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Assessing the structural vulnerability of online social networks has been one of the most
engaging topics recently, which is quite essential and beneficial to holding the network
connectivity and facilitating information flow, but most of the existing vulnerability
assessment measures and the corresponding solutions fail to accurately reveal the
global damage done to the network. In order to accurately measure the vulnerability of
networks, an invulnerability index based on the concept of improved tenacity is proposed
in the present study. Compared with existing measurements, the new method does not
measure a single property performance, such as giant component size or the number of
components after destruction, but pays special attention to the potential equilibrium
between the removal cost and the removal effect. Extensive experiments on real-world
social networks demonstrate the accuracy and effectiveness of the proposed method.
Moreover, compared with results of attacks based on the different centrality indices, we
found an individual node’s prominence in a network is inherently related to the structural
properties of network. In high centralized networks, the nodes with higher eigenvector are
more important than the others in maintaining stability and connectivity. But in low
centralized networks, the nodes with higher betweenness are more powerful than the
others. In addition, the experimental results indicate that low centralized networks can
tolerate high intentional attacks and has a better adaptability to attacks than high
centralized networks.
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INTRODUCTION

With the revolution of the WWW technology, Web 2.0 characterized by social collaborative
technologies is emerging and fast-growing. People are increasingly inclined to cultivate their
virtual social relations and virtual life on the existing prevalent online social networks [1], such
as Facebook, Blogger, Wiki, and Digg. These online social networks can provide favorable platforms
for people to exchange opinions or information with one another [2]. Specifically, online social
networks are creating ties for us with a very wide range of people, which not only are bonded in
relationships with acquaintances, as well as maintain close relationships with friends, schoolmates,
and family members, but also are embodied in some new relationships in an online virtual world.

In order to defend some potential disruptions and facilitate information flow, assessing the
vulnerability of online social networks has been one of themost engaging topics [3, 4]. The concept of
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vulnerability is generally used to find and characterize a lack of
robustness and resilience of a complex system [5]. The
vulnerability of a network structure was analyzed first by
Albert et al. [6] and was regarded as a previously overlooked
“Achilles’ heel.” Initially, vulnerability assessment was focused on
some simple and generic models such as the Erdös–Rényi (ER)
random model and the Barabási–Albert (BA) scale free model [6,
7]. Over the years, some scholars have found that the inherent
preferential attachment mechanism and the structural properties
of network may be responsible for the vulnerability of network
[8–10]. Especially, a series of numerical simulations were
introduced to study tolerance to random removals and
intentional attacks in complex networks [11–13]. Most
experimental studies have shown that the Barabási–Albert
(BA) network and other similar heterogeneous networks are
very robust to random removals but are very fragile against
intentional attacks based on the degree or betweenness [6, 14].
For homogeneous networks such as regular networks and
random networks, the effect of random removals is equivalent
to that of intentional attacks [6], while for small-world networks,
long-range link attacks can cause their collapse directly [13].
Some achievements have been made in the research of some
typical network models, but how the dynamical processes, such as
resilience to damage or tolerance to attacks, are influenced by the
specific topological structure of a network remains unknown.

In recent years, there has been much effort directed at
developing methods for vulnerability assessment [15–17]. The
main results are largely based on two aspects, including critical
node identification and removal effect evaluation. The former
reflects the nodal prominent position in maintaining the network
connectivity or facilitating information flow, while the latter
refers to how to quantify the effect caused by the removal of a
finite number of nodes. Indeed, the identification of critical
individuals is an influence maximization problem [18], which
aims to select a minimal node set to generate a maximal outcome
in a given network. The quantification methods can be roughly
classified into three categories: centrality-based algorithms,
random-walk algorithms, and greedy-based algorithms.
Structural connectivity has become the primary test criterion
for vulnerability assessment [19]. In most instances, these
evaluation metrics such as the characteristic path length [6]
and the network efficiency [20, 21] are relatively
straightforward and can more clearly characterize the changes
in the connectivity of the target network before and after some
nodes are removed. However, they only provide a useful
topological snapshot for connected networks and are not
suitable to assess the network vulnerability in terms of
disconnectivity [15]. In addition, the existing measurements
are difficult to reach equilibrium between the removal cost
and the removal effect.

The primary purpose of this article is to fill this gap by
exploring a new method to effectively quantify the
vulnerability of the network structure. The new method
focuses on how to identify the importance, or status, of a
node in the network, and on further use of available resources
to efficiently disrupt network operation, which comprehensively
takes account of the cost with which one can disrupt a network

and the attack effect. The contributions of this study can be
summarized as the following:

1) An invulnerability index based on the concept of improved
tenacity is proposed to measure the adaptability to attacks.

2) Low centralized networks can have a better adaptability to
attacks than high centralized networks.

3) The experimental results verify the outperformance of the
proposed method.

The rest of the article is organized as the following: InMethods,
in order to assess the vulnerability of networks more properly, we
present an invulnerability index based on the concept of
improved tenacity to examine network adaptability to attacks.
Generally, a network with a higher invulnerability index performs
better under intentional attacks. In Network Data, we will
examine the static properties of real online social networks
empirically, in order to summarize the generalized differences
in the topological structure of various online social networks.
Especially, inDiscussion, we will display the threshold behavior of
the aforementioned networks on experimental observation, and
further compare the efficiency of node removal with different
centrality indices to find the vulnerability of online social
networks.

METHODS

The Attack Strategies
Inspired by the well-known percolation theory in statistical
physics, the robustness and resilience of a network is usually
defined as the network structural degradation caused by the
removal of some critical nodes [19]. Tolerance to random
removals and intentional attacks is understood as the ability of
the network to maintain operations and connectivity under the
loss of some nodes or links [8]. In order to ensure the efficiency of
attacks, it is necessary to identify the most vulnerable nodes in a
network. Indeed, the identification of critical nodes is an influence
maximization problem [18]. The quantification algorithms can be
roughly classified into three categories: centrality-based
algorithms, random-walk algorithms, and greedy-based
algorithms.

Centrality-based algorithms perform a fundamental
quantification by considering geodesics between nodes to
evaluate nodal importance. Up to now, many centrality-based
algorithms have been proposed, such as degree centrality [22, 23],
betweenness centrality [22, 24], closeness centrality [22, 25],
eigenvector centrality [26], and other improved centrality-
based algorithms [27–29]. The random-walk algorithms
include the well-known PageRank [30] and other improved
algorithms [31]. Random-walk algorithms work only well for
directed networks. Greedy-based algorithms formulate the
influence measurement as a discrete optimization problem,
and their elementary strategies are to select the spreaders that
contribute the largest incremental influence one by one,
according to a specified influence cascade model [32]. In terms
of algorithm construction, although greedy-based algorithms can

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7332242

Zhang et al. Assessing Vulnerability of OSN

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


achieve excellent results, they also have very high computational
complexity and are not suitable for large-scale social networks.

Previous studies have shown that the adaptability of networks
behaves differently from various attack strategies [20, 33]. Thus,
in this article, we will study tolerance to various attacks in real
online social networks and further find a minimized set of nodes
triggering the collapse of network. We will consider four
straightforward and efficient centrality indices as attack
strategies to identify the importance of nodes.

1) Degree centrality: The algorithm measures a node’s influence
according to the number of edges attached to it, which reflects
the ability of a node to connect directly with other nodes.

2) Betweenness centrality: The algorithm measures a node’s
influence through the ratio of the shortest path over the
nodes to the number of all paths, which considers the
global structure information of a given graph.

3) Closeness centrality: The basic idea behind the closeness
centrality is that a node is central if it is “close” to many
other nodes [34]. Thus, the closeness centrality score of node i
is defined as the reciprocal of the sum of geodesic distances to
all other nodes.

4) Eigenvector centrality: The algorithm is based on the principle
that a node should be viewed as important if it is linked to
other nodes which are important themselves. Thus, the
eigenvector centrality of node i is defined as the
proportional to the sum of the eigenvector centralities of
the nodes it is connected to [28].

Because the removal of nodes under intentional attacks
changes the balance of structure and leads to a global
redistribution over all the networks, we recalculate the degree
centrality, the betweenness centrality, the closeness centrality,
and the eigenvector centrality, every time a small fraction of
nodes is removed.

Evaluation Metrics
Numerous empirical results on real networks have revealed that
the heterogeneous topology structure may be fit for most real
networks [35–37], where degree distribution significantly
deviates from a Poisson and low degree nodes are far more
abundant than the nodes with high degrees. Due to the
inhomogeneity of general networks, removing some critical
nodes will decrease the network connectivity and lead to the
loss of the global information-carrying ability of the network [6,
20]. Generally, when assessing the vulnerability of a network
under intentional attacks, three performance criteria should be
concerned in the framework of graph theory [38]:

1) The number of components that are being removed.
2) The number of disconnected subgroups after intentional

attacks.
3) The size of the largest remaining group within which mutual

communication can still occur.

Most of the online social networks can be abstracted as a non-
complete connected graph G � (V, E), where individual

members and personal relationships can be defined by a set of
nodesVand a set of edges E, respectively. In general, a good social
network should have short distance between nodes, average
distance, and high connectivity. In fact, there has been much
effort directed at developing methods for evaluating network
adaptability to attacks. In most instances, the characteristic path
length and the network efficiency as evaluation metrics can only
provide a useful topological snapshot for connected networks
[39]. But for disconnected networks, the geodesic distance
between any two nodes belonging to two disconnected
subgroups is identically zero or infinity, which will directly
affect the accuracy of evaluation results. In graph theory, some
helpful indicators of evaluating network vulnerability have been
proposed. These metrics relates to network topology and
attributes, such as toughness [40], integrity [41], tenacity [42],
and scattering number [43]. The detailed description of each
indicator is shown in Table 1.

As one of the basic concepts of graph theory, connectivity
plays a vital role in network performance and is fundamental to
vulnerability measures. The concept of connectivity K(G) of G is
defined as

K(G) � min{|S|: S ⊂ V}, (1)

where |S| is a cutset of V(G). In Eq. 1, the connectivityK(G) asks
for the minimum number of nodes whose removal renders the
graph Gdisconnected. As one of the graph theoretical concepts,
connectivity deals with the criterion (1).

Toughness and integrity are two other graph concepts used in
the vulnerability assessment. The notion of the toughness T(G)
ofG, originally introduced by Chvátal [40], is defined as follows:

T(G) � min{ |S|
w(G − S): S ⊂ V,w(G − S)≥ 2}, (2)

where w(G − S) stands for the number of components of G − S.
Unlike the connectivity K(G), the toughness T(G) incorporates
the relationship between the size of the cutset and the number of
components after destruction and takes into account of the
criteria (1) and (2). But the toughness T(G) is still insufficient
to measure the network vulnerability. Considering the graphs G1

and G2 (see Figure 1), two graphs have the same connectivity and
toughness, where K(G1) � K(G2) � 1 and T(G1) � T(G2) � 1

3,
but they are really different in the vulnerability of graphs. For
instance, after the minimum cutset u1}{ is removed, we find that
the G1has been divided into three small components, while the
vast majority of nodes of G2 have been retained in the largest
connected component u2, u6, u5}{ , within which mutual
communication among the remaining nodes can still occur. It
implies that the connectivity K(G) and toughness T(G) cannot
accurately reveal the global damage done to the network.

The notion of integrity introduced as another vulnerability
parameter of graphs [41] focuses on the criteria (1) and (3). For a
non-complete connected graph G, its integrity I(G) is defined as
follows:

I(G) � min{|S| +m(G − S): S ⊂ V}, (3)

wherem(G − S) denotes the giant component size after destruction.
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Obviously, the disruption is more successful if the disconnected
network contains more components and is much more successful if,
in addition, the components are small. Unfortunately, connectivity
and toughness give the minimum cost to disrupt a network but fail

to indicate accurately what remains after the disruption. Although
Barefoot’s integrity has taken the size of the largest remaining
component after destruction into account, it cannot indicate the
extent of the damage.

TABLE 1 | Evaluation metrics based on graph theory.

Name Acronym Meaning References

Toughness T(G) Focusing on the relationship between the removal cost and the number of components after destruction Chvátal [40]
Integrity I(G) Focusing on the relationship between the removal cost and the largest connected component after destruction Barefoot et al. [41]
Tenacity R(G) Focusing on the relationship among the removal cost, the number of components, and the largest connected

component after destruction
Cozzens et al. [42]

Scattering
number

S(G) Focusing on the relationship between the removal cost and the number of components after destruction Hendry [43]

FIGURE 1 | Non-complete connected graphs G1 (A) and G2 (B).

FIGURE 2 | Dividing processes of the graphs G1 (A) and G2 (B).
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The notion of tenacity was originally proposed in Ref. [42],
where they introduced the mix-tenacity to measure the
vulnerability of Harary graphs. The precise definition of
tenacity is defined as follows:

R(G) � min{|S| +m(G − S)
w(G − S) : S ⊂ V,w(G − S)≥ 2} (4)

The tenacity R(G) of graphs directly integrates all three criteria,
such as the cost of network breakage, the number of components,
and the giant component size, and is considered to be a
reasonable measure for the vulnerability of graphs. As shown
in Figures 2A,B, it is easy to know that R(G1) � min 1+2

3 � 1}{
andR(G2) � min 2+1

4 � 3
4}{ , R(G1)>R(G2), which indicates the

adaptability to attacks for G1is better than G2.
In general, if the network remains more disconnected

subgroups and smaller connected component size after
destruction, the disruption is more successful. As shown in
Figures 3A,B, G3 and G4 all have the same number of nodes
and edges. After u1, u2}{ and u2, u1, u4}{ are removed respectively,
the minimum toughness and the minimum tenacity can be
obtained, which are T(G3) � T(G4) � 1

2
andR(G3) � R(G4) � 4

3. The cutsets u1, u2}{ and u2, u1, u4}{ are
the minimum removal costs of the graph G3 and the graph G4,
respectively. But we find that there are differences both in the
attack efficacy in the graph G3 and graph G4, where for the graph
G3, the minimum removal cost is 2 and the giant component size
also is 2; while for the graph G4, the minimum removal cost is 3
and the giant component size is 1. As discussed earlier, the
tenacity R(G)is still an imperfect criterion to assess network
vulnerability.

In Ref. [43], Hendry used the concept of scattering number to
measure the vulnerability of extremal non-Hamiltonian graphs

and found that it was more efficient for measuring the degree of
global destruction. The scattering number S(G) of Gis defined as
follows:

S(G) � max{w(G − S) − |S|: S ⊂ V,w(G − S)≥ 2}. (5)

So we think that it is necessary to add the criterion to reveal the
global damage done to networks under attacks, and keep its
priority in assessing the vulnerability of networks. Therefore, we
propose an improved tenacity based on the concepts of scattering
number and tenacity, which is named Rsca(G) and defined as
follows:

Rsca(G) � min{ m(G − S)
|w(G − S) − |S||: S ⊂ V,w(G − S)≥ 2}. (6)

As shown in Figures 3A,B, Rsca(G3) � min 1+2
3 � 1}{ and

Rsca(G4) � min 2+1
4 � 3

4}{ , Rsca(G3)>Rsca(G4), which indicates
the anti-interference capability of G3is better than G4.

Compared with existing evaluation metrics [6, 20, 21,
39–42], our notion of improved tenacity is not to measure a
single property performance such as giant component size or
the number of components after destruction, which is
insufficient to evaluate the network vulnerability by only
considering whether or not it is a disconnected network,
and how fragmental the network becomes, but to pay
special attention to the potential equilibrium between the
giant component size and the number of components under
intentional attacks. As shown in definition (6), the number of
componentsw(G − S)and the size of the largest connected
componentm(G − S)are re-calculated after each iteration, so
the whole computational complexity of the proposed method
isO(n2). The result demonstrates that the proposed algorithm
has relatively less computational burden in evaluating the

FIGURE 3 | Dividing processes of the graphs G3 (A) and G4 (B).
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vulnerability of networks and can be applicable to large-scale
networks.

NETWORK DATA

Data Description
Because online social networks serve as much social function
as other kinds of social interaction, including e-mail
exchanging, text messaging, instant messaging, digital video
sharing, and so on, each edge meaning a connection in online
social networks is complex and changeable, whereas each node
meaning an individual of online social networks is constant.
To measure the vulnerability of networks more properly, our
method will pay more attention to the importance of nodes,
rather than edges. Our data set is composed of six undirected
and unweighted networks, that is, networks that have a binary
nature, where the edges between nodes are either present or
not, and each edge has no directional character. Table 2
indicates that the six real social network include the
following: OClinks is a representative online community
network, where users are from the University of California,
Irvine, which is from Panzarasa et al.’s [44]; Twitter, Wiki-
Vote, and Facebook can be downloaded from the Stanford
network dataset (http://snap.stanford.edu/data/index.html);
and Lilac and RenRen are collected from the online social
networks by us.

In Table 1, we show the main topological properties of a
series of online social networks, belonging to two different
types: the online community service based on group-centered
service and the social network service based on individual-
centered service. The first three networks, Lilac, OClinks, and
Wiki-vote, are three examples of online community
services, where the users have a common interest and
purpose and can exchange information or seek help. In
these networks, the nodes are the registered users, and the
links represent a relationship between two users existing
message exchange. In the latter part of Table 1, we show
three examples of social network services. Twitter is a social
news website, where users may mention other people or follow
other people to make his/her posts, so the links imply
communication between users existing mention or
comment. RenRen is a real-name social networking internet
platform in China, where users can connect and communicate
with each other or enjoy a wide range of other features and

services, so the links reflect different kinds of social
relationships between the users. Facebook is an ego network
consisting of friends lists from Facebook.

Structure of Networks
The most basic topological characterization of networks
can be obtained in terms of the degree distribution P(k),
defined as the probability that a node is chosen uniformly
at random has degree k or, equivalently, as the fraction of
nodes in the graph having degree k [19]. In recent years,
scientists approached the study of real networks from the
available databases and found most of the real networks
having inhomogeneous structure, where the connections
within nodes of the highest degree are rather sparse, and a
large number of nodes just have a few connections. Moreover,
most of real networks exhibit power law–shaped degree
distributionP(k) ∼ k−c, with exponents varying in the range
2< c< 3[35, 36], and a little of them follow shifted power law
distribution, stretched exponential distribution, or more
complicated distributions [37].

The empirical results demonstrate that the degree
distributions P(k)of aforementioned networks are subjected to
two types: the segmented power law distribution (Lilac, OClinks,
and Wiki-Vote) and the stretched exponential distribution
(Twitter, RenRen, and Facebook). The insets in Figures 4A–C
show the degree distributions P(k) of Lilac, OClinks, and Wiki-
Vote are heavy-tailed, and approximately follow the power law
distribution, where c � 1.72, c � 0.99, and c � 1.31, respectively.
However, when the size of data set is small, it may happen that the
data have a rather strong intrinsic noise due to the finiteness of
the sampling. In order to avoid the statistical fluctuations, one
better possibility is to measure the cumulative degree
distributionsP(x≥ k). The cumulative degree distributions
P(x≥ k)of Lilac, OClinks, and Wiki-Vote show two different
scaling regions: a slow region and a rapid decaying region, and are
well-approximated by the segmented power law distribution. The
crossover takes place between k � 10 and k � 100, and the
cumulative degree distributions P(x≥ k) of Lilac network can be
defined by the following equation:

P(x≥ k) ∼ k−(r−1){ r − 1 � 0.89, if k≤ 16
r − 1 � 2.11, if k> 16

.

The similar trend is shown in Figure 4B, where the probability
P(x≥ k) of the OClinks network can be fitted by the following
equation:

P(x≥ k) ∼ k−(r−1){ r − 1 � 0.51, if k≤ 20
r − 1 � 2.02, if k> 20

.

As shown in Figure 4C, the probability P(x≥ k) of theWiki-Vote
network can be fitted by the following equation:

P(x≥ k) ∼ k−(r−1){ r − 1 � 0.45, if k≤ 63
r − 1 � 2.26, if k> 63

.

Otherwise, the insets in Figures 5A–C show the degree
distributions of Twitter, RenRen, and Facebook, where
R2 � 0.815,R2 � 0.811, and R2 � 0.809, respectively, and the

TABLE 2 | The basic topological properties of the six online social networks.

Network N E <k> L D C

Lilac 3,414 10,353 6.065 4.055 10 0.042
OClinks 1,893 13,835 14.617 3.055 8 0.138
Wiki-Vote 7,115 103,689 14.573 3.341 7 0.141
Twitter 3,656 154,824 84.696 2.506 6 0.279
RenRen 1,130 14,332 25.366 3.241 8 0.263
Facebook 4,039 88,234 43.691 3.693 8 0.606

Note: N, number of nodes; E, number of edges; <k>, average degree; L, characteristic
path length; D, diameter; and C, clustering coefficient.
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curves of the degree distributions are not well-approximated by a
power law distribution. Figures 5A–C indicate that the degree
distributions of Twitter, RenRen, and Facebook obey the
stretched exponential distributionP(x≥ k) � e−(

k
k0
)c , where the

graph of logP(x≥ k) versus k
k0

is characteristically stretched,
and a stretching exponent c takes a value between 0 and 1.
The stretching exponent c can be obtained fromP(x≥ k), as we
add the slope of logP(x≥ k) in a log–log plot. As shown in
Figure 5, the distribution functions of Twitter, RenRen, and
Facebook can be defined byP(x≥ k) � e−(

k
k0
)0.79 ,

P(x≥ k) � e−(
k
k0
)0.89 , and P(x≥ k) � e−(

k
k0
)0.94 , respectively.

The stretched exponential distribution is obtained by inserting a
fractional power law distribution into the exponential distribution:
asc � 1, the usual exponential function is recovered; asc→ 0, the
distribution follows the power law distribution. In general, the
power law distribution is characterized by a slower than
exponentially decaying probability tail. In contrast with Twitter,
RenRen, and Facebook, wherec � 0.79, c � 0.89, and c � 0.94

approachingc � 1, some extremum nodes in Lilac, OClinks,
or Wiki-Vote can occur with a more non-negligible
probability.

In this section, we have examined the static properties of a
variety of online social networks empirically and found that two
types of networks, the online community service and the social
network service, have completely different structural properties.
As shown in Figures 4A–C, Lilac network, OClinks network, and
Wiki-Vote network exhibit a highly inhomogeneous degree
distribution, where the simultaneous presence of a few nodes
tending to link many other nodes, and a large number of poorly
connected nodes. But in Figures 5A–C, the curves of degree
distributions have witnessed that the nodes in Twitter, RenRen,
and Facebook networks are more evenly distributed than those in
Lilac, OClinks, and Wiki-Vote networks, where extreme value
still runs at a relatively low level. As it can be noticed, Twitter,
RenRen, and Facebook as social network services are mainly
based on an individual-centered online platform for organizing

FIGURE 4 | Cumulative degree distribution P(x ≥ k)in Lilac network (A), OClinks network (B), and Wiki-Vote (C). The insets show the degree distributions P(k)of
Lilac, OClinks, and Wiki-Vote are heavy-tailed.

FIGURE 5 | Stretched exponential distributions of Twitter (A), RenRen (B), and Facebook (C) are clear. The insets exhibit the degree distribution P(k)of Twitter
network, RenRen, and Facebook network.
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feature and technical feature themselves and have lower
centralization than the Lilac, OClinks, and Wiki-Vote network
based on group-centered service.

DISCUSSION

When the vast majority of real networks, especially online social
networks, are fragmented into relatively tiny isolated
components, these networks will lose transmission capacities
between individual components, indicating the collapse of
network is approaching. So, we only find an optimal threshold
that can trigger the collapse of the network. In general, the
problem can be analytically treated by using percolation
theory, where one defines a critical probability fc below which
the network percolates, and a set of critical exponents can
characterize the phase transition. In Ref. [6], Albert et al. have

studied how the properties of some networks with given order
and size change when a fraction f of the nodes are removed, where
the average characteristic path length as an order parameter
displays for both errors and attacks a threshold-like behavior.
In this section, we first study the changes in the improved tenacity
Rsca(G)when a small fraction f of the nodes is removed gradually,
and use the new criterion characterizing the phase transition to
obtain the critical probability fc. Then, we compare four attack
strategies, that is, degree centrality, betweenness centrality,
closeness centrality, and eigenvector centrality (the algorithms
defined as in The Attack Strategies), to estimate which solution is
the most effective and also to determine the most important
nodes for online social networks.

As shown by the curved lines in Figure 6, the performance of
improved tenacity Rsca(G) in the aforementioned networks displays
a threshold-like behavior: first, Rsca(G) drops with the fraction of
removed nodes f increasing, indicating the ability of the network to

FIGURE 6 | From (A–F), indicating the performance of improved tenacity Rsca(G) in six online social networks (from Lilac to Facebook) when a fraction f of the
nodes is removed. ○, preferential removal of the most connected nodes;△, preferential removal of the nodes with maximum betweenness; *, preferential removal of the
nodes withmaximum eigenvector; and □, preferential removal of the nodes withminimum closeness. Degree, betweenness, eigenvector, and closeness are recomputed
each time the nodes are removed. Inset refers to the performance of the giant component size.
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maintain its connectivity properties is sensitive to intentional attacks,
and the size of fragments is increasing significantly. Especially, the
insets of Figure 6 show the giant component sizem(G − S) rapidly
decreases with f increasing. Second, we find that the curve of
improved tenacity Rsca(G) abruptly decays at the critical value fc,
the same trend as the giant component size m(G − S)(see the inset
of Figure 6, where the slope of curve is sharply downward), implying
fc is precisely the threshold triggering the collapse of network. In
addition, it is worth noticing that the critical value fc can be
obtained fast by using the definition (6). AslogRsca(G) ≈ 0, from
Lilac network to Facebook network, the critical value
fc � 0.17, 0.23, 0.21, 0.31, 0.32, 017}{ . Although the largest
component of the remaining nodes still is larger, where the giant
component sizem(G − S) runs from 233 to 1864 (shown in
Table 3), accounting for 16.93–26.2% of the total, intentional
attacks have led to the breakdown of the overall connectivity.

The centrality concept seeks to quantify an individual node’s
prominence within a network by summarizing structural
relations among the nodes. A node’s prominence reflects its
greater visibility to the other network nodes. In online social
networks, central nodes are likely to be more influential and have
greater access to information and can communicate their
opinions to others more efficiently. Further research indicates
that the various roles of the same node based on different
centrality indices show the striking difference in maintaining
network connectivity. Looking at the changes in the critical
fraction fc, from Figures 6A–F, fcd �
{0.17, 0.24, 0.23, 0.37, 0.44, 0.48} relating to the degree-based
attacks, fcb � {0.18, 0.25, 0.27, 0.31, 0.32, 0.17} relating to the
betweenness-based attacks, fcc � {0.2, 0.26, 0.3, 0.32, 0.35, 0.18}
related to the closeness-based attacks, while fce �
{0.17, 0.23, 0.21, 0.37, 0.43, 0.37} related to the eigenvector-
based attacks. Obviously, in the cases of Lilac, OClinks, and
Wiki-Vote, the attacks based on the eigenvector centrality
actually have a better performance than the attacks based on
other indices, rooting in the critical fractionfce <fcd <fcb <fcc.
Although in Lilac fce � fcd, the giant component
sizem(G − S)under the attacks based on the eigenvector
centrality is significantly smaller than the result based on the
degree centrality. The conclusion described before indicates the
role of the nodes with high eigenvector is themost important than
the others in maintaining connectivity of the network. In the
diffusion of information, especially in online social networks, a
user with high eigenvector centrality has connections to many
other users that are themselves highly connected and central
within the network, thus multiplying his or her capabilities in
maintaining communication of network. But in the cases of

Twitter, RenRen, and Facebook, the attacks based on the
betweenness centrality fcb cause a greater amount of damage
than the others, where fcb <fcc <fce ≤fcd. The main reason for
the differentiation from various networks may closely relate with
their organizing features and technical features, which are
characterized by their topological structures.

Another important conclusion that can be drawn from the
results presented is that the performance of improved tenacity
Rsca(G) in Twitter, RenRen, or Facebook is better than that in
Lilac, OClinks, or Wiki-Vote, which implies the former has
higher anti-interference capability than the latter. In general, a
low centralized network can improve network resilience by
reorganizing network to increase local control and the
execution of a service. Analogously, for the lack of obvious
centralization and a strict inhomogeneous topology structure,
social network services, like Twitter, RenRen, or Facebook, can
tolerate higher intentional attacks based on some critical
individuals than high centralized networks. In addition, as
shown in Table 3, although the critical probability fc of
Twitter or RenRen is much larger than the threshold fc of
Lilac, OClinks, or Wiki-Vote, the corresponding proportion of
the giant component size of the former is alsways lower than that
of the latter. Therefore, it is difficult to judge which network has
higher adaptability facing intentional attacks from the attack cost
or the giant component size scale. Compared with the single
criterion, such as removal cost, the giant component size, and the
number of components, our proposed method can
comprehensively consider the attack effect and attack cost.

CONCLUSION

In this article, we synthetically take account of the cost with which
one can disrupt a network and the effect of, and a new evaluation
method based on the concepts of scattering number and tenacity.
Compared with existing evaluation metrics, our method focuses
on the potential equilibrium between the attack effect and the
attack cost. For this purpose, we first examined empirically the
static properties of six online social networks, including three
online community services and three social network services, that
is, Lilac, OClinks, Wiki-Vote, Twitter, RenRen, and Facebook,
and found that there are wide differences in the topological
structure of networks.

Second, we studied the changes in the improved tenacity Rsca(G)
when a small fraction f of the nodes is removed gradually and found
the curve of improved tenacity displays a threshold-like behavior,
when theminimumof tenacity approaches zero. Then, we compared
the four solutions of intentional attacks based on the different
indices, that is, degree centrality, betweenness centrality, closeness
centrality, and eigenvector centrality, and found that an individual
node’s prominence in a network is inherently related to structural
properties: the role of the nodes with higher eigenvector is more
important than the others in maintaining stability and connectivity
of high centralized networks, such as Lilac, OClinks, andWiki-Vote,
but the nodes with higher betweenness are more powerful than the
others in low centralized networks, such as Twitter, RenRen, and
Facebook. Moreover, the empirical study revealed that low

TABLE 3 | Tenacity level of selected online social networks

Network N fc S9 m(G − S) w(G − S) Rsca(G)

Lilac 3414 0.17 580 641 1179 1.07
OClinks 1893 0.23 435 465 870 1.07
Wiki-Vote 7115 0.21 1483 1864 3258 1.05
Twitter 3656 0.31 1133 667 537 1.12
RenRen 1130 0.32 362 233 144 1.07
Facebook 4039 0.17 686 684 108 1.18
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centralized networks can tolerate high intentional attacks and have
higher anti-interference capabilities than high centralized networks.
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