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Data-driven deep learning has accelerated the spread of social computing applications. To
develop a reliable social application, service providers need massive data on human
behavior and interactions. As the data is highly relevant to users’ privacy, researchers have
conducted extensive research on how to securely build a collaborative training model.
Cryptography methods are an essential component of collaborative training which is used
to protect privacy information in gradients. However, the encrypted gradient is semantically
invisible, so it is difficult to detect malicious participants forwarding other’s gradient to profit
unfairly. In this paper, we propose a data ownership verification mechanism based on
Σ-protocol and Pedersen commitment, which can help prevent gradient stealing behavior.
We deploy the Paillier algorithm on the encoded gradient to protect privacy information in
collaborative training. In addition, we design a united commitment scheme to complete the
verification process of commitments in batches, and reduce verification consumption for
aggregators in large-scale social computing. The evaluation of the experiments
demonstrates the effectiveness and efficiency of our proposed mechanism.

Keywords: ownership verification, cryptography-based privacy-preserving, pedersen commitment, Σ-protocol,
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INTRODUCTION

Social computing, a field highly relevant to human behavior, has made considerable progress in
recent years. With the proliferation of cell phones and IoT devices, information about humans,
behaviors, and interactions is being recorded in unprecedented detail. Combined with deep learning
models, the application of social computing can profoundly solve various industry challenges such as
epidemic prediction [1, 2], social network service [3], and hot topic recommendations [4]. For
example, data-driven epidemic propagation can help governments and hospitals prepare resources in
advance [1]. Moreover, some well-designed pre-diagnosis models of COVID-19 may alleviate
physician shortages [2].

As a data-driven technology, deep learning has a natural desire for data to be more accurate and
higher-quality. Since user data in social computing is closely tied to privacy, providing the data
directly would cause extremely serious privacy damage. Google [5] proposed the concept of federated
learning in 2016, which is an innovation in collaborative training. Without directly obtaining local
data from multiple parties, it can take full advantage of the value of the data by sharing gradients.
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However, transmitted gradients are subject to model inversion
attacks, attribute inference attacks, membership inference attacks,
etc. Thus, the privacy of users requires further protection.

To resolve the problem of privacy leakage in transmitted
gradients, researchers have proposed a wide range of solutions
that can be roughly divided into two categories: differential
privacy [6] and cryptographic algorithms [7]. Differential
privacy is a method of adding noise so that the attacker
cannot determine the user’s exact gradient. However, the
differential privacy-based method modifies the original data,
resulting in a loss of model accuracy. Unlike differential
privacy methods, cryptographic algorithms such as
homomorphic encryption do not alter the value of the
gradient. But instead, they prevent third parties and model
aggregators from obtaining a single participant’s model
parameters by encryption or concealment. Most cryptography-
based parameter protection methods have a higher arithmetic
overhead and many researchers are committed to optimizing
their overhead.

Apart from performance issues, cryptography-based privacy-
preserving methods will also introduce a derivative problem.
Because of the semantic invisibility of encrypted data, data
aggregators cannot judge whether a problem exists. The most
obvious problem associated with data invisibility is that data
tampering is difficult to detect, and some work has been done to
try to resolve this. Li et al. [8] proposed to store verification tags
on the blockchain and generate a Merkle tree as proof. The
transaction information must be uploaded to the blockchain,
which prevents malicious users from tampering during the
training process. Weng et al. [9] proposed a blockchain-based
auditing model called Deepchain that considers the malicious
behavior of model aggregators.

However, another problem of semantic invisibility in
encrypted data was left behind. Cryptography methods
blur the user’s ownership of the real information
corresponding to the ciphertext data during the
transaction. Malicious users can steal historically encrypted
gradients from publicly audited information or previous
transactions, and upload them elsewhere to gain benefits,
in what we call an encrypted forwarding attack. The attack
will destroy the fairness of the entire system, and make fewer
users willing to participate in collaborative training. Recently,
researchers have proposed extracting user data features
through the first few layers of deep neural networks,
making them adaptable to multiple uncertain deep learning
tasks [10, 11]. This will lead to a change in traditional
collaborative training from focusing on a single defined
task to completing multiple uncertain tasks, further
expanding the reach of encrypted forwarding attacks.

In this paper, we aim to resolve the problem of encrypted
forwarding attacks in collaborative training. To prevent users
from submitting others’ encrypted gradients maliciously, users
need to use Pedersen commitment to commit on the uploaded
gradient. The model aggregator can verify the ownership of the
encrypted gradient by determining whether the user has
plaintext. Our main contributions are as follows:

• We propose a data ownership verification mechanism to
counter encrypted forwarding attacks caused by
cryptography-based privacy-preserving methods. We use
an interactive Σ-protocol and Pedersen commitment
algorithm to prove that the user has the plaintext
corresponding to the encrypted gradients.

• We design a united commitment scheme to complete the
verification process of commitments in batches, thereby
reducing verification consumption for the aggregator.

• We verify the effectiveness of the model on a social face
dataset CelebA and a digital recognition dataset MNIST,
then provide a safety analysis. The experimental results
demonstrate that the commitment scheme does not
impose an additional burden on secure aggregation of
social applications.

The rest of this paper is organized as follows. In Related Work,
we introduce the existing work of cryptography-based privacy-
preserving methods and derivative audits approaches of
encrypted data. Preliminaries introduces the relevant
background knowledge of the Σ-protocol, Pedersen
commitment, and attack models. System Design elaborates the
details of the ownership verification mechanism. In Security
Analysis, we analyze the correctness and safety of our
mechanism. Experimental Results evaluates and analyses the
performance of Paillier algorithm and Pedersen commitment
in our mechanism. Finally, we conclude our paper in Conclusion.

RELATED WORK

Cryptography-Based Privacy-Preserving
Methods in Collaborative Training
Privacy concern is one of the main problems in collaborative
training. Although some collaborative training allows
collaborative participants to only share model updates rather
than raw training data, such as federated learning. There are still
some privacy problems that are not completely solved [12–14].
Attackers may infer whether a sample exists in the training
dataset or contain certain privacy attributes from the user
gradient, called member inference attacks [15] and attribute
inference attacks [16].

Secure aggregation [17] is a cryptography-based privacy-
preserving method that prevents aggregators from gaining
direct access to individual participants’ gradients and
committing privacy attacks. Homomorphic encryption is a
common security aggregation algorithm that allows users to
operate on ciphertext and decrypt the results of operations,
where the decryption result is the same as for operating on
plaintext. Participants can first encrypt the gradient via
homomorphic encryption. The parameter aggregator then
aggregates all encrypted gradients and decrypts the aggregated
result, thereby indirectly obtaining a global model update
contributed by the participants. The existing homomorphic
encryption methods are mainly based on full-homomorphic
encryption [18] and semi-homomorphic encryption [19].
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Fully homomorphic encryption is mainly based on ideal
lattices theory [20]. It relies on a large number of polynomial-
based power operations and modulo operations, which greatly
increases the consumption of implementation. It is still difficult to
apply directly in the existing work.

Paillier encryption [19] is a representative work of semi-
homomorphism that is widely used because of its simple
structure. Phong et al. [21] proposed the method combining
asynchronous stochastic gradient descent and Paillier
homomorphic encryption. They proved that the system could
prevent the aggregator from learning the data privacy of the
participants, and ensure the availability of the model training with
the acceptable system overhead. Zhou et al. [22] applied a
homomorphic encryption scheme to fog computing. They
proposed a scheme that combines Paillier encryption and
blindness technology, which can resist collusion attacks by
multiple malicious entities.

In order to improve the efficiency of the homomorphic
encryption system, Zhang et al. [23] proposed a federated
learning model called BatchCrypt. They encoded batches of
gradients and perform homomorphic encryption with less
time, which greatly reduces the overhead of the whole system.
LWE has more extensive applicability because of its full-
homomorphism. Hao et al. [24] utilized and improved the
BGV algorithm based on LWE, which achieves the secure
aggregation of gradients to prevent privacy disclosure. It
makes the scheme based on homomorphic encryption practical.

The above works complete the data privacy protection for the
participants and make the system feasible, but another potential
problem has appeared: it is difficult for the aggregator to
determine whether a problem exists due to the semantic
invisibility of the encrypted data.

Verification of Secure Aggregation
Semantic invisibility of encrypted data presents numerous
challenges, including transmission errors, malicious tampering
by intermediaries, and the exclusion of some user-generated
gradients by dishonest aggregators.

The correctness audit of the transmission gradient becomes
very difficult in the encrypted state. Weng et al. [9] provided an
audit mechanism based on ∑-protocol [25] which generates
proofs of correctness for each gradient. Guo et al. [26]
proposed a Paillier-based zero-knowledge proof algorithm. The
server and users can jointly calculate the statement of encrypted
gradients to prove the correctness of gradients.

To ensure that the gradients provided by each participant are
indeed aggregated correctly, Xu et al. [27] use a homomorphic
hash technique combined with pseudorandom function to help
users verify the correctness of aggregation. To extend the
applicability of the algorithm, Guo et al. [28] proposed a
commitment scheme based on linearly homomorphic hash to
verify the integrity of aggregation. Before sending gradient to the
server, the users need to generate and exchange the hash value of
their gradient. The users can verify whether the gradient is
tampered with by checking hash values.

Despite the foregoing, there is a serious problem that has not
been addressed. Encrypted data may be accessed by multiple

users as public data. Malicious users can forward them to other
collaborative tasks with the same purpose for improper profit.
There are even cases where multiple users claim ownership of
ciphertext in the same task. This will undermine the willingness of
honest users to engage in collaborative training and thus lead to a
shortage of training data for social applications. In this paper, we
propose an ownership verification mechanism based on the
Patterson commitment that can prove that the user owns the
plaintext of the data without providing the plaintext.

PRELIMINARIES

In this section, we briefly recall the definition of Σ-protocol and
Pedersen commitment, and introduce the attack models.

Σ-protocol
Σ-protocol [25] is a two-party interaction protocol in zero-
knowledge proof field. It is used to prove that someone knows
a secret without disclosing it. There are many classic examples
such as Schnorr’s protocol [29], which is used for authentication.

Consider a binary relation R and an element (x, y) ∈ R, and we
have f (x) � y, where x is called the pre-image of y under a
mapping f . In Σ-protocol, we think of x as a witness and y as
the corresponding instance for x, where x and y are finite values.

Suppose that there are two parties, one of which is prover, and
the other is verifier. Without exposing x, the prover wants to
prove to the verifier that he knows the pre-image value x of y
under the mapping f . As shown in Figure 1, they need to follow
Σ-protocol with the steps below:

Step 1: Prover computes a commitment cwith the value of, and
sends it to verifier.

Step 2: Verifier returns a random value e called challenge to
prover.

Step 3: Prover sends a response z to verifier. It is computed
with x and e.

Step 4: Verifier uses instance y and the message (c, e, z)
generated in previous steps to compute the verification result.

Since the challenge e is randomly selected, if the prover does
not know the witness x, he cannot use challenge e to compute a
correct response z in Step 3. When the verification passes, the
verifier is convinced that the prover knows the witness x. The
witness in our ownership verification mechanism can be a secret
gradient used for social computing. A user can prove that it
knows the secret gradient x corresponding to the commitmentc

FIGURE 1 | The general process of Σ-protocols.
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Pedersen Commitment
Pedersen commitment [30] is a homomorphic commitment
scheme, in which one computes a commitment bound to a
chosen value. Pedersen commitment scheme can be used to
prove that a committed value is not tampered with. According
to its homomorphism, it is usually used to prove that the secret
committed data satisfies certain binding relationships. The
scheme consists of a commitment phase and a verification
phase. In the beginning, A trusted third party selects a
multiplicative group G with the order of large prime q, then
selects two prime elements g and h of group G, where no one
knows the value x to make g � x p h. After the committer and
verifier agree on two elements g and h, they follow the process as
follows:

Commitment: To commit to secret value v, the committer
chooses a random value r, computes commitment comm(v, r) �
v p g + r p h and sends it to verifier.

Verification: Committer sends (v, r) to verifier. Verifier use
(v, r) to computes comm′(v, r) � v p g + r p h and checks whether
it is equal to comm(v, r). If the verification passed, it means that v
is not tampered with.

Pedersen commitment scheme is designed that the sum of two
commitments can also be seen as a commitment. It can be
represented by comm(v3, r3) � com(v1, r1) + com(v2, r2), where
v3 � v1 + v2, r3 � r1 + r2. It seems like someone use a random
value r3 to commit to v3.

Pedersen commitment scheme has the following properties:
1) Perfectly hiding: the r in the commitment computation is
randomly chosen, so two commitments to one value will be
different. No one can find a correlation between commitment
and committed value. 2) Computationally binding: the
commitments on different messages are different, which
means that the malicious party cannot deny the value he
committed. A more detailed introduction and proof can be
seen in [30].

Different from Σ-protocol, the committed value in Pedersen
commitment scheme needs to be revealed in the verification
phase. It cannot be directly used to prove that the single encrypted
gradient is not tampered with. In our scheme, we use the
homomorphism of Pedersen commitment scheme to check
whether the aggregated commitment is correctly
corresponding to the aggregated gradient, further confirming
the binding relationship between the commitment and
encrypted gradient.

Threat Models
As we attempt to solve the problem of data silos in social
computing through cooperative training, privacy protection
and data ownership have become unavoidable difficulties.
Cryptography-based secure aggregation methods can be a
good solution to keep private information from being accessed
by unauthorized users, but they also make it more difficult to
verify data ownership. Two main roles are included in the current
collaborative training:

Model Aggregator is a service provider that publishes the
request for data training. It asks multiple users to provide trained
gradients to conduct social computing.

Data Owners are users who have datasets and are willing
to participate in collaborative training. They submit the
trained models or gradients to the model aggregator for
model updating.

Once we use a cryptography-based secure aggregation
algorithm that prevents model aggregators from obtaining plaintext
data from a single data owner. It is difficult to distinguish whether the
user who submits encrypted data is its real owner or not. As shown in
Figure 2, attackers can download encrypted data from elsewhere or
historically, and then participate in the current cooperative training for
improper profit, which we call encrypted forwarding attacks. In
addition, we present several threat scenarios for encrypted
forwarding attacks.

Threat 1. Attackers can only obtain encrypted data and
claim ownership of the encrypted data. Malicious users
access encrypted data through public channels, such as the available
audit information or publicly accessible blocks on the blockchain. The
encrypted data is being downloaded by attackers and forwarded to
similar tasks for unfair gain.

Threat 2. Attackers can obtain encrypted data as well as
its verification information. As an intermediate forwarder,
a malicious user receives not only the encrypted data but
also the previous verification information. By masquerading as a data
owner and participating in social computing, traditional mechanisms
of ownership verification may be bypassed.

Security Goal: To prevent encrypted forwarding attacks by
malicious attackers, we need an ownership verification mechanism
for encrypted data. For privacy reasons, it can conclusively confirm
ownership of data without directly obtaining the plaintext of user’s
data. In addition, verification informationmust be real-time to prevent
falsification by forwarding historical verification information.

SYSTEM DESIGN

In this section, we present the specific construction of our data
ownership verification mechanism. Our mechanism prevents the
leakage of user information to curious aggregators while resisting
encrypted forwarding attacks by malicious users, as detailed in
the threat model.

System Overview
We suppose that there exist many users who possess private
training data in a community. They all agree on the structure
and configuration of a common task model. When a user
wants to update its model, it claims to be a model aggregator
and requests collaborative training from other users. Other
data owners will respond to the model aggregator. We denote
the model aggregator as ag and data owners
as owi,i ∈ {1,/,N}

The aggregator ag then collects gradients from these data
owners to update its task model. The process of gradient
collecting is shown in Figure 3.

Phase 1. Initialization
A user claims to be an aggregator to all other users in the
community. Others will respond to the claim and form a

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 7392594

Sun et al. Ownership Verification of Encrypted Data

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


group with the aggregator by some means [31]. After that, a
trusted institution executes the initialization of threshold Paillier
algorithm and Pedersen commitment scheme for the group.

Phase 2. Gradient Aggregation
After each data owner owi gets gradient gi through local training,
it uses the threshold Paillier algorithm to encrypt it to cipher ci,
then uploads it to the aggregator ag. The aggregator ag will
aggregate the gradients.

Phase 3. Commitment Submission
Each data owner owi who has uploaded gradient uses gradient
gi to compute a commitment commi based on Pedersen
commitment scheme and uploads it to the aggregator ag.

Phase 4. Verification and Decryption
The aggregator ag conducts the verification of commitment with
each data owner owi. If the verification passes, the aggregator ag

asks data owners to collaboratively decrypt the aggregated
gradient. At last, the aggregator ag confirms the ownership of
gradients by checking commitments and gradients.

After the aggregator ag and all data owners have finished the
process as above, the aggregator will pay each data owner for the
model update. We can think that they have finished a round of
secure aggregation.

Gradient Aggregation Based on Paillier
Algorithm
Initialization:After the aggregator and data owners form a group
together, a trusted institution will execute the initialization
process. Concretely, it confirms the scale of the group and
initializes the (l,N) threshold Paillier algorithm, where N is
the number of data owners and l ∈ {N3 + 1, ..., N} is the least
number of data owners together to decrypt a cipher. The concrete
process is shown in Algorithm 1.

FIGURE 2 | Encrypted forwarding attacks in cooperative training.

FIGURE 3 | The workflow of our system.
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The trusted institution publishes the public key PK � (g, n, θ). It
also distributes shares of private key SKi and verification key VKi

to each data owner owi, respectively.
Encoding of gradient: The homomorphism of Paillier algorithm
can be represented as∏

i
Enc(mi) � Enc(∑

i
mi), where Enc() denotes

the encryption. The aggregator ag can aggregate encrypted gradients
Enc(mi) and decrypt it to obtain aggregated gradient ∑

i
mi. Suppose

that a data owner owi has the gradient gi � (gi1,/, gij,/, gin) to
upload. Each element gij represents the gradient of the j − th
component of the model. First of all, each data owner owi encodes
the gradient. They divide each element gij into several vectors g

(k)
ij and

encode them into a specific format which can be encrypted by Paillier
algorithm. The data owner owi encrypts the gradient by encrypting
each vector g(k)ij . To explain the encryption of gradients briefly, we use
mi to represent the gradient encrypted by Paillier algorithm.
Encryption and aggregation: We assume that there is a group
composed of k data owners. Given the public parameter PK �
(g, n, θ) and threshold l, each data ownerowi encrypts its gradient gi
by computing ci � gmi tni modn2, where ti is a random element
chosen from Zp

n . Then they together upload the cipher ci to the
aggregator ag. The aggregator ag will aggregate all the encrypted
gradient ci by computing c � ∏k

i�1 ci and return the aggregation
result c to each data owner owi to request the decryption. To ensure
that the aggregator ag correctly aggregates all the encrypted
gradient ci, we introduce the commitment scheme in [28].
Decryption and update: In the decryptionphase, each data owner owi

provides his decryption share di � c2Δsimodn2, where si is its share of
the private key. In addition, each data owner owiwill also publish the
proof si � logvΔVKi � logc4Δ (di)

2. If at least l data owners are verified
to provide correct decryption shares, the aggregator ag can obtain the
decryption result by computing m � L(∏

i∈S
d2uii modn2) × 1

4Δ2θ
modn,

where ui � Δ × λS0,i ∈ Z, λSx,i � ∏
i’∈S\{i}

x−i’
i−i’ and L(u) � u−1

N . The proof

of correctness can be seen in [32]. To request data owners to join in the
decryption process, the aggregator ag should pay for the gradients to
them. According to the addictive homomorphism of Paillier
algorithm, the decryption result m is equal to ∑k

i�1 mi. The
aggregator ag will use it to update the task model.

Ownership Verification
In the collaborative training based on homomorphic encryption
such as Paillier encryption, the aggregator is set to obtain only the
decrypted aggregation result but not any gradient from individual
data owner. Only in this way, the privacy in gradients will not be
directly obtained by the aggregator. If a malicious user obtains an
encrypted gradient, he may forward the encrypted gradient to
another aggregator to profit. To solve the forwarding problem,
the aggregator is required to verify the ownership of each received
encrypted gradient.

The verificationmechanism is based on Σ-protocol and Pedersen
commitment scheme. As for Pedersen commitment scheme, a
trusted institution is required to select two prime elements
g, h ∈ G, where G is a cyclic group and loggh is unknown to
others. The process of verification is shown in Algorithm 2:

Commitment submission:After data ownerowi hasuploaded the
encrypted gradient ci to the aggregator ag, it computes a commitment
comm(ri,mi): � Ci � grihmi , where ri is a random value andmi is the
gradient. Then it submits (Ci, ri) to the aggregator ag.

Commitment verification: The aggregator ag will compute the
aggregated gradient c � ∏k

i�1 ci and the aggregated commitments
C � ∏k

i�1 Ci, r � ∑k
i�1 ri. Then it sends a random challenge value e

back to each data owner. Each data owner owi needs to use the
challenge value e to compute a response Ri � gkihli ,
ui � ki + erimodp, vi � li + emimodp. Then each data owner
submits (Ri, ui, vi) to the aggregator ag. After that, the aggregator
ag aggregates all (Ri, ui, vi) to obtain (R, u, v) by computing
R � ∏k

i�1 Ri, u � ∑k
i�1 ui, v � ∑k

i�1 vi. Then it verifieswhether guhv �
RCe holds. If it passes, it means that each data owner owi proves it
knows the secret value mi bound to the commitments Ci.
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Ownership verification: To verify the committed value is the
correct gradient, the aggregator ag requests owners to decrypt the
gradient c � ∏k

i�1 ci, and obtains the aggregated gradient
m � ∑k

i�1 mi. Then he checks whether C � grhm. If it passes, it
means that the secret value mi is indeed the gradient
corresponding to cipher ci. The aggregator ag confirms that
each data owner owns the plaintext of his gradient.
In our scheme, the aggregator can reduce the consumption of
verification through checking the aggregated commitments. If the
verification failed, it means that some data owners cannot provide
the correct plaintext of their gradients. The aggregation of
gradients and commitments will be rescheduled. Concretely,
the aggregator can divide the group into several subgroups,
then repeat the gradient aggregation and commitment
verification. The malicious data owner will be identified
through a series of verifications.

SECURITY ANALYSIS

The Protection of Gradient
In order to maintain the correctness of gradient and prevent it
from being obtained directly by others, we use the addictive
threshold Paillier homomorphic encryption algorithm. Firstly, we
discuss the feasibility of the threshold Paillier encryption
algorithm for gradient protection in our scheme.

Lemma 1: εg(x, y)→ gx p ynmodn2 is bijective when the order
of g is a non-zero multiple of n, and it is also a homomorphic
mapping that εg(x1, y1) p εg(x2, y2) � εg(x1 + x2, y1 + y2).

Lemma 2:A number x is said to be an nth residue modulo n2 if
there exists a number y ∈ Z*

n2 such that z � ynmodn2, and it is
hard to find the value of z.

The proof of Lemma 1 and Lemma 2 can be seen in [19].
Lemma 1 indicates that the aggregated ciphertext of gradient can
be decrypted to the aggregated gradient. The aggregator is able to
acquire aggregated gradient without knowing individual
gradients. From Lemma 2, we can conclude that the ciphertext
of gradient is hard to be cracked.

Each data owner in our threshold Paillier algorithm has the
ability to decrypt a cipher only in groups, so whenever a data
owner obtains an individual encrypted gradient, he can’t decrypt
it unless others collude with him. The individual gradient can be
well protected in our encryption scheme.

The Σ-protocol can make one prove that he knows the secret
without revealing it. Specifically, a prover can state a commitment
and prove that he knows the secret in the commitment. In the
process of our protocol, the data owner owi states Ci: � grihmi ,
and then generates two random values (ki, li) to hide the
information in (Ri, ui, vi) to prevent gradient mi from being
exposed to others.

Lemma 3: Only when the generated random values ki and li are
different, no one can recover the secret value from the (Ri, ui, vi), that
is, a commitment will not disclose any information about the
committed value.The concrete proofs can be seen in [33]. As long
as the data owner ensures that the random values ki and li are
different, we can think that the gradient is protected in the
commitment according to Lemma 3.

The Validity of Commitment
Lemma 4: Two commitments for two different messages are
different, otherwise the relationship between g and h can be
calculated, which is not in line with the discrete logarithm hypothesis.
According to Lemma 4, we know each commitment is corresponding
to a unique gradient. If a data owner submits a commitment, it means
that it states the ownership of a gradient. We suppose that there exists
a user who forwards another data owner’s encrypted gradient. As we
stated in Threat Models, we consider two kinds of treat model.
If an attacker only obtains encrypted gradient, it needs to state a
commitment. Consider that it does not know the plaintext of gradient
gi, it may commit to a secret fake gradient gfake and upload the
commitment Cfake. In the following steps, it needs to respond to the
challenge e, which proves the binding relationship between fake
gradient gfake and commitment Cfake. In other words, if the
verification passes, the aggregator can think that the user has
committed to the plaintext of gradient, which can be denoted as
gi. After that, the aggregator uses the decryption result to check
whether the committed gfake is equal to the gradient gi. If not, the user’s
malicious behavior of forwarding will be discovered.
If an attacker obtains encrypted data aswell as its historical verification
information, it needs to respond to the dynamic challenge e in the
verification process.Due to it even does not know the committed value
in commitments, the verificationwill fail. In other words, the historical
verification information is not reusable for an attacker.
Despite each data owner may obtain encrypted gradient from the
aggregator in the decryption phase, the forwarding attack still does not
work because of our commitment scheme.

EXPERIMENTAL RESULTS

In this section, we introduce the experiments in our scheme,
including the performance evaluation of Paillier algorithm and
Pedersen commitment scheme. We deploy an aggregator and
multiple data owners to simulate the process of collaborative training.

We build the deep learning model with Python(version3.83),
Numpy(version 1.18.5), Pytorch(1.6.0) on GPUs. We use
CelebFaces Attributes Dataset (CelebA) to conduct smile
recognition. The dataset includes 202,599 face images with 40
binary attributes. We randomly select 60,000 images and averagely
assign them to the data owners. We also use the famous MNIST
dataset to conduct handwritten digit recognition. We set the epoch
of training as 3. The structure of the network is shown in Table 1.

After each iteration of the training, we output the gradient and
evaluate the performance of Paillier algorithm. We compress the
gradient by setting the precision of each gradient at 3–5, and use the
gradient to update the model. Concretely, the data owners train

TABLE 1 | The structure of model.

Smile recognition Digit recognition

2 × Conv3-64 Conv1-16
2 ×Conv3-128 Conv1-32
3 × Conv3-256 FC-10
3 × Conv3-256 —

2 × FC-4096 —
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their local model and output the gradient in given precision. Then
we aggregate these gradients o update the model. With the change
of given precision, the accuracy of the model is shown in Figure 4.

If we do not compress the gradient, the accuracy on CelebA
dataset in each epoch is 90.66, 91.01, and 92.24%, respectively.
The accuracy onMNIST dataset in each epoch is 96.71, 98.21, and
98.58%, respectively. When we control the precision of gradient
at 5, 4, 3, the accuracy on CelebA dataset in the third epoch
changes to 90.77, 91.08, and 90.41%, which is approximately 1.5%
lower compared to the accuracy with no gradient compression.
With gradient compression, the accuracy decline is not obvious
onMNIST dataset, where the accuracy in the third epoch is 98.49,
98.51, and 98.33%. decreasing within 0.2%. The change of
gradient precision has a more significant impact on large-scale

training. When the precision decreases, the accuracy in different
epochs is lower, which makes the training more difficult to
converge. To ensure the quality and stability of training, we
choose to set the precision at five in our subsequent experiment.

As for gradient encryption, we use the Paillier algorithm
implemented in Python based on CPU. We use the Charm-
crypto.1 library to perform the encryption and decryption process
of Paillier algorithm. Charm-crypto is a Python library for fast
encryption on large numbers. We encode the gradient as a vector
of integers that can be encrypted by Paillier algorithm. By

FIGURE 4 | The accuracy with different precision of gradient. (A); On MNIST dataset (B) On CelebA dataset;

FIGURE 5 | The overhead of Paillier algorithm. (A) encrypted unit ∈[10,100]; (B) encrypted unit ∈[100,500].

1The encryption library called Charm-crypto can be download in https://github.
com/JHUISI/charm.
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controlling the precision of gradients, we get multiple vectors of
the gradient in various lengths. Because the precision changes, the
total number of parameters varies. We choose to evaluate the
Paillier algorithm on a message with a length of 105 digits. The
evaluation of overhead is shown in Figure 5.

To maintain the correctness of decryption results after cipher
aggregation, the length of the encrypted unit is limited by the
number of ciphers and security parameters of the Paillier algorithm.
On the premise that we maintain the correctness of decryption, we
divide the message into multiple units to encrypt. When the length
of an encrypted unit ranges from 10 to 100, as the length is doubled,
the time consumption is almost halved. The length of the unit does
not have a significant impact on unit encryption time. When the
length ranges from 100 to 500, the unit encryption time obviously
increases as the length increases, however, the total time
consumption still decreases. It is better to choose a larger
encryption unit if possible. Since training overhead is much
higher than the gradient encryption in cooperative training, the
overhead of Paillier algorithm above is acceptable.

As for the Pedersen commitment scheme, we use
cryptographic algorithms based on discrete logarithm to
deploy it. We divide the message with a length of 105 digits
into multiple units again and evaluate the time consumption of
the scheme. We first simulate the process of commitment and
verification of a device. The overhead is shown in Table 2.

The time consumption of committing is much less than the
time consumption of encryption and decryption. When the unit

is larger, the total overhead of the commitment scheme is at a
lower level. To evaluate the impact of the number of data owners
on the commitment scheme, we set the number of data owners
from 1 to 10, respectively. Each data owner needs to commit to a
message with a length of 105 digits. The experimental results can
be seen in Figure 6. The total time of commitment aggregation
increases because the number of devices increases. The time
consumption of verification increases slightly as the number of
devices increases, which almost does not influence the total time
consumption of our commitment scheme.

To better show the practicality of this commitment scheme in
large-scale cooperative learning, we set the committed unit at 100,
200, respectively, and expand the number of devices to 50 and
100. The evaluation result can be seen in Tables 3, 4. The total
time consumption is still much lower than the encryption and
decryption. It means that the increase in data owners will not
impose a clear burden on the commitment scheme. Our
experimental results indicate that our commitment scheme is
feasible in the cooperative training.

TABLE 2 | Overhead of Pedersen commitment scheme with one data owner.

phase Length of committed unit

10 (s) 50 (s) 100 (s) 200 (s) 300 (s)

Committing 0.925 0.311 0.256 0.204 0.188
Verifying 2.329 0.392 0.296 0.224 0.202

FIGURE 6 | The overhead of Pedersen commitment scheme. (A) commitment aggregation; (B) commitment verification.

TABLE 3 | Overhead of large-scale commitment aggregation.

Length
of committed unit

Number of data owners

10 (s) 50 (s) 100 (s)

100 0.294 0.331 0.377
200 0.222 0.241 0.264

TABLE 4 | The Overhead of large-scale commitment verification.

Length
of committed unit

Number of data owners

10 (s) 50 (s) 100 (s)

100 0.148 1.091 3.090
200 0.077 0.568 1.585
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CONCLUSION

In this paper, we propose an ownership verification
mechanism against encrypted forwarding attacks in data-
driven social computing. It can defend against the malicious
gradient stealing and forwarding behavior in cryptography-
based privacy-preserving methods. Based on the premise of
maintaining gradient privacy, we present a protocol based on
Σ-protocol and Pedersen commitment to achieve our security
goal. Specifically, we design a united commitment algorithm to
make participants cooperate to submit gradients and provide
proof of data ownership. If any user submits other’s gradient, it
will fail to provide correct proof to pass the verification
process. The experiment results validate the security of our
proposed mechanism and demonstrate the practicality of our
solution.
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