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A complex network can crash down due to disturbances which significantly reduce the
network’s robustness. It is of great significance to study on how to improve the robustness
of complex networks. In the literature, the network rewire mechanism is one of the most
widely adopted methods to improve the robustness of a given network. Existing network
rewire mechanism improves the robustness of a given network by re-connecting its nodes
but keeping the total number of edges or by adding more edges to the given network. In
this work we propose a novel yet efficient network rewire mechanism which is based on
multiobjective optimization. The proposed rewire mechanism simultaneously optimizes
two objective functions, i.e., maximizing network robustness and minimizing edge rewire
operations. We further develop a multiobjective discrete partite swarm optimization
algorithm to solve the proposed mechanism. Compared to existing network rewire
mechanisms, the developed mechanism has two advantages. First, the proposed
mechanism does not require specific constraints on the rewire mechanism to the
studied network, which makes it more feasible for applications. Second, the proposed
mechanism can suggest a set of network rewire choices each of which can improve the
robustness of a given network, which makes it be more helpful for decision makings. To
validate the effectiveness of the proposed mechanism, we carry out experiments on
computer-generated Erdős–Rényi and scale-free networks, as well as real-world complex
networks. The results demonstrate that for each tested network, the proposed
multiobjective optimization based edge rewire mechanism can recommend a set of
edge rewire solutions to improve its robustness.

Keywords: complex networks, network robustness, network rewire mechanism, multiobjective optimization, partite
swarm optimization

1 INTRODUCTION

In our daily life, complex networks are ubiquitous [1–3]. We rely on diverse kinds of complex
networks as they play a very important role in our lives [4–6]. For example, we rely on transportation
networks to travel around the world, while we count on power grid networks to provide power
supplies to ensure social productions and lives [7]. Complex networks are so important to us.
However, complex networks in real-world often suffer from unpredictable disturbances such as
random component failures and/or target attacks [8,9]. Those disturbances can lead to the
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dysfunction of network components [10]. Because the
components of a network generally interact with each other,
therefore the dysfunction of some components can trigger the
dysfunction of other components and system-level disasters even
can appear. It is therefore of great scientific and social values to
ensure the stabilities and reliabilities of complex networks
[11,12].

Up to now, scientists have developed many ways to quantify
stabilities and reliabilities of complex networks [13,14]. One of
the most effective ways is based on network robustness analysis
[15]. The robustness of a network quantifies the capability of the
network to survive disturbances. Scientists in the past decade have
carried out many studies on network robustness. The majority of
existing studies on network robustness of based on graph theories
[16,17]. A graph is a straightforward yet effective modelling of a
complex network. The nodes of a graph are the entities of a
complex network, while the edges of the graph represent the
interactions among the entities. Existing studies on network
robustness can be roughly grouped into two classes. The first
class aims to develop quantitative metrics to measure the
robustness of a given network. The second class is dedicated
to investigating models and theories to improve the robustness of
a given network.

Regarding network robustness quantification, one of the most
studied methods is the percolation theories [18,19]. Suppose that
1 − p portion of the nodes of a network lose their functionalities
due to disturbances. Then the purpose of percolation theories is
to mathematically calculate the remaining portion of nodes. Such
kind of percolation theories are termed as site percolation [4].
Note that the remaining portion of nodes is no higher than p since
the dysfunction of some nodes can lead to the dysfunction of
other nodes that rely on those initially failed nodes. Because the
dysfunction can be happened to the edges of a network, the
corresponding percolation theories are deemed as bond
percolation [4]. It has been widely reported that many
complex networks show community structures [20]. A
network community is commonly regarded as a subnetwork of
a given network and the similarities between nodes within the
community are high while similarities between communities are
low. For a network with community structure, when some of its
components are failed, then those failed components will first
affect components in their own communities. Therefore, some
researchers also investigate the robustness of complex networks
to component failures at a mix-level. For example, the work in
[21] for the first time investigated the robustness of ecological
networks to the species loss of community. Interestingly, they
discovered that the community-level robustness of ecological
networks has positive correlation with that of node-level
robustness.

Percolation theories provide a way to measure the robustness
of complex networks. Another challenging question is how to
improve the robustness of complex networks. For real-world
applications, the back-up mechanism is widely used [16].
Literally, the back-up mechanism improves the robustness of a
network by backing up its critical components. Note that to back-
up a network component needs extra resources and sometimes it
is not easy to do that. For example, it may be difficult to back up a

power station due to physical connection issues. Consequently,
scientists have developed another effective way, i.e., network
rewire mechanism, to improve the robustness of complex
networks [22,23]. A network rewire mechanism changes the
connections between the nodes of a network so as to improve
its robustness. Generally, a rewire mechanism is subject to the
constraint that the total number of edges is fixed. However, some
researchers propose to discard this constraint when design
network rewire mechanisms [24].

Network rewire mechanisms have been proved to be very
effective for improving network robustness. However, existing
network rewire mechanisms have two major drawbacks. The
first one is that a rewire mechanism normally generates a
robust network whose structure is quite different from its
original one. This drawback makes existing rewire
mechanisms hard to be applied to real situations. The
second one is that existing rewire mechanisms can only
generate single solutions which is not intelligent for smart
and personalized decision making.

In order to overcome those two drawbacks mentioned above,
in this paper we suggest a novel network rewire mechanism for
improving network robustness. Specifically, we propose a
multiobjective optimization based network rewire
mechanism. The proposed mechanism simultaneously
optimizes two objectives. The first objective is to maximize
the network robustness. This objective makes sure that a feasible
network rewire solution definitely increase the robustness of the
studied network. The second objective is to minimize the
number of network rewire operations. This objective ensures
that a feasible network rewire solution can improve the
robustness of the studied network by implementing as small
number of rewire operations as possible, making the proposed
network rewire mechanism be of practical use. In order to solve
the optimization based model, we further develop a
multiobjective particle swarm optimization algorithm. Each
time we run the developed algorithm, the algorithm can
generate a set of solutions. Each solution denotes a network
rewire choice with which the robustness of the studied network
can be improved. Compared to existing network rewire
mechanisms, the newly proposed network rewire mechanism
better facilitates decision making. In order to validate the
effectiveness of the proposed mechanism, we carry out
experiments on Erdős–Rényi and scale-free networks that are
generated using computer models. We also carry out
experiments on several real-world complex networks.
Experiments demonstrate that the proposed optimization-
based network rewire mechanism can provide many different
choices to improve the robustness of the tested networks. For
real-world applications, one may analyze the detailed properties
of the given network and decide which choices can be chosen to
improve the network’s robustness.

The remainder of this paper is organized as follows. Section 2
presents preliminaries for better understanding of this work.
Section 3 formulates the proposed research problem and
Section 4 delineates the designed algorithm to solve the
proposed problem. Section 5 demonstrates the experiments
and Section 6 concludes the paper.
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2 RELATED BACKGROUNDS

2.1 Network Notations
A complex network is usually represented by a graph. A graph
consists of nodes and edges. In the literature, a node also
can be called a vertex while an edge can be called a link.
Mathematically, a graph is generally denoted by G � {V, E}.
In this kind of notation, the symbol V represents the node
set and the symbol E represents the edge set. The nodes of
a graph represent the entities of a network that the graph
models, while the edges represent the relationships between the
entities.

The relationships between the nodes of a graph can be
depicted using its adjacency matrix which is usually denoted
by A. Figure 1 shows an example of a simple network together
with its corresponding adjacency matrix.

For the graph G shown in Figure 1 with n � 9 nodes, its
adjacency matrix is normally with size n × n. The element of A is
usually denoted by aij, representing the relationship between
nodes i and j. Note that the value of aij is problem-specific.
For a binary network with aij ∈ {1, 0}, the element aij only
represents whether there is connection between nodes i and j.

2.2 Network Rewire Mechanism
A network rewire mechanism is usually used in the network
science domain. For a given network G, a network rewire
mechanism aims to generate a new network G′. Figure 2
shows an example of a simple network rewire mechanism.

In Figure 2, the original network has 10 nodes and 11 edges.
After adopting a simple rewire mechanism, network G has been
changed into network G′. It can be seen from the figure that the
network rewire mechanism just changes the edge connections
between the nodes and does not change the total number of edges
of the original network.

2.3 Particle Swarm Optimization
Many real-world problems can be reformulated as optimization
problems. Because real-world problems could be very difficult,
therefore when turning a real-world problem into an
optimization problem, the optimization formula may not
have mathematical properties like gradient. In this case,
mathematical methods cannot solve such kind of
optimization problems.

In order to solve optimization problems that cannot be solving
using traditional mathematical methods, scientists have
developed the so called bio-inspired algorithms [25,26] and
amongst which is the particle swarm optimization algorithm
(PSO) [27–29].

Suppose that one aims to maximize a function f(x) with x
being the argument by using PSO. Then a PSO algorithm works
with a swarm or a population of individuals. Each individual is a
feasible solution x to the optimized problem f(x). Let us use pi to
denote the ith population and xj ∈pi to denote the jth individual in
pi. Then a PSO algorithm iteratively evolves pi to approximate the
optimal solutions to f(x). During each iteration, the algorithm
updates individual xj in the following way:

xj � xj + vj (1)

where vj is the velocity of individual xj. The velocity vj is calculated
as follows

vj � wvj + c1r1 Lj − xj( ) + c2r2 G − xj( ) (2)

where w, c1 and c2 are three constants. r1 and r2 are two random
number with r1, r2 ∈ [0, 1]. The symbol Lj is the personally best
individual of xj, i.e., the best solution that individual xj has so far
found. The symbol G is the globally best individual found by all
the individuals.

Note that an individual updates its velocity vj by referring to its
historical information and the information from the whole
population. The new velocity vj then could help individual xj
to explore to promising area. During each iteration, the algorithm
updates Lj and G. By iteratively evolving pi for a prescribed
number of iteration, the algorithm stops and G therefore is
regarded as the optimal solution(s) to the original
optimization problem.

3 RESEARCH PROBLEM AND PROBLEM
FORMULATION

3.1 Network Robustness Measurement
The research aims to enhance the robustness of a given network
by proposing a novel network rewire mechanism. To do so, first
we need to know how to quantify the robustness of a given
network. In the literature, there are many studies on network
robustness [16,30]. As a consequence, many methods have been

FIGURE 1 | An example of a simple network together with its
corresponding adjacency matrix.

FIGURE 2 | An example of a simple network rewire mechanism.
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developed by scientists to quantify the robustness of complex
networks [13,31] and amongst which is the method based on
spectral analysis [31].

Given a network G with its adjacency matrix being denoted by
A. Let us use di to represent the degree of node i, i.e., the number
of edges attached to i. Then one can easily obtain a diagonal
matrix D in which its ith element is di. In the literature, the
Laplacian matrix L of network G is defined as

L � D − A (3)

For the matrix L we can work out all its eigenvalues λ. An
eigenvalue λ satisfies the following relation

Lx � λx (4)

in which x is the corresponding eigenvector. Let λ2 ∈ λ be the
second smallest non-negative eigenvalue of matrix L. It has been
found that λ2 has a positive relationship with the network’s
connectivity [31]. As a consequence, in the literature scientists
use it as a metric to quantify the network’s robustness. Due to its
computationally friendly feature, in this study we use λ2 as the
network robustness quantification metric. Normally, the larger
the value of λ2, the more robust the given network.

3.2 Proposed Network Rewire Mechanism
In this work, we propose a new network rewire mechanism to
enhance the robustness of a given complex network. Figure 3
takes a simple network as an example to show the basic idea of the
proposed network rewire mechanism.

On the left hand side of Figure 3 is a simple network G0 with
10 nodes. The network G0 originally carries with 11 edges. In
order to enhance its robustness, existing rewire mechanisms
change the edge connections. Specifically, they reconnect the
nodes and aim to find out a new networkG1 with exactly the same
number of edges and higher network robustness.

In this work we propose a novel rewire mechanism as shown
on the right hand side of Figure 3. The proposedmechanism does
not require that G1 has exactly the same number of G. As can be
seen from the right hand side of Figure 3, we delete some edges
from G. We also add new edges between the nodes. As long as G1

has higher network robustness than G, then we can both delete

edges from and add new ones to G. As compared to existing
rewire mechanisms, the newly proposed mechanism is more
flexible and could be more of practical usage.

Note that for a given network there are many choices for edge
deletion and addition. In order to determine which edges can be
deleted and added, we propose a multiobjective optimization
model which will be described in detail in the subsequent
subsection.

3.3 Proposed Optimization Model
For a given network G we adopt the λ2 metric to quantify its
robustness. The proposed network rewire mechanism aims to
enhance G’s robustness by removing and adding edges.
Specifically, we propose the following multiobjective
optimization model.

f1 � min λ02 − λ12( )
f2 � min |E−|
f3 � min |E+|

⎧⎪⎨
⎪⎩ (5)

in which λ02 is the robustness of G, E− is the set of edges to be
deleted from G and E+ is set of edges to be added to G. For
network G the proposed rewire mechanism removes edges in the
set E− and adds edges in the set E+. Then G becomes G1 with
respect to E− and E+ and λ12 is its corresponding robustness.

In the above model, objective f1 aims to maximize the
robustness of G1. Both objectives f2 and f3 aim to minimize
the edge operations. For a network in reality, it is not good to
remove a large amount of edges from the network as it will
change the network’s structure a lot. Objective f2 then
constraints this operation. Similarly, it is not practical to add
a large amount of edges to the network as adding new edges
needs extra workload. Objective f3 is such a constraint to avoid
this behaviour.

Note that existing rewire mechanisms also do edge addition
and removal, i.e., they consider both objectives f2 and f3. However,
they require to remain the total number of edges in the network,
i.e., they require that f2 � f3. In the newly proposed rewire
mechanism, we do not pose such constraints. As a
consequence, the proposed mechanism is of more practical
use. For networks in which adding edges is more convenient
than that of deleting edges, then we can minimize f2 but relax f3.
Similarly, if deleting edges is much easier than adding new ones,
then we can pay more attention to f3.

4 ALGORITHM DESIGN

4.1 Algorithm Framework
One may clearly see from Eq. 5 that the proposed optimization
model does not have a direct relationship between the decision
variable (E+ and E−) and the objective function values. A concrete
solution of E+ and E− cannot directly be substituted into the
calculation of f1. Meanwhile, E+ and E− are edge sets.

The proposed model contains three objectives. In order to
solve it, traditional mathematical methods will apply weighted
sum method to do it. However, since the edge sets are composed

FIGURE 3 | The basic idea of the proposed network rewire mechanism
to enhance the robustness of a given complex network. In the proposed
rewire mechanism, both edge additions and deletions are allowed without
extra constrains.
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of links, therefore mathematical methods cannot solve Eq. 5 as
the decision variables are discrete and the objectives do not have
any gradient information. Because the proposed optimization
model given in Eq. 5 involves three discrete objectives, in the
literature, scientists have developed nature-inspired algorithms
such as genetic algorithms (GAs) [32], particle swarm
optimization algorithms (PSOs) [33], etc., to solve such kind
of problems. Both GAs and PSOs are designed for single objective
optimization. In order to solve multiobjective optimization,
representative algorithms like the non-dominated sorting
genetic algorithm-version II (NSGA-II) [34], multiobjective
particle swarm optimization (MOPSO) [35], multiobjective
evolutionary algorithm based on decomposition (MOEA/D)
[36], etc., have been developed by scientists and been applied
to solve many engineering problems.

In order to solve the model shown in Eq. 5, we in this work
adopt the MOPSO algorithm proposed in [27]. The MOPSO
algorithm is chosen because of its simplicity in terms of algorithm
understanding and implementation. We redesign some operators
of theMOPSO algorithm to make it fit for the model in Eq. 5. The
whole algorithm framework for solve Eq. 5 is given in
Algorithm 1.

Step 4 of Algorithm 1 involves the individual representation
method which will be described in the following subsection. Step 7a of
Algorithm 1 evaluates a particle based on the proposedmultiobjective

optimization model. Step 10 of Algorithm 1 is the main for loop
which mainly contains the particles’ position and velocity
information update and this will be described in the following

FIGURE 4 | An illustration of a simple network and a possible
representation of a particle position.
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subsection. Note that the details for generating a testing network
will be provided in the experiment section and all the parameter
settings will also be given in the experiment section.

4.2 Representation of Particle Potion
The algorithm proposed in [27] is for network clustering. The
authors therefore developed an integer based particle position
representation method. Since in this work we aim to do network
rewire to enhance network robustness, we thus need to reconsider
the way to represent a particle position.

Keep in mind that the purpose of the work is to find out the
edge sets E+ and E− so as to improve the robustness of a given
network. For a given network G, we know its adjacency matrix A
and its edge set E. We then can remove edges from E and E− can
be determined. Based on matrix A, we also know the possible new
edges between the nodes and therefore can determine E+.
Considering this, we thus propose the following way to
represent the position of the ith particle of a PSO algorithm.

xi � (xi1, xi2, . . . , xim) (6)

In Eq. 6, xij ∈ xi is a binary variable, i.e., xij ∈ {0, 1}. The length of xi
ism andm � n × (n − 1)/2. Figure 4 takes a simple network as an
example to show how Eq. 6 works.

In Figure 4, the simple network G has five nodes and seven
edges. Its adjacency matrix is given as A. In the figure there is a
binary sequence x which represents a particle’s position. This
binary sequence represents a possible edge rewire solution. We
first set up an empty matrix A′. Then we turn the binary sequence
x into the elements of the upper triangle matrix of matrix A′. The
upper triangle matrix then represents the new edge connection
relationship and corresponds to the new network G′.

As mentioned earlier, the purpose of this work is to find E+ and
E−. So the most straightforward way is to represent xi as an
adjacency matrix A′. Based on the difference between A and A′
we can easily work out E+ and E− and therefore can calculate the
values of the objective functions. However, this kind of
representation requires too much computer memories when n
is very big. As can be seen from Figure 4, the proposed

representation mechanism can reduce the memory size by
more than half.

4.3 Representation of Particle Velocity
How to represent the velocity of a particle is related to the way
how the position of the particle is represented, since the velocity
vector help a partite to update its position information. As
compared to the matrix representation method, the proposed
particle position representation method is more convenient for
the velocity representation.

Since in this work we propose to encode the edges in the upper
triangle of the adjacency matrix of a given network using binary
coding schema, therefore we decide to use binary representation
of the velocity vector of a given particle. Specifically, for a given
velocity vector vi � (vi1, vi2, . . . , vim) corresponding to particle xi,
its element vij ∈ {0, 1}. The element vij represents whether the jth
element in the vector xi will be changed or not.

4.4 Update of Particle Position and Velocity
For the ith particle with xi being its position vector, we update its
position information with the following equation

xi′ � xi ⊕ vi′ (7)

in which the operator ⊕ defines the operation for xi’ as follows

xij′ � xij if vij′ � 0 (8)

xij′ � ∼ xij if vij′ � 1 (9)

The velocity vector vi′ of the ith particle is updated as follows

vi′ � S(v) (10)

in which the speed vector v is calculated as

v � wvi + c1r1 Li − xi( ) + c2r2 Gr − xi( ) (11)

where Gr ∈ G is a solution randomly chosen from the global
best solution set G and the symbol S () is a confining

FIGURE 5 | Degree distribution of a randomly generated Erdős–Rényi
network (n � 1000, d � 6). The function P(k) � a1e−a2

ak2
k! is used for curve fitting.

FIGURE 6 | Degree distribution of a randomly generated scale-free
network (n � 100, λ � 2.4, kmin � 1, kmin � 10). The function P(k) � a1k−a2 is
used for curve fitting.
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function which maps vector v into vi′. Specifically, S () works
as follows

vij′ � 0 if
1

1 + e−vj
≤ 0.5, vj ∈ v (12)

vij′ � 1 if
1

1 + e−vj
> 0.5, vj ∈ v (13)

It can be seen from the above equations that v is a real valued
vector. By implementing the S () operation we turn v into a binary
vector based on which we thus can update the particle’s position
information. Note that other functions also can be adopted to
replace the S () function. However, there is no guarantee that other
functions would perform better than the S () function does. The S ()
function is adopted because it is smooth in the objective space.

4.5 Update of Local and Global Best
Particles
Note that PSO is a population based algorithm. During the
iterations we need to update the information of the local best
individual Li for all i ∈ [1, psize] and the global best individual G

FIGURE 7 | Network structure visualization of (A) the Karate network, (B) the dolphin network, (C) the Football network and (D) the SFI network.

TABLE 1 | Settings of the parameters contained in the algorithm and the
generated networks for testing.

Network Algorithm

Parameter Value Parameter Value

n (50, 100, 150) ps 100
d (4, 5, 6, 7) np 100
λ (2, 2.4, 2.6, 2.8) c1 1.496
kmin 1 c2 1.496
kmax 10 w 0.729
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since they help the entire swarm to explore for better solutions.
Algorithm 2 presents the pseudocode for updating the local and
global best particles in the adopted MOPSO algorithm.

As can be seen from Algorithm 2, during each iteration, when
a new individual xi is generated, we then evaluate its fitness. If xi
dominates its historical best Li (step 1c of Algorithm 2), then we
replace Li with xi, otherwise, we keep Li as it is. When a new
population of individuals are generated, we then update G.
Specifically, we use the Pareto solutions obtained from the
current population to update those in the history. When any
of the new Pareto solutions dominate any historical Pareto
solutions, we then replace the old solutions with the new one
(step 3 of Algorithm 2).

5 EXPERIMENTAL STUDY

5.1 Network Datasets
5.1.1 Computer-Generated Networks
In the experiments we first test the proposed edge rewire
mechanism on computer-generated networks. Specifically, we
generate two types of networks, i,e., Erdős–Rényi networks

and scale-free networks. The degree of an Erdős–Rényi follows
Poisson distribution while the degree of a scale-free network
follows power law distribution.

In order to generate an Erdős–Rényi network with n nodes, we
first generate an empty networkGERwith n nodes.We then define
a constant d. Then we further define the connection probability
r as r � d/n. Then we connect each pair of nodes of GER with
probability r. We have proved in our previous paper in [8] that
the generated network appropriately follows the following degree
distribution

p(k) � e−d
dk

k!
(14)

The network GER therefore is an Erdős–Rényi network since its
degree distribution follows the Poisson distribution and the
average degree of GER is d. Figure 5 shows the degree
distribution and the corresponding curve fitting of an example
Erdős–Rényi network generated using the above mentioned
method.

In Figure 5, the Erdős–Rényi network is generated with
n � 1000 and d � 6. A Poisson distribution function
P(k) � a1e−a2

ak2
k! is used to do the curve fitting. It can be seen

FIGURE 8 | Visualization of the Pareto fronts obtained by applying the introduced multiobjective particle swarm optimization algorithm to the generated
Erdős–Rényi networks.
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from Figure 5 that a1 � 1.01 and a2 � 6.06. The curve fitting result
complies well with the distribution given by Eq. 14.

In order to generate a scale-free network with n nodes, we first
determine the exponent λ in the degree distribution function
p(k) � ck−λ with k being the nodes degree and c being a constant.
We then determine the largest degree kmax and the smallest
degree kmin. Based on the three parameters λ, kmax and kmin

we then solve the following equation

∑
kmax

kmin

ck−λdk � 1 (15)

By solving the above equation we then work out the constant c.
With all the above, we then sample a degree sequence k � (k1, k2,
. . . , kn) from the degree distribution function p(k) � ck−λ. Then
we use the method proposed in [37] to work out networks GSF

whose has exactly the sampled degree sequence k.
In Figure 6, the scale-free network is generated with n � 100,

λ � 2.4, kmin � 1, and kmin � 10. A power-law distribution function
P(k) � a1k−a2 is used to do the curve fitting. It can be seen
from Figure 6 that a1 � 0.77 and a2 � 2.47. By solving Eq. 15

we get C � 0.737. Therefore, the curve fitting result complies well
with the theoretical analysis.

5.1.2 Real-World Complex Networks
Apart from the computer-generated networks, in the experiments
we also test the proposed edge rewire mechanism on several real-
world networks. Specifically, the following networks chosen from
the survey paper in [20] are tested.

5.1.2.1 The Karate Network
This network contains 34 nodes and 78 edges. It depicts
the relationships between 34 members with the Karate club. The
edges represent the relationships among the members. The structure
of the Karate network is shown in Figure 7A.

5.1.2.2 The Dolphin Network
The dolphin network contains 62 nodes each of which represents
a bottlenose dolphin. Three are 159 edges in the network. The
edges are built based on statistically significant frequent
association, i.e., their social behaviours. The structure of the
Dolphin network is shown in Figure 7B.

FIGURE 9 | Visualization of the Pareto fronts obtained by applying the introduced multiobjective particle swarm optimization algorithm to the generated scale-free
networks.
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5.1.2.3 The Football Network
The football network represents the American football games
between Division IA colleges during regular season Fall 2,000.
The football network contains 115 nodes each of which represents
a college. Three are 613 edges in the network. An edge is built
between two nodes if the corresponding colleges have a game. The
structure of the Football network is shown in Figure 7C.

5.1.2.4 The SFI Network
The SFI network represents the collaborations between the
scientists working with Santa Fe Institute during any part of
calendar year 1999 or 2000. The SFI network contains 118 nodes
and 200 edges. The structure of the SFI network is shown in
Figure 7D.

Figure 7 visualizes the structures of the four tested real-world
networks. These four networks are chosen because they have
been widely used in the network science domain. Note that the
four real-world networks are unweighted, i.e., they are binary
networks. In the experiments, we only test the proposed
mechanism on small-scale networks. On the one hand, the

proposed mechanism can be tested on large-scale networks.
On the other hand, testing on large-scale network is time
consuming as the adopted PSO algorithm is a population
based random search algorithm. As the main purpose of this
work is to validate the feasibility of the proposed mechanism,
therefore we do not carry out experiments on large-scale
networks at the moment.

5.2 Parameter Settings
As mentioned above, when generating the networks we need to
determine some parameters first. Meanwhile, for the introduced
algorithm it also carries with several parameters. In the
experiments, we set all the needed parameters as what are
shown in Table 1.

Note that the main idea of this work is to validate if the
proposed optimization based edge rewire mechanism is effective
or not. Therefore, we do not set the value of n large enough. For
a network with n nodes, there are maximum n × (n − 1)/2 edges.
If n is too large, then the optimization process will take a long
time to finish. In the experiments we set it to be small so as to
quickly check if the proposed idea is feasible or not. This is the
main reason why the tested real-world networks are small
in size.

5.3 Obtained Pareto Fronts
In the experiments, we generate two types of artificial networks.
For each type of networks, we generate 12 networks with the
configurations of the number of nodes and the degree control
parameter, i.e., d for the Erdős–Rényi network and λ for the scale-
free network. Figure 8 and Figure 9 respectively visualize the
Pareto fronts obtained by the introduced multiobjective particle

FIGURE 10 | Visualization of the Pareto fronts obtained by applying the introduced multiobjective particle swarm optimization algorithm to (A) the Karate network,
(B) the dolphin network, (C) the Football network and (D) the SFI network.

TABLE 3 | Robustness of the real-world networks and their optimized networks
with respect to the two selected extreme solutions from the Pareto fronts.

Network λ02 λ92 λ992

Karate 0.4685 8.9665 9.0996
Dolphin 0.1730 7.3211 10.0706
Football 1.4590 20.4772 42.9840
SFI 0.0147 18.3791 40.9159

TABLE 2 |Robustness improvement made by the two selected extreme solutions from the Pareto front for each of the tested Erdős–Rényi (ER) and scale-free (SF) networks.

Er d = 4 d = 4 d = 5 d = 5 d = 6 d = 6 d = 7 d = 7

n � 50 55.5537 89.5042 2.6829 6.1284 13.9347 11.4976 4.8016 4.9753
n � 100 19.1287 89.7005 24.1805 52.3923 84.2993 90.4997 9.2648 10.4689
n � 150 144.3407 148.6653 55.7901 83.6496 17.4103 81.3385 62.9916 71.7342
SF λ � 2 λ � 2 λ � 2.4 λ � 2.4 λ � 2.6 λ � 2.6 λ � 2.8 λ � 2.8
n � 50 59.8475 156.2997 66.5295 75.7222 32.2473 33.9289 35.8288 40.4335
n � 100 325.3390 653.7876 316.2841 712.6357 219.9658 234.9531 111.1764 155.4250
n � 150 1813.5327 1836.7281 242.6360 513.1527 771.9283 829.3302 773.0175 1816.6741
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swarm optimization algorithm when tested on the Erdős–Rényi
and scale-free networks. Note that for each tested network we run
the introduced multiobjective particle swarm optimization
algorithm for 20 times. After each run we save the Pareto
solutions. We eventually merge all the Pareto solutions over
the 20 runs and filter out the final Pareto solutions based on
Pareto dominance mechanism.

Both in Figure 8 and Figure 9 each row represents the results
for networks with different sizes. In Figure 8, each column
corresponds to different d, while each column in Figure 9
corresponds to different λ. We can clearly see from those two
figures that the values of f1 for all the solutions are negative. This
means that the robustness of the original networks have being
improved based on the corresponding edge rewire mechanism.
One may further see from the figures that the proposed
multiobjective optimization based edge rewire mechanism can
yield many different solutions to improve the robustness of a
given network. Actually, this is one of the biggest advantages of

the proposed edge rewire mechanism as compared to existing
ones which can only provide single solutions for the decision
makers. As can be seen from the two figures, each solution
corresponds to edge deletions and additions but the number
of added edges does not need to be equal to that of the deleted
edges, which makes the proposed mechanism more flexible for
real use.

The above experiments are carried out on Erdős–Rényi
networks and scale-free networks which are two important
types of networks. In the next, we show the results on the
four real-world networks. Figure 10 visualizes of the Pareto
fronts obtained by the introduced algorithm when tested on
the four networks.

It also can be seen from Figure 10 similar phenomenon
occurs to the tested real-world networks as compared to that of
the computer-generated networks. More specifically, there are
multiple Pareto solutions for improving the robustness of each
of the tested real-world networks. The above experiments

FIGURE 11 | Original (first column) and optimized structures (second and third columns) of the Erdős–Rényi networks for d � 4.
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prove that the proposed edge rewire mechanism can reconnect
those tested networks to improve their network robustness. In
what follows, we analyze the robustness of the enhanced
networks with respect to the obtained Pareto solutions.

5.4 Enhanced Network Robustness
The above experiments indicate that the proposed multiobjective
optimization based edge rewire mechanism can help to improve
the robustness of a given network. Note that by optimizing the
proposed mechanism, a set of rewire solutions can be obtained. In
this section we analyze the robustness improvement of two
extreme solutions for each tested network.

As can be seen from Figures 8–10, the Pareto front for each
network contains a set of solutions. Here, we choose two extreme
solutions from each Pareto front. For all the solutions, we sum up
f2 and f3. Then we choose the two extreme solutions as the two
solutions that require the minimum number of edge operations
including addition and deletion. We then calculate the ratio of

robustness improvement. The results for all the tested artificial
networks are shown in Table 2.

In Table 2, the robustness improvement is calculated as
(λ12 − λ02)/λ

0
2. In the table, we can see that for all the tested

artificial networks, the robustness of the original networks
have been greatly improved. We also observe from the table
that when the size of a network is increased, then the robustness
improvement will also be increased. This is because that a
network with n nodes has n × (n − 1)/2 maximum number of
edges. Thus, a larger network has larger maximum number of
edges and there is larger probability to improve its robustness
given the fact that the most robust network is a full connected
network.

From Table 2 we also notice that the robustness improvement
for scale-free networks are more significant than that of
Erdős–Rényi networks. This is because that a scale-free
network has relatively less edges than an Erdős–Rényi network
with the same number of nodes. Consequently, the proposed edge

FIGURE 12 | Original (first column) and optimized structures (second and third columns) the scale-free networks for λ � 2.
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rewire mechanism can work better for improving the robustness
of scale-free networks.

Table 3 records the robustness of the tested four real-world
networks (recorded by λ02) as well as the robustness of the
corresponding optimized networks (recorded by λ2′ and λ′

′
2)

with respect to the selected extreme solutions. For the Karate
network, its original robust is 0.4685 as can be seen from
Table 3. By rewiring its edges with respect to the two
selected solutions, the robustness of the two optimized
networks are respectively 8.9665 and 9.0996, which are about
20 times of its original robustness. For the remaining three
networks, their robustness also have been significantly
improved based on the proposed edge rewire mechanism.
The experiments on real-world networks also validate the
effectiveness of the proposed rewire mechanism.

5.5 Optimized Network Structure
Tables 2, 3 show that the robustness of the tested networks have
been greatly improved. In this section we graphically visualize
the optimized structures of the networks against the original
ones. For simplicity, here we only visualize the structures of
Erdős–Rényi networks for d � 4 and scale-free networks for
λ � 2.

Figures 11, 12 respectively visualize the original network
structures (first column) and the optimized networks

structures (second and third columns) for Erdős–Rényi
networks for d � 4 and scale-free networks for λ � 2. We can
see from Figures 11, 12 that the proposed edge rewire mechanism
makes a given network have more edges to improve its
robustness. As compared to Erdős–Rényi networks, the
optimized scale-free networks seem to be much denser than
their original networks. As explained earlier, this is because
that a scale-free network has relatively less edges than a same
sized Erdős–Rényi network.

Figure 13 visualizes the original network structures (first row) and
the optimized networks structures (second and third rows) for the
four tested real-world networks. It can be clearly seen from Figures
11–13 that the selected two solutions suggest to add more links to
each of the tested network to improve its network robustness.

5.6 Discussion
One may notice from Figures 11–13 that the proposed edge
rewire mechanism tends to make a given network be denser in
order to improve its robustness. This is not necessarily the feature
of the proposed model. Actually, the proposed multiobjective
optimization based rewire mechanism is very flexible. Note that
in the proposed model we do not add in any constraints. We do
not limit the number of deleted and added edges. As long as the
edge operations can improve the robustness of a given network,
then themultiobjective optimization algorithmwill determine the

FIGURE 13 | Original (first row) and optimized structures (second and third rows) of the four tested real-world networks.
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goodness of the edge operations based on Pareto dominance
mechanism. If the operations are non-dominated with each other,
then those operations will be saved as the possible choices.

Note that in the experiments for a tested network, its number
of edges is far less than that of the maximum number of edges it
can has. This is especially true for the tested scale-free networks.
A scale-free network is normally sparse in its connections.
Therefore there could be many choices to improve its
robustness. In order to avoid making a network be denser, we
provide below some possible solutions.

1) One may consider to increase the population size of the particle
swarm optimization algorithm and run it for more than
20 times to possibly obtain more Pareto solutions. Then one
may expect to select Pareto solutions that do not make many
edge reconnections. It is also suggested that one can try to
redesign the algorithm operators especially the status update
principles for the particle swarm optimization algorithm.

2) One may add extra constraints. For example, one can set the
portion of maximum edge operations, i.e., instead of
considering all the possible edges, one can just predefine
the maximum number of edges allowed in a given
network. For example, for a network with n nodes and m
edges, it can have a maximum of n (n − 1)/2 edges. Then
one may add the constrain of f2 + f3 < αn (n − 1)/2 in which
α ∈ (0, 1) is a control parameter.

3) For real applications, one may also consider the cost on the
edge operations. For some networks, adding edges could be
more costly than deleting edges, while the situation can be the
opposite for some networks. Therefore, instead of directly
using objectives f2 and f3, one can design other cost functions.
A straightforward way to achieve this goal is to punish the two
objectives with different coefficients. For example, one can
consider the objectives βf2 and (1 − β)f3 with β ∈ [0, 1].

6 CONCLUSION

The study on network robustness has attracted much attention in
the past decade. In reality many complex networks will more or
less suffer from external attacks. Those attacks to a network can
lead to the failure of network nodes and edges. When some nodes
and/or edges fail, the corresponding network could totally fail,
which could bring about enormous losses. Network robustness
estimates a network’s ability to bear with attacks. To do research

on network robustness can help the better design of network
structures to improve their robustness.

In order to enhance the robustness of a complex network, in
the literature one of the most effective ways is the network rewire
mechanism which changes the edge connections between the
nodes so as to improve the network’s robustness. In this work we
adopted spectral analysis to measure the robustness of a given
network. We then proposed a multiobjective optimization based
network rewire mechanism to enhance network robustness. The
proposed edge rewire mechanism optimizes three objectives. The
first one is the robustness improvement. The second one is to
minimize edge deletions and the third is to minimize edge
additions. To optimize the proposed mechanism, we further
develop a multiobjective discrete partite swarm optimization
algorithm to solve the proposed mechanism. Compared to
traditional network rewire mechanism, the developed mechanism
can generate a set of network rewire choices each of which can
improve the robustness of a given network. To validate the
effectiveness of the proposed mechanism, we carried out
simulations on computer-generated Erdős–Rényi and scale-free
networks as well as real-world networks. Experiments have
validated the effectiveness of the proposed edge rewire mechanism.
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