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The cascades prediction aims to predict the possible information diffusion path in the
future based on cascades of the social network. Recently, the existing researches based
on deep learning have achieved remarkable results, which indicates the great potential to
support cascade prediction task. However, most prior arts only considered either cascade
features or user relationship network to predict cascade, which leads to the performance
limitation because of the lack of unified modeling for the potential relationship between
them. To that end, in this paper, we propose a recurrent neural network model with graph
attentionmechanism, which constructs a seq2seq framework to learn the spatial-temporal
cascade features. Specifically, for user spatial feature, we learn potential relationship
among users based on social network through graph attention network. Then, for
temporal feature, a recurrent neural network is built to learn their structural context in
several different time intervals based on timestamp with a time-decay attention. Finally, we
predict the next user with the latest cascade representation which obtained by above
method. Experimental results on two real-world datasets show that our model achieves
better performance than the baselines on the both evaluation metrics of HITS and mean
average precision.
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1 INTRODUCTION

Social media online platforms, such as Twitter, Sina Weibo, WeChat, and so on, have greatly
promoted the rapid spread of information on the Internet, which leads to an increasingly important
impact on daily life of people. Cascade [1] consists of a series of users’ behaviors on the social network
like share, comment, like and so on, which is regarded as a temporal sequence as shown in Figure 1.
Who participated in the diffusion we call them infected users. Cascade is usually considered as the
basis of information diffusion on social networks. Modeling and predicting cascades is conducive to
understanding and quantifying user influence on social network. Cascade prediction aims to predict
the process of information diffusion in the future based on observed cascades, which is of great
significance to decision-making on social networks such as viral marketing [2] and support for
Internet of Things [3].

Traditionally, the existing works on cascade prediction mainly learn the cascade feature from the
diffusion path or user relationship graph, which can be summarized into the following two
categories: 1) Analysis methods based on traditional topological structure and characteristics. In
the early stage, these methods were usually based on the network topology [4] and the network
propagation mechanism [5, 6, 7] to model the cascading diffusion process; In order to further
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improve the predictive performance of the model, a series of
feature-driven methods [8] such as learning user influence and
susceptibility [9] have been proposed. 2) Method based on deep
learning. With the successful application of end-to-end learning
models such as DeepCas [10], various neural network models
applied to cascade prediction have further improves the model
performance. It has gradually become the main method on
cascade diffusion prediction task. In recent works, Topo-LSTM
[11] and DeepInf [12] modeled the network topology and
predicted propagation through user-level representation
learning. On the other hand, some researchers tried to use
neural networks to learn the temporal feature in the cascade,
and thus DeepHawkes [13], RNN-based CRPP method [14] and
some other models were proposed.

However, traditional methods based on propagation
mechanism [5] and features [9] often rely on manual
definition through a large number of studies and observations.
What’s more, the complex manual features [8] often limit the
generalization and robustness. As for deep learning methods,
existing works either study from the relationship of users from
network topology [11] or cascade temporal feature [13]
unilaterally. While in realistic social network, information
diffusion is affected by spatial and temporal feature together.
It is of great significance to study the potential relationship
between the two aspects in information diffusion.

To solve this problems, in this paper, we propose an end-to-
end neural network framework DLIC (Deep Leaning Information
Cascades) that combines social network topology and temporal
cascade information. The framework first learns the feature
representations of each user through a graph attention based
on the topological of social network. And then a recurrent neural
network is built for learning cascade representation in different
time intervals, and a time-decay attention mechanism is
introduced for assigning different weights to them. The final
user representation which learns previous cascade feature would
be fed into decoder layer to predict the next infected user.

Extensive experiments on two public cascade diffusion
datasets, namely Twitter [15] and Douban [16], validate the
performance of our model compared with several baseline
methods. The results indicate the improvements on HITS@100
by 2.2 and 2% on the twitter and douban datasets, respectively.
Besides, our model performs best in all other metrics on both real
datasets.

The paper is organized as follows: Section 2 introduce the
relative works in cascade prediction task, while Section 3
describes our DLIC model. Section 4 shows our experimental
results and discusses the effect of different features. Finally,
Section 5 gives a conclusion of our main findings and
future works.

2 BACKGROUND

The goal of cascade prediction is to model the diffusion regularity
in social network, which aims to effectively describe the
propagation mechanism of information and predict the future
diffusion path. The research on cascade prediction can be divided
into tow categories, namely the methods based on traditional
machine learning or deep learning techniques.

In terms of cascade feature learning, the most of works based
on traditional machine learning have proposed many methods to
learn the diffusion probability among different users from the
observed cascade information. [8] modeled cascade information
through a marked Hawkes self-exciting point process and
predicted with content virality, memory decay and user
influence. [17] learned the embedded feature representations
of users on social networks in a latent space through
independent cascade model. [18] proposed IEDP model based
on information-dependent embedding, which mapped users to a
latent embedding space in observed time sequence of the cascade
diffusion process, and the prediction is made according to the
distance of embedding representation. [19] proposed an opinion
leader mining model EIC based on the extended independent
cascade model, which integrated network structure
characteristics, individual attributes and behavior
characteristics together. [20] designed a route decision model
by a data-driven method. [21] constructed interaction rules based
on multi-dimensional features such as user influence, sentiment
and age to simulate the process of information diffusion in social
networks. [22] used the survival analysis model to learn the
susceptibility and influence of users, which were used to
calculate the diffusion probability among users. [23] proposed
a feature extraction method from user behavior under urban big
data. [24] argued that the spread of rumors is composed of
multiple factors and proposed a multi-featured spread model.
[25] computed the epidemic risk of COVID-19 by combining the
number of infected persons and the way they pass through the
station.

In recent years, with the rise of representation learning in deep
learning methods, more and more deep learning models such as
LSTM, RNN, GCN, etc. have also been used in the work of
cascade prediction. The DeepHawkes model proposed by [13]
used end-to-end deep learning to simulate the explainable factors

FIGURE 1 | A toy example of cascade prediction, which contains several
users who participated in information diffusion. A → B → C is a observed
cascade in social network, we will predict who is the next infected user, D
or E?
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of the Hawkes process and modeled cascade information. [26]
proposed an attention-based RNN to capture the cross-
dependence in the cascade and a coverage strategy to
overcome the misallocation of attention caused by the
memoryless of the traditional attention mechanism. [10] also
proposed an end-to-end model to learn the cascade graph, which
automatically learned the representation of a single cascade from
the global network structure without manual features. [11]
introduced a new data model named diffusion topologies and
proposed a novel topological recurrent neural network Topo-
LSTM. DeepInf proposed by [12] took the local area network
among users as input, and learned their potential influence in
social network through graph convolutional networks. [27]
proposed a sequential information diffusion neural network
with structure attention that considers the process of
information diffusion and the structural characteristics of the
user graph through a recurrent neural network. [28] also
proposed an attention network to solve the diffusion
prediction problem, which can effectively explore the implicit
diffusion dependence among information cascade users. [14]
proposed competing recurrent point process on RNN network,
which models both the diffusion process and the competition
process. [29] proposed a multi-scale diffusion prediction model
based on reinforcement learning, which integrates the
macroscopic information into the RNN-based microscopic
spread model for predicting infected users. [30] proposed to
perform multi-task joint learning framework to understand user
relationships and predict cascades with graph attention networks
and recurrent neural networks. [31] estimated traffic time from
trajectory of taxi in different fine-grained time intervals based on
deep learning. [32] designed a RNNmodel with a multi-relational
structure, which not only captures the traditional time
dependence, but also captures the explicit multi-relational
topological dependence through a hierarchical attention
mechanism.

In particular, the spatial-temporal feature learning methods
that using the Graph Network and RNNs achieve remarkable
results. They also belong to deep learning methods. [33] and
[34] aimed to predict objective trajectories. They constructed
graph based on spatial coordinate and learned the subsequent
positional information with RNNs. Moreover, soft attention
and self attention are used to enhance representation learning,
separately. [35] proposed to a social recommendation via a
dynamic graph method. They encoded the long-short term
preferences for users in a session based on RNN. And then they
learn the dynamic graph features for user and his friends
through graph attention, which are used for
recommendation. On the basis of above-mentioned work,
we proposed to learn the user spatial features with graph
attention and then encode cascade temporal features
with RNN.

In summary, the methods based on deep learning which avoid
the defects of feature engineering have gradually become the
major technique in cascade prediction task, but most of previous
research only focused on the representation of cascade. The lack
of unified modeling about user structure and temporal feature is
still a key problem to be solved.

3 METHODS

In this section, we start with formalization of the cascade
diffusion prediction problem. Then we introduce the
framework of our model, which learns the structural context
among users through graph attention and then integrates the
temporal feature into cascade representation by time decay effect.
Finally, we present the overall algorithm and details.

3.1 Problem Formalization
Cascade is a behavior of information adoption by people in a
social network. To formalize our problem, we first introduce
some terminologies. A user who shares information in social
network is called infected user. Given users set U � {u1, u2, . . . ,
uN}, cascades set C � {c1, c2, . . . , cM}, where N and
M are the number of users and cascades respectively. A
cascade ci � {(u1, t1), (u2, t2), . . . , (u|ci|, t|ci|), t1 ≤ t2 ≤ . . . ≤ t|ci|} is
a sequence of infected user and timestamp in a diffusion process,
where |ci| is the number of infected user, ti is the infected
timestamp of ui. The relationship among users can be
represented by G � {U, E}, where E � [eij] ∈ R|U|×|U| is the
adjacency matrix of social graph. eij � 1 implies that there is an
edge between user ui and uj in the social graph.

Cascade prediction can be divided into macro level and micro
level. Macroscopic diffusion prediction aims to predict the final
cascade scale. The purpose of this paper is microscopic diffusion
prediction, whose aim is to predict who is the next infected user
ui+1 based on social graph G and cascades set C before time ti.

3.2 Overview of Technical Framework
In order to illustrate how to capture the potential spatial-temporal
information in cascade. We introduce the proposed DLIC model.
As shown in Figure 2, the framework of DLIC model takes the
social network and cascade as input and outputs the next infected
user one by one.

The main part of the DLIC model consists of four
components: 1) User embedding layer: learning user
relationship based on social graph to obtain their
representation through graph attention, which reflects the
different influence of users. 2) Cascade encoding layer:
feeding the embedding representation according to the order
of observed cascade to encode cascade path through recurrent
neural network. 3) Time-decay attention: the cascade
representation would be further extracted through assigning
different attention weights based on timestamp slice. 4)
Decoding and Output layer: The last hidden state of
encoding layer is the representation of this cascade. It would
be took as input into decoding layer to predict the next infected
user and output them one by one. Next, we give a detailed
introduction to these components.

3.3 User Embedding
Social network refers to the relationship graph among
users. The behaviors such as follow, like, reply and forward
forms the topology of social network. This structure
affects and promotes the information diffusion. Therefore,
it makes sense that learn the feature of users in the social
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network. However, The user graph in the social network
is usually very huge and complicated. If we learn the
features from all users directly, it will not only take up a lot
of hardware resources and time, but also may cause model
performance degradation due to some noise nodes such as paid
posters. So we propose a user sampling method. As Figure 3
shows, for the K observed users in cascade, we randomly
selected several their neighbor nodes shown as yellow
nodes. The nodes with higher degree would be selected
more easier. And the others would be discarded show as
white. We can obtain a subgraph for each cascade and
finally integrate them as the new user graph G.

For the obtained subgraph through above methods, we feed
the adjacency matrix into a multi-layer graph attention network

[36] with multi-heads to learn the user representations.
Specifically, we assume vector sets h � {h1, h2, . . . , hN}, hi ∈
RF as features of all users, where N is the number of users, F is the
number of feature dimension. And then we apply a linear
transformation in h as the Eq. 1 shows:

vi � Whi (1)

Where W ∈ RF′×F is an independent trainable weight matrix.
For a pair of neighbor nodes i and j, i.e., eij � 1, we learn the
attention weight zij between them. Firstly, for each neighbor j of
user i, we apply a linear transformation again after a
concatenation operation for their feature vector vi and vj to
obtain the attention coefficients cij � a (Wvi‖Wvj), where ‖ is
the concatenation operation, a ∈ R(F′×F′) is a trainable matrix. cij

FIGURE 2 | Illustration of proposed model DLIC. Given user network and a series of cascades. Our model learns their feature separately and predicts the following
infected users.

FIGURE 3 | An example of users sampling method. Blue nodes is observed users. Yellow nodes is what we select.
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represents the importance of node j relative to node i. And then it
is activated with LeakyRelu function. Finally, we obtain their
neighbor attention weight for each node by softmax function. The
process as Eq. 2 shows:

zij � exp(LeakyRelu(cij))∑k∈N (i)exp(LeakyRelu(cik))
(2)

Where N (i) is neighbor set of user i. Then user feature
representation will be updated according to above attention
weight of neighbors. Specifically, we obtain the new hidden
representation hi through a weighted sum operation based on
above attention coefficients as Eq. 3 shows:

hi � σ ∑
j∈N (i)

zijvi⎛⎝ ⎞⎠ (3)

Where σ is a nonlinear activation function, i.e., RELU (·). Finally,
we adopt the multi-head attention to stabilize the process of user
feature learning. Each head attention executes the transformation of
Eq. 3 independently and then concatenate them to obtain feature
presentation, which contains different attention of user
neighborhood. The result hconcati would be regarded as the input
on next GAT layer and it is computed by Eq. 4:

hconcati � ‖Ee�1hei (4)

Where ‖ is concatenation operation, E is the number of heads,
hie is the ouput of each head attention. In final layer of GAT, the
sensitivity of splicing operation is reduced. Therefore, the output
of user embedding presentation would be calculated by average
pooling operation with Eq. 5 to extract the feature among all
attention heads and this operation can also save the memory.

huseri � 1
E
∑E
e�1

hei (5)

3.4 Cascade Encoding Layer
A user who participated in cascade diffusion is not only affected by
the latest infected user, but also influenced by previous users. As
shown in Figure 4, we construct a cascade path A→ B→ C→ D
which ordered by the timestamps of infected users. We can see
that B is affected by A and C is affected by B which looks like a
chain according to the relationship among them. Though C is

the latest infected user, A may have greater influence so that D
still receives message from A and become the next infected user.
It means each user in cascade may affect users in the whole
diffusion process from start to finish. However, a cascade does
not record the message forwarding source of users. The long
distance dependence of cascade feature is a problem that needs
to be solved.

RNN has shown its effectiveness in many fields,
which provides a theoretical support for the learning
of cascade sequences. For a given cascade sequence
c � {(u1, t1), (u2, u2), . . . , (u|ci |, t|ci |)} which is composed of user
ui and timestamp ti together, we encode them, respectively, to
learn for the later prediction. We adopt Gated Recurrent Unit
(GRU) to learn the cascade sequential information based on users
in our model. According to the order of cascade, the embedded
presentation huseri of ith user would be feed into GRU cell to
obtain the hidden state hsi � GRU(hs−1i , huseri ) one by one. Where
hs−1i is the hidden state of previous user, s � 1, 2, . . . , |ci| is the step
of recurrent neural network. GRU is mainly composed of reset
gate and update gate. They are calculate as follow:

The reset gate ri is calculated as Eq. 6 shows:

ri � σ(Wrh
user
i + Urhi−1 + br) (6)

Where σ(·) is sigmoid activation function, Wr ∈ RH×F,
Ur ∈ RH×H and br ∈ RH are independent trainable parameters.

The update gate vi is calculated as Eq. 7 shows:

vi � σ(Wvh
user
i + Uvhi−1 + bv) (7)

Similarly, where Wv ∈ RH×F, Uv ∈ RH×H and bv ∈ RH are also
trainable parameters.

Then GRU uses reset gate ri to remember the current hidden
state ĥi as Eq. 8 shows:

ĥi � tanh(Whh
user
i + Uh(rt0hi−1) + bh) (8)

Where 0 represents hadamard product, Wh ∈ RH×F,
Uh ∈ RH×H and bh ∈ RH.

Finally, update gate zi activates the actual hidden state as Eq. 9
shows:

hsi � vi0hi−1 + (1 − vi)0ĥi (9)

3.5 Time Decay Attention
In social network, the influence of previous message usually decays
with time passing because of timeliness. Users are usually more
sensitive to the latest messages. The information that is closer to the
user’s infection time usually has a greater impact on users.
However, the time function of traditional methods based on
artificial definition generally can not describe this effect exactly
and is hard to decide which one should be used.

In order to learn the influence of time on cascades, the
following time decay attention mechanism is employed to
learn the weight coefficient of current user to the previously
infected users. Firstly, we divide the maximum observed time t|ci|
into k equal-sized intervals t0 � 0, t1, t1, t2, . . . , [t|ci|−1, t|ci|{ }. The
mapping function from continuous time to each interval is
showed as Eq. 10:

FIGURE 4 | An illustrative example of structural context in cascade.
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f (T − ti) � k, tk−1 ≤ ti < tk (10)

Where ti is the infected time of user i in cascade c. We define a
parameter λf(T−t) for each interval as the time decay weight. We
can get the final hidden state hi′ as the presentation of cascade c
which is assembled by a weighted average pooling mechanism as
showed in Eq. 11:

hi′ �
∑i

j�1λf (T−t)h
s
j

i
(11)

3.6 Decoding and Output Layer
In order to predict the subsequent infected user, we feed
the presentation h|ci|′ learned by encoding layer into GRU
cell in decoding layer. The output of GRU cell is the
predicted infected user and it would be feed into next
GRU cell as input to continue predicting. To identify when
to stop predicting, we append a tag < EOS > in the end
of cascade when training. The decoding layer will
continuously output the predicted infected users until the
output is < EOS >. It means the cascade stop propagating. The
calculation process of infection probability for each user is
showed as Eq. 12:

pi � softmax(Wphi′ + bp) (12)

Where pi ∈ R|U| is the infection probability of user i in next
propagation, Wp, bp is the trainable weight matrix and bias,
respectively. The training objective function to maximize the
log-likelihood of all cascades is defined as Eq. 13:

L(Θ) � ∑|C|
c�1

∑|c|−1
i�1

log pci[uc
i+1] (13)

Where pci [j] is the infection probability of the user i to the user j
in cascade c. Θ is all the trainable parameters in training model.
The whole calculation process of our model is as shown in
Algorithm 1.

4 EXPERIMENTS

In this section, we compare the prediction performance of the
proposed DLIC model with baselines and present the empirical

evaluations to demonstrate the effectiveness of our model.
Moreover, we perform detailed analysis to understand the role
of each component in DLIC.

4.1 Datasets
In this paper, we verify the performance of our model on two
public datasets. The datasets are split into training, validation and
test set for 80, 10, and 10%, respectively. Table 1 shows the
statistics of datasets.

Twitter [15] dataset records retweets URL among users on
Twitter during October 2010. The cascade consists of all the users
who retweeted are sorted according to the time. There are 3,442
cascades which contains 12,627 users in this dataset.

Users onDouban [16] can comment on books they have read.
Users’ comments on a book at a certain time can be regarded as
infected. The diffusion process of a book is regarded as a cascade.
There are 10,602 cascades which contains 23,123 users in this
dataset.

4.2 Evaluation Metric
The purpose of cascade prediction is to predict the next infected
user based on given observed users. In order to simplify the task
and make it easy to evaluate, we regard it as a retrieval task that
detect k infected users in the remaining users. Therefore, we first
rank the uninfected nodes according to the predicted infection
probability, and then evaluate the Top-k infected users according
to k � 10, 50, 100, respectively. The evaluation metrics are mean
average precision (MAP) and HITS.

MAP@k: Mean average precision for a set of cascade
predictions is the mean of the average precision scores for
each cascade. We assume there are M infected users in top-k
users so we can obtain a set of recall value R � (1/M, 2/M, . . . ,M/
M). Then for each r ∈ R, we can calculate the maximum precision
maxr′>rP (r′) to obtain average precision AP. Finally, mean

Algorithm 1 | The Algorithm description of DLIC

TABLE 1 | Statistics of datasets.

Datasets Users Links Cascades Avg. Length

Twitter 12,627 309,631 3,442 32.60
Douban 23,123 348,280 10,602 27.14
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average precision is calculated by the average of AP in cascades set
C that we predicted. The formula is showed as Eq. 14:

AP �
∑
r∈C

maxr′ > rP(r′)
M

(14)

MAP �
∑
c∈C

AP(c)
|C|

HITS@k: The rate of the top-k ranked nodes containing the
next infected node. The formula is showed as Eq. 15:

HITS � ∑c∈Cp(c)
|C| (15)

Where p (·) is an indicator function. If there is actual infected
user in prediction result of cascade c, then p � 1. Otherwise, p � 0.

4.3 Baselines
In order to evaluate the performance of the DLIC model, the
following baselines are applied to the same dataset to compare
with the proposed model.

Topo-LSTM [11] is a model based on LSTM, which extracts
directed acyclic graph from social graph and integrates its features
into hidden state, which is used to predict the next node and its
network structure.

SNIDSA [19] calculates the pairwise similarity of all user pairs,
captures the structural dependency among users, and designs a gating
mechanism to merge temporal and structural information into RNN.

FOREST [29] uses RNN to encode microscopic cascade
information, which is used to learn the structural
characteristics of the cascade. Also, it improved the
performance through a reinforcement learning framework
from macroscopic level to predict the infected nodes.

4.4 Experimental Settings
The DLICmodel proposed in this paper adopts the seq2seq as the
framework and graph attention network with 8 heads is used to
optimize the target task. During the experiment, we set the
number of observed users K � 10, then randomly sampled 20
neighbors of each node and used half-precision fp16 for training,
and the objective function is optimized through the Adam
algorithm. The specific hyperparameters setting of the
experiment are shown in Table 2.

4.5 Experimental Results
In order to verify the effectiveness of our proposed model, we
compared it with the state-of-the-art cascade prediction methods
on two datasets, trying to evaluate the effect of predicting the
future infected users with the metric of HITS and MAP. The
result is the average of five experiments as shown on Table 3.

The experimental results show that the DLIC model proposed
in this paper has improved all metrics on the two datasets. The
results indicate improvements on MAP@k and HITS@k by more
than 1 and 1.6% separately on Twitter, more than 0.4 and 0.9%
separately on Douban, which proved that DLIC performs the best
over other SOTR baselines in cascading prediction task.

The overall superiority of DLIC over the baselines mainly comes
from two facts: 1) In the aspect of user network structure, thanks to
the improvements of encoding of structural context, we achieve a
better performance in the user embedding representation. The
previous works only considered the influence of neighboring
user nodes, while DLIC learns global user features through
graph attention network. 2) In the aspect of cascading features,
the improvements mostly come from the latent influence of user
activation time. The previous works only regarded timestamps as a
sequence of users activation order or simple learning parameters,
while DLIC learns the weights of different time periods by
introducing time decay attention mechanism.

TABLE 2 | The setting of hyperparameters.

Hyperparameter Value

User embedding 64d
Learning rate 1e-03
Dropout 0.1
Epoch 20
Heads of attention 8

TABLE 3 | Experimental results of our proposedmodel on Twitter and Douban. Results are evaluated byMAP@k and HITS@k in different categories of model on the cascade
prediction task. For both metrics, scores are the higher the better.

Datasets Twitter Douban

MAP@k MAP@10 MAP@50 MAP@100 MAP@10 MAP@50 MAP@100

TOPO-LSTM 0.046 0.047 0.048 0.051 0.053 0.054
SNIDSA 0.149 0.152 0.153 0.065 0.069 0.071
FOREST 0.161 0.167 0.168 0.077 0.081 0.081
DLIC 0.171 0.178 0.179 0.081 0.086 0.087

HITS@k HITS@10 HITS@50 HITS@100 HITS@10 HITS@50 HITS@100

TOPO-LSTM 0.005 0.017 0.024 0.098 0.153 0.189
SNIDSA 0.231 0.351 0.449 0.126 0.223 0.278
FOREST 0.246 0.384 0.472 0.134 0.231 0.283
DLIC 0.262 0.410 0.494 0.143 0.244 0.303

The bold values are the best results among all models.
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Overall, the proposed DLIC model which combines users
relationship and cascade feature could achieve better
performance. It proves that research on unified modeling is a
effective way to predict cascade diffusion. We will consider it for
our future work.

4.6 Ablation Study
Our model uses a graph attention on the embedding layer to learn
the user topology structure and takes the time decay attention to
learn temporal feature of cascades. In order to explore the
influence of each component in our proposed model, we
remove them separately for experiments. For this purpose, we

present two simplified versions of DLIC, denoted as w/o GAT and
w/o time decay.

The results of ablation experiments on two datasets verify the
effectiveness of components mentioned above. When we remove
the corresponding component, all metrics have decreased on both
datasets, which show they are effective and reflect the different
impacts of them in ourmodel. Aswe can see on Figure 5, results on
MAP@50 and HITS@50 decrease by 0.9 and 1.8%, respectively, on
Twitter, and 0.7 and 2.2% respectively on Doubanwhen we remove
GAT. Results onMAP@50 andHITS@50 decrease by 0.2 and 0.7%
respectively on Twitter, and 0.3 and 0.6% respectively on Douban
when we remove time decay attention.

FIGURE 5 | The experimental results of ablation study, which show the influence of different components, w/o means removing the corresponding component.

FIGURE 6 | The influence of number of user neighbor sampling on the metrics of MAP@k and HITS@k.
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In summary, it can be seen that GAT has a great impact on our
model, because the user topology structure is learned so that more
context information is integrated to user embedding
representation. The time-decay attention alone has little effect
on the model when we remove time-decay. However, it can
improve model performance when combined with the graph
attention network.

4.7 Analysis of User Neighbor Sampling
To effectively utilize the user relationship from social network, we
construct subgraph by sampling several user neighbors to learn
the user representation with graph attention. For this purpose, we
select different number of user neighbor sampling for experiment.

As we can see in Figure 6, with the increase of the number of
user neighbor sampling, the performance of our model decreases
first, then increases to the top, finally continues to decline on the
metric of MAP@k. The result on metric of HITS@k also increases
first and then decrease. Our proposed model achieves the best
performance on both metric when we sample 20 neighbors. It
shows that user representation with relationship structure is
conductive to the cascade prediction. The main reason is the
position of user in social network can reflect the influence to a
certain extent. However, too many neighbors who is lack of
influence may also introduce noise, which leads to the decline of
prediction performance. Based on the above analysis, finally we
sample 20 user neighbors for experiment.

5 CONCLUSION

In this paper, we proposed a cascade prediction method based on
graph attention recurrent neural network for cascade prediction

task. The main creative point is that our model can learn the
spatial-temporal feature at the same time based on GAT and
time-decay attention, respectively. Experiments on two public
real-word datasets verify the effectiveness of our model in cascade
prediction task and analyse the performance of different
components. In the future, we plan to explore more attention
mechanism to further mine the structural information between
cascades.
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