
of the rules (2) and (3) above. The effective noise intensity
depends on the fractality of the interface, decreasing as it is

FIGURE 1 | Noise intensity as a function of time for the 2+1 SS model.
The upper curve corresponds to the applied noise while the lower curve to the
effective noise, i.e., the noise that actually propagates through the lattice after
being filtered by the rules of the SS model. The inset shows the short-
time behavior.
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shaped by the SS dynamics, until it stabilizes when the saturation
w(t) → ws stabilizes as well.

Let Deff(t) denotes the effective noise intensity. In Figure 2, we
show the behavior of Deff as a function of the probability p. The
data points were obtained from a time average of the noise
intensity Deff(t) for each value of p after stabilization (see the
lower curve in Figure 1). The continuous curve is the function
f(p) � c1 − c2 (p − q)φ, which adjust the data very well. In the inset,
we exhibit Deff as function of λ2, where, for simplicity, we take the
normalized λ ≡ λ/λmax. The dashed line with positive slope is for 1
+ 1 dimensions withDeff(λ) � D(1)

EW(1 + λ2) and λ � p − q while
the other one is for 2 + 1 dimensions withDeff(λ) � D(2)

EW + c3λ
2

and λ � (p − q)φ/2. Here, ci with i � 1, 2, 3 and D(d)
EW, d � 1, 2 are

adjustable constants. The EW universality class corresponds to
the values of both p and q equal to 1/2 while for p ≠ q, we have the
KPZ universality class.

Up to now, we have not been able to get an analytical proof for
the function f(p). However, it shows a direct connection with the
fractal geometry of the interface, via the fractal dimension df � φ.

Finally, we can generalize Eq. 13 to obtain a most general form
of ws as [43]:

ws � D

b]Φ L( )α

, (15)

and then, we rewrite the FDT as

〈ξ( �x, t)ξ(x′
→
, t′)〉 � 2c]w1/α

s δ(df)( �x − x′
→)δ(t − t′). (16)

Definitions of fractional delta functions can be found in [68];
[69]. For 1 + 1, dimensions α � 1/2 and Eq. 16 reduces to Eq. 14.
For d + 1 dimensions with dP2, α and df are given by Eq. 10.
Here, c is given by c � 24Φ

L , where the parameter Φ is a
dimensionless number given by

Φ � D

]
( )ε/df λ

]
( )ε

, (17)

with ε � 0 for d � 1, thus Φ � 1, and a number close to zero for
higher dimensions. For 2 + 1 dimensions, the etching model
yields [43] Φ � 1.00 (2); for other models, Φ is of the order of
unity. It is not necessary thatΦ is of the order of unit; however, it
sounds strange when a dimensional analysis has hidden numbers
that are too big or too small. Eq. 16 generalizes the result for 1 + 1
dimensions [53]. This is a step forward; however, it should be
noted not only that here we have a FDT for each growth equation
but also that the exponent α changes with dimension while the
FDT for the Langevin’s Equation 12 is very general and
independent of the dimension.

Note that Eq. 14 reflects a general characteristic of the FDT of
being a linear response to small deviation from equilibrium. This
fact is very clear at saturation; thus, the nonlinear term is not so
important. Note again that going from Eqs 3–14 does not alter
the KPZ equation. Eq. 3 is what is applied while Eq. 14 is what
propagates.

4 THE HIDDEN SYMMETRY

The breaking of the crystalline structure such as discussed above
brings us in a first step to a noman’s land. Next, we realize that we
have universal values; for example, in 2 + 1 dimensions z � df � φ
� 1.61803 . . . , we compare this value with experiments in electro-
chemically induced co-deposition of nanostructured NiW alloy
films, z � 1.6 (2) [70], dynamics in chemical vapor deposition in
silica films, z � 1.6 (1) [71], on semiconductor polymer deposition
z � 1.61 (5) [6], and in excess of mutational jackpot events in
expanding populations revealed by spatial Luria–Delbrück
experiments, z � 1.61 [72]. Thus, we have an agreement with
different kinds of recent experiments, and very precise
simulations [53], it is unlikely to be just a numerical
coincidence. Consequently, there is a well-defined fractal
geometry for KPZ and the cellular automata associated with it,
whose symmetries are unknown.

The golden ratio φ is associated with the limit of the Fibonacci
sequence 0, 1, 1, 2, 3, 5. . ., i.e., a sequence where the element of
order n is given by Fn � Fn−1 + Fn−2, thus in the limit n→∞, we
have the golden ratio φ � limn→∞ � Fn+1/Fn. This sequence is very
common in growth forms [73].

Platonic solids and symmetries—The first place to look for
symmetry in three dimensions is the platonic solids. For
example, one can consider the icosahedron or its dual, the
dodecahedron, both of these solids have a well-known
relationship with the golden ratio. The icosahedron consists
of 20 identical equilateral triangular faces, 30 edges, and 12
vertices. It has a large group of symmetry, and it is isomorphic
to the non-abelian group A5 of all icosahedron rotations [74];
[75]. The A5 group has one trivial singlet, two triplets, one
quartet, and one quintet. In their matricial representation, the
generators of the triplets and the quintet have elements where
φk, with k � 0, 1, 2 appears.

FIGURE 2 | Intensity of the effective noise Deff as a function of p for the
SS model in 2+1 dimensions. The continuous curve is the function f(p)� c1− c2
(p − q)φ. Here, φ is the golden ratio, and c1 and c2 are adjustable constants. In
the inset, we have Deff as a function of λ

2. The dashed line with a positive
slope is for 1+1 dimensions with λ � p − q while the other one with a negative
slope is for 2+1 dimensions.
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Deterministic fractal cellular automata—Magnetic systems are
probably the best physical system to look for symmetry. Even the
most simple Ising Hamiltonian system exhibits the symmetric
paramagnetic phase and the symmetric breaking phases (ferro
and antiferromagnetic). In addition to the trivial phases, it is
possible to construct additional fractal symmetry-protected
topological (FSPT) phases via a decorated defect approach (see
[76] and references therein).

We can define a fractal cellular automaton using the rules of
fractal geometry. For example, we can take the set of points i �
(. . .. − 2, −1, 0, 1, 2, . . . ) as an infinite line. The rules

at+1i � ati−1 + ati + ati+1 mod 2, (18)

with the initial condition a0i � δ0i generate a Fibonacci fractal [76]
in the space-time (i, t). From that, we get the (Hausdorff) fractal
dimension df � 1 + log2(φ) ≈ 1.63. The golden ratio appears
associated with this fractal dimension; however, it is not yet the
fractal dimension itself.

As a more general example, we can consider the Fibonacci
Word Fractal (FWF). This process is more interesting to us
because it is a dynamical growth process and consequently
more connect with our physical motion, so we shall discuss it
briefly. FWF is strings over {0, 1} defined inductively as follows: f0
� 1, f1 � 0, fn � fn−1fn−2 (i.e. fn is the concatenation of the two
previous strings, e.g., f2 � 01, f3 � 010,/), for nP2. The FWF can
be associated with a curve using the following drawing rule: for
each digit at position k, draw a segment forward then if the digit is
1 stay straight, if the digit is 0, turn θ radians to the left, when k is
even, or turn θ radians to the right, when k is odd. For an arbitrary
θ, [77] shows that

df � 3 lnφ

ln(1 + cos θ +
													
(1 + cos θ)2 + 1

√
)
.

Note that for an adequate choice of the turning angle θ, we can
generate a fractal curve with df � φ. A simple calculation shows

FIGURE 3 | The Fibonacci Word Fractal for a turning angle θ ≈ 0.9902 π
2. This curve has Hausdorff dimension φ. The result is almost indistinguishable from that of θ �

π/2. However, if we select n �30 and we follow the trajectory around the big white square, we see that the cumulative effects are such that the trajectory does not close.
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that θ ≈ 0.9902 π
2, i.e., almost a right angle. Figure 3 shows an

example of this fractal for a different number of interactions.
Stochastic cellular automata—Now we return to the growth

problem described by a stochastic KPZ equation or by a stochastic
growth cellular automaton belonging to the KPZ universality class.
There are a number of well-known cellular automata and probably
much more to be discovered. All of them act in an integer space of
dimensionsD � d + 1 and generate a fractal space of dimensionsDi

� df + 1, with the same df given by Eq. 10. The fractal dimension
associated with universality via Eq. 8 is itself universal. Therefore,
there must be a hidden symmetry and with that new finite non-
Abelian groups. It is quite natural that we have identified first the
groups of a perfect crystal since we have a visual identification of its
properties. For fractal which may present only average self-
similarity, it is more hard to find. However, we expect that
soon we would be able to unveiling it. Although we have not
yet identified such groups, the discussion above, particularly the
concept of self-similarity, is a starting point for such endeavor.
Once it is discovered, its importance will be far beyond KPZ.

5 CONCLUSION

In this work, we discuss the FDT for the Kardar-Parisi-Zhang
equation in a space of d + 1 dimensions. We show how an applied
noise is transformed as it goes through the filter imposed by the
rules of a cellular automaton. In particular, we use the SS model,
where controlling the probability p we can change the effective
noise intensity. The results support recent work [43], which
suggests that the effective noise has fractal dimension df. This

fractal dimension is associated with the KPZ exponents from Eq.
10, in such a way that we have now not only the triad (α, β, z) but
also the quaternary (df, α, β, z). This new universality implies that
we have a new hidden symmetry for the KPZ universality class.
We found a deterministic cellular automaton from which we can
control the Hausdorff dimension df, in such a way that we can
obtain df � φ. This may be a starting point for new symmetries
relations.
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