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We analytically study quantum dissipative dynamics described by the Caldirola-Kanai
model with inter-particle interactions. We have found that the dissipative quantum
dynamics of the Caldirola-Kanai model can be exactly mapped to a dissipationless
quantum dynamics under a negative external harmonic potential, even when the
particles are strongly interacting. In particular, we show that the mapping is valid for
the unitary Fermi gas, which is relevant for cold atoms and nuclear matters.
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1 INTRODUCTION

Dissipation plays essential roles in the non-equilibrium dynamics of quantum matters. There has
been rapid growth of research interests in the dissipative quantum dynamics as it is relevant to
macroscopic quantum tunneling [1], low-energy nuclear reactions [2–4], dynamics of cold atoms
[5–7], and quantum information processings [8, 9]. Milestones in this research field is the Caldeira-
Leggett model [1] and the Lindblad type equations [10, 11], where dissipation in the quantum system
originates from the coupling of the system with the environment.

While these approaches to the quantum dissipative dynamics have been widely and successfully
used, it is rather difficult to obtain an exact result in an analytical manner for most practical
problems. To deal with the quantum dissipative dynamics in a more analytically feasible manner, we
can alternatively resort to a simpler quantum equation of motion. One of the elementary models
describing such a dissipative quantummotion is the Caldirola-Kanai model [12, 13] characterized by
the Lagrangian

LCK({xi}, { _xi}, t) � ect⎡⎣∑N
i�1

mi

2
_x2i − U(x1, . . . , xN , t)⎤⎦, (1)

and its semi-classical equation of motion.

€xi(t) + c _xi(t) + 1
mi

zU
zxi

(x1(t), . . . , xN(t), t) � 0, (2)

where mi, xi and _xi � (d/dt)xi are the mass, the position, and the velocity of the i-th particle
respectively. U denotes an interaction or an external potential, and c is the dissipation rate (see
Equation 26 for the Schrödinger equation and the Hamiltonian for the Caldirola-Kanai model).
Taking advantage of its simplicity, the Caldirola-Kanai model has been applied to various dissipative
quantum phenomena, including damping of electromagnetic fields in a plasma medium [14],
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dissipative quantum tunneling in low-energy nuclear fusion
reactions [15], dynamics of a damped charged oscillator in the
presence of the Aharanov-Bohm effect [16], and so on. While the
Caldirola-Kanai model has usually been applied to a single-
particle motion regarding U as an external potential as in the
original setting [12, 13], we can also consider the dynamics of
interacting quantum particles under the dissipation regarding U
as inter-particle interactions.

In this paper, we analytically study the quantum dissipative
motion of interacting particles with the Caldirola-Kanai model.
We show that this dissipative system can be exactly mapped to a
dissipationless system with an inverted harmonic potential.
Similar mappings have been discussed for single-particle
systems in the literature [17–19]. In this paper, we extend the
mapping to many-particle systems, particularly to a strongly
interacting system with a divergently large s-wave scattering
length, i.e., unitary interaction. Such a system has attracted
increasing interests in terms of the unitary Fermi gas in cold
atoms. Furthermore, as neutron matters are well described by the
unitary Fermi gas [20–26], our exact mapping should be useful
for understanding non-equilibrium dynamics of nuclear matters.

The paper is organized as follows: in Section 2, we introduce
the Caldirola-Kanai model and its Hamiltonian, and then show
the formal mapping procedure from the Caldirola-Kanai model
to a dissipationless Hamiltonian with an inverted harmonic
barrier. In Section 3, we study the exact mapping for
interacting systems. In particular, we consider the Caldirola-
Kanai model with the zero-range interaction, and show that it
can be mapped to the dissipationless Hamiltonian with an
inverted harmonic barrier when the particles are interacting
via the unitary interaction. We conclude and discuss physical
implications of our exact mapping in Section 4.

2 MAPPING THE CALDIROLA-KANAI
MODEL TO A DISSIPATIONLESS MOTION
WITH AN INVERTED HARMONIC BARRIER

In this section, we show the exact mapping from the Caldirola-
Kanai model to a dissipationless Hamiltonian with an inverted
harmonic potential. To make it self-contained, we reformulate the
arguments in Refs. [17–19] and begin our discussion with a single-
particle system in a one-dimensional space for classical mechanics
in Section 2.1 and for quantum mechanics in Section 2.2. We see
that the mapping between the dissipative and dissipationless
dynamics can be understood as a transformation of the
coordinate from one system to the other. We then extend this
idea to a many-particle system in a d-dimensional space in Section
2.3. We find that the mapping can formally remain true even in the
presence of inter-particle interactions.

2.1 Transformation of the Classical
Coordinates
To see the mapping heuristically, let us first consider the classical
dynamics of a damped harmonic oscillator in one spacial
dimension. The equation of motion reads

€x(t) + c _x(t) + ω2x(t) � 0, (3)

with the frequency ω and the dissipation rate c. Its analytical
solution can be obtained easily. For example, for an under-
damped case, it reads

x(t) � e−
ct
2 x(0) cos(Ωt) + _x(0) + (c/2)x(0)

Ω sin(Ωt)⎤⎥⎥⎦,⎡⎢⎢⎣ (4)

with Ω �
									
ω2 − (c/2)2

√
.

Notice that the solution is similar to that of a simple harmonic
oscillator. This similarity can be understood in the following way.
We first introduce a new variable y(t),

x(t) � e−ct/2y(t). (5)

Substituting this relation into the equation ofmotion for x(t),Eq. 3,
one finds that y(t) satisfies the equation of motion of a simple
harmonic oscillator,

€y(t) + Ω2y(t) � 0. (6)

The general solution is given by

y(t) � y(0) cos(Ωt) + _y(0)
Ω sin(Ωt). (7)

From the relation Eq. 5, one finds

y(0) � x(0),
_y(0) � _x(0) + c

2
x(0). (8)

Substituting Eqs. 7 and 8 into Eq. 5 leads to the solution of the
damped harmonic oscillator Eq. 4.

In the above discussion, we observe that the transformation
Eq. 5 replaces the damping term c _x(t) with the −(c2/4)y(t) term.
This replacement remains true even in the presence of an
arbitrary external potential: suppose that x(t) describes a
dissipative motion with an arbitrary external potential V(x, t),
that is, x(t) satisfies the following equation of motion,

€x(t) + c _x(t) + 1
m

dV
dx

(x(t), t) � 0. (9)

By the transformation Eq. 5, the equation of motion for y(t) is
given as

€y(t) + 1
m
ect/2

dV
dz

(z � y(t)e−ct/2, t) − c2

4
y(t) � 0. (10)

This equation of motion is derived from the following
Lagrangian,

Ly(y, _y, t) � m
2
_y2 − ectV(ye−ct/2, t) −mc2

8
y2[ ]. (11)

This means that the transformation Eq. 5 maps a dissipative
system to a system with the rescaled potential ectV(ye−ct/2, t)
together with the inverted harmonic potential − mc2y2/8. The
damped harmonic oscillator discussed above is a special example
where the potential is given by V(x, t) � mω2x2/2 and the time-
dependence of the rescaled potential disappears because of
ectV(ye−ct/2) � mω2

2 y2.
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With the transformation Eq. 5, one can find an effective
Lagrangian for a dissipative motion described by Eq. 9:

Lx(x, _x, t) � Ly(y(x), _y(x, _x), t)
� ect[m

2
_x2 − V(x, t)] +mc

4
d
dt

xect/2( )2. (12)

Neglecting the last term which does not affect the equation of
motion, one obtains the Lagrangian of the Caldirola-Kanai model
under an arbitrary time-dependent external potential

LCK(x, _x, t) � ect[m
2
_x2 − V(x, t)]. (13)

From these Lagrangians, we can derive the Hamiltonians for the
motions of x(t) and y(t). For a dissipative system described by the
Caldirola-Kanai model, x(t), it should be noted that the canonical
momentum, πx(t), is different from the kinetic momentum, m _x(t),

πx(t) � zLCK

z _x
� m _x(t)ect . (14)

One then obtains the Caldirola-Kanai Hamiltonian

HCK(x, πx, t) � π2
x

2m
e−ct + V(x, t)ect . (15)

For a system described by y(t), on the other hand, the canonical
momentum is equal to the kinetic momentum,

πy(t) � zLy

z _y
� m _y(t), (16)

and the Hamiltonian is given by

Hy(y, πy , t) �
π2
y

2m
+ ectV(ye−ct/2, t) −mc2

8
y2. (17)

We note that the essence of this mapping between the dissipative
motion of x(t) and the dissipationless motion of y(t) is the scale
transformation Eq. 5. The slowing-down effect of the damping c
is captured by the e

ct
2 scale factor when relating the dissipative

motion of x(t) and dissipationless motion of y(t) [17–19].

2.2 Mapping in Quantum Mechanics
Let us extend the mapping discussed in the previous subsection to
quantummechanics [17–19]. From the Hamiltonians Eqs 15 and
17, one can derive the corresponding Schrödinger equations. For
the Caldirola-Kanai model, Eq. 15, the Schrödinger equation
reads

iZ
z

zt
ϕ(x, t) � − Z2

2m
e−ct

z2

zx2
+ ectV(x, t)[ ]ϕ(x, t), (18)

while for the other Hamiltonian without dissipation, one obtains

iZ
z

zt
ψ(x, t) � − Z2

2m
z2

zx2
+ ectV(xe−ct/2, t) −mc2

8
x2[ ]ψ(x, t). (19)

The Schrödinger equation Eq. 18 for ϕ(x, t) serves as a
phenomenological modeling of quantum dissipative systems
[12, 13]. Indeed, one can show that the Heisenberg equation
of motion with Eq. 18 has the same form as Eq. 9. The
equivalence of Eq. 18 and Eq. 19 can be understood clearly by

showing that the wavefunctions ϕ and ψ are related by a scale
transformation as follows: we recall that the twomodels’ solutions
in the classical cases can be mapped to each other by the following
transformation

x(t) � y(t)e−ct/2,
πx(t) � πy(t) −mc

2
y(t)( )ect/2. (20)

In quantum mechanics, these relations should be satisfied
as operators, not merely as expectation values. In other words,
ϕ(x, t) and ψ(x, t) should satisfy

∫∞

−∞
dz ϕ∗(z, t)znϕ(z, t) � ∫∞

−∞
dz ψ∗(z, t) ze−ct/2( )nψ(z, t),

(21)

and

∫∞

−∞
dz ϕ∗(z, t) Z

i
z

zz
( )n

ϕ(z, t)

� ∫∞

−∞
dz ψ∗(z, t) Z

i
z

zz
−mc

2
z( )ect/2{ }n

ψ(z, t),
(22)

for any natural number n. From these conditions, we can find a
relation between ϕ(x, t) and ψ(x, t) up to a time-dependent phase,
which should be determined to be consistent with the
Schrödinger equations Eqs. 18, 19. This consideration leads to
the following relation between ϕ(x, t) and ψ(x, t),

ϕ(x, t) � exp −i mc

4Z
ectx2 + ct

4
( )ψ(xect/2, t). (23)

Indeed, one can directly show that ϕ(x, t) defined by Eq. 23
satisfies the Schrödinger equation with the Caldirola-Kanai
Hamiltonian Eq. 18 if ψ(x, t) is a solution of Eq. 19.
Therefore, if the initial conditions are related by

ϕ(x, 0) � exp −i mc

4Z
x2( )ψ(x, 0), (24)

one can find ϕ(x, t) from ψ(x, t) through the equivalence Eq. 23,
and vice verse.

The mapping dictates that the dissipative and dissipationless
models obey essentially the same quantum dynamics through Eq.
23 and thus physically equivalent, as pointed out in the previous
literature [19]. The effect of the dissipation in Eq. 18 is
represented as a scale transformation between x(t) and y(t),
and as the inverted harmonic barrier − mc2x2/8. In particular,
the time-dependent scale transformation of the coordinate
captures the slowing-down effect of the damping c. This can
be understood more directly by taking V � 0: the dissipative
quantum motion in free space of Eqs. 9 and 18 are equivalent to
the dissipationless quantum motion under an inverted harmonic
barrier −mc2x2/8 in Eqs. 10 and 19. Another important example
is the harmonic oscillator potential V(x, t) � mω2x2/2, which was
discussed in the previous subsection. In this case, Eq. 19 reads

iZ
z

zt
ψ(x, t) � − Z2

2m
z2

zx2
+mΩ2

2
x2[ ]ψ(x, t). (25)
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On the other hand, the corresponding Caldirola-Kanai model
describes a quantum damped harmonic oscillator. Therefore, one
can map the quantum dynamics of a simple harmonic oscillator
to that of a damped harmonic oscillator, as was found in Refs.
[17–19].

2.3 Extension to Many-Particle Systems
Let us extend the results in the previous subsections and in Refs.
[17–19] for a single particle to an N-particle system in d-spacial
dimensions in the presence of inter-particle interactions. Our
starting point is the dissipative equation of motion given by Eq. 2.
Instead of Eq. 5, we now consider the transformation xi(t) �
e−ct/2yi(t) for i � 1, . . ., N (note that all particles feel the same
damping force, see Eq. 2). As we derive Eq. 13 in Section 2.1, the
transformation leads to the Lagrangian given by Eq. 1. Therefore,
the Schrödinger equation for the dissipative motion reads

iZ
z

zt
ϕ(x1, . . . , xN , t) � −e−ct ∑N

i�1

Z2∇2
xi

2mi
+ ectU(x1, . . . , xN )⎡⎣ ⎤⎦ϕ(x1, . . . , xN , t).

(26)

On the other hand, the Schrödinger equation corresponding to
Eq. 19 reads

iZ
z

zt
ψ(x1, . . . , xN , t)

� −∑N
i�1

Z2∇2
xi

2mi
+ ectU(x1e−ct/2, . . . , xNe−ct/2, t) −∑N

i�1

mic
2

8
x2i⎡⎣ ⎤⎦ψ(x1, . . . , xN , t).

(27)

As in the derivation of Eq. 23, we can find the relation between ϕ
and ψ,

ϕ(x1, . . . , xN , t) � exp −iect ∑N
i�1

mic

4Z
x2i +

dNct
4

⎛⎝ ⎞⎠ψ(x1ect/2, . . . , xNect/2, t).

(28)

This mapping for many-body quantum systems is a natural
extension of what was studied for a single-particle motion in
the previous literatures [17–19]. The single-particle case in one
dimension in Eq. 23 is indeed contained as N � 1, d � 1. When
U(x1, . . . , xN , t) � ∑N

i�1V(xi, t) and hence each particle moves
independently, we can regard them as a collection of non-
interacting particles, each obeying the Schrödinger equations
Eqs. 18, 19. When the potential U cannot be represented as
such a sum of one-body potentials, on the other hand, Eq. 26
describes interacting N quantum particles moving under the
dissipation, while Eq. 27 describes dissipationless motions of
interacting quantum particles in the presence of the inverted
harmonic barrier −mc2x2i /8.

3 APPLICATION TO STRONGLY
INTERACTING QUANTUM SYSTEMS

We show in this section that the exact mapping formulated in the
previous section can be utilized for a physical problem of a
strongly interacting quantum system, namely the unitary
Fermi gas [20–22, 27–33]. The unitary Fermi gas is a system

of spin-1/2 fermions interacting with an infinitely large s-wave
scattering length. It has been recently realized with ultracold
atoms [27–32], and it has been extensively studied because it is
important for understanding nuclear matters and neutron star
physics [20–26]. The exact mapping between the dissipative and
dissipationless motions should therefore be useful for
understanding not only the dynamics of the unitary Fermi gas
in ultracold atoms, but also for nuclear phenomena.

In Section 3.1, we explain the interaction between the particles
to model the unitary two-body interaction. In Section 3.2,
we show that the exact mapping holds for a quantum
system with the unitary interaction. In Section 3.3, we
discuss the effects of dimensions and statistics of the
particles. We argue that our exact mapping is non-trivial
and useful for a three-dimensional system of fermions, while
it is either trivial or breaks down for low-dimensional systems
and for bosonic systems.

3.1 Zero-Range Interaction
Solutions of interacting quantum systems in general sensitively
depends on details of the interaction potentials. However, for
low-energy quantum systems, details of the interaction become
irrelevant, so that any Hamiltonian can be universally described
by a so-called pseudo-potential. This universality originates
from the fact that the scattering between the particles at low
energy are dominated by the s-wave scattering, which is
universally characterized solely by the s-wave scattering
length a for non-relativistic low-energy quantum systems
interacting via short-range interactions. As long as this
condition holds, the interaction potential between the i-th
and j-th particles Vij can be legitimately replaced by the
following pseudo potential introduced by Huang and Yang in
three spacial dimension [34].

Vij(rij) � 2πaijZ
2

μij
δ(3)(rij) z

zrij
rij, (29)

where rij � |ri −rj|, and aij and μij �mimj/(mi + mj) are the s-wave
scattering length and the reduced mass of the i-th and j-th
particles, respectively. The Hamiltonian can then be wrriten as
the sum of the independent-particle Hamiltonian H0 and the
interaction term U, H � H0 + U with

U(x1, . . . , xN , t) � ∑
i<j

Vij(rij). (30)

An alternative low-energy universal approach can be found by
noting that the solution of the Huang and Yang pseudo-potential
has the following asymptotic form when the particles get close
together

lim
rij → 0

Ψ(r1, r2, . . . , rN)

� 1
rij
− 1
aij

( )A(Rij, r1, . . . , ri−1, ri+1 . . . , rN),
(31)

where Rij � (miri + mjrj)/(mi + mj) is the center of mass between
the i-th and j-th particles, and A is the regular part of the
wavefunction Ψ when the limit rij → 0 is taken. The singular
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term 1/rij − 1/aij represents the universal s-wave scattering
behavior of the two-body scattering. Therefore, we can simply
replace the effect of the interaction term Vij with this boundary
condition: we solve the free particles’ equation of motion of
H � H0 supplemented with the boundary condition Eq. 31

The above two approaches, the Huang-Yang pseudo-
potential Eq. 29 and the Bethe-Peierls boundary condition
Eq. 31, are equivalent, and have both been widely used for
low-energy dilute systems where s-wave interaction is
predominantly large. In particular, they have been
successfully used to study ultracold atoms close to the
unitary limit |aij| → ∞ [21, 22, 24, 25, 35, 36]. It has also
been used in low-energy nuclear physics as the s-wave scattering
length between the nucleons are very large [20, 23, 26]. We note
however that Eqs. 29 and 31 are only valid in three spacial
dimension: they need to be modified in the other spacial
dimension, as will be discussed in Section 3.3. We also note
that it is required that three- and higher-body interactions are
negligibly small to legitimately use the pseudo-potential and the
boundary condition methods, as will also be discussed in more
details in Section 3.3.

3.2 Exact Mapping for the Unitary
Interacting System
Let us first consider N-particle system where the inter-particle
interactions are modeled by the Bethe-Peierls boundary
condition Eq. 31. As the boundary condition method deals
with the non-interacting Hamiltonian U � 0, the Schrödinger
equations for the Caldirola-Kanai model and the corresponding
dissipationless model are the same as Eqs. 26, 27 with U � 0.
Thus, we can naturally expect that the mapping Eq. 28 should
also relate these two problems. This turns out to be true if the s-
wave scattering length of the two systems satisfy a certain relation
(see Eq. 34).

To show this, let us consider the Bethe-Peierls boundary
condition for the Caldirola-Kanai model under the unitary
interaction

ϕ(x1, x2, . . . , xN , t)∝ 1
xij

− 1

a(CK)ij (t)
⎛⎝ ⎞⎠. (32)

Here a(CK)ij (t) is the s-wave scattering length between the ij
particles, which is now allowed to vary with time for later
purposes. Note that the Caldirola-Kanai model with U � 0
describes the motion of non-interacting particles under the
influence of a damping force (see Eq. 2 with U � 0). With the
boundary condition Eq. 32, those damped particles interact

through the s-wave scattering length a(CK)ij (t) once two
particles come to the same position. Assuming that the
mapping Eq. 28 holds and noting that the exponential phase
factor does not affect the singular short-distance behavior of the
wavefunction, we obtain the following boundary condition of the
corresponding dissipationless system

ψ(y1, y2, . . . , yN , t)∝
1
yij

− 1

e
ct
2a(CK)ij (t)

⎛⎝ ⎞⎠. (33)

Therefore, we find that the s-wave scattering length of the ψ

system, a(H)ij (t), must be given by

a(H)
ij (t) � e

ct
2 a(CK)ij (t). (34)

While we have used above the Bethe-Peierls boundary condition
to derive the condition Eq. 34 for the equivalence of the two
systems, we can alternatively derive it with the Huang-Yang
pseudo-potential Eq. 29. Indeed, Eqs. 26, 27 with the Huang-
Yang interaction read

iZ
z

zt
ϕ(x1, . . . , xN , t)

� −e−ct ∑N
i�1

Z2∇2
xi

2mi

⎡⎣ +ect ∑
i<j

2πaij(t)Z2

μij
δ(3)(xij) z

zxij
xij⎤⎥⎥⎦ϕ(x1, . . . , xN , t).

(35)

iZ
z

zt
ψ(x1, . . . , xN , t)

� −∑N
i�1

Z2∇2
xi

2mi

⎡⎣ + e
5c
2 t ∑

i<j

2πaij(t)Z2

μij
δ(3)(xij) z

zxij
xij−∑N

i�1

mic
2x2i
8

⎤⎦
ψ(x1, . . . , xN , t). (36)

We then need to relate aij(t) with the s-wave scattering lengths of
the two systems a(CK)ij (t), a(H)ij (t). This can be done by substituting
the Eqs. 32, 33 to the right-hand sides of Eq. 35 and Eq. 36,
respectively. We then find

a(CK)ij (t) � e2ctaij(t), a(H)
ij (t) � e

5
2 ctaij(t), (37)

from which we arrive at Eq. 34.
As the condition Eq. 34 must be satisfied for all pairs of

particles ij at any time, our exact mapping is difficult to hold true
in general. However, there are two special cases where Eq. 34 is
easily satisfied. The first case is the non-interacting system
a(H)ij � a(CK)ij � 0. This corresponds to the system considered in
the previous section and in Refs. [17–19]. The other more
interesting case is the unitary gas a(H)ij � a(CK)ij � ± ∞. We
thus arrive at the following non-trivial conclusion for the two
strongly interacting quantum dynamics: a dissipative quantum
motion of the unitary gas described by Eq. 35 is equivalent to the
dissipationless quantum dynamics of the unitary gas under an
inverted harmonic potential in Eq. 36 via the mapping Eq. 28.

The physical reason for the two seemingly opposite
conditions, the non-interacting system and the unitary system,
can be ascribed to the scale invariance. The mapping between the
Caldirola-Kanai system and the dissipationless inverted
harmonic system can be regarded as a sort of scale
transformation in Eq. 5. With this transformation, the
interaction term is transformed as (see Eqs. 26, 27)

U(x1, . . . , xN)→ ectU(x1e−ct/2, . . . , xNe−ct/2, t). (38)

In general, they show rather different Hamiltonian dynamics.
However, if the interaction term satisfies the scale invariance

ectU(x1e−ct/2, . . . , xNe−ct/2, t) � f (t)U(x1, . . . , xN , t) (39)

with f(t) an arbitrary time-dependent function, the Hamiltonian
keeps its form with this scale transformation, showing essentially
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the same dynamics. Indeed, the non-interacting system and the
unitary system are known to be scale invariant because the length
scale characterizing the interaction, the s-wave scattering length,
disappears. In addition to the zero-range type interaction, we can
also consider more general classes of scale-invariant interactions
as will be discussed in the Supplementary Appendix A. We can
indeed show that the exact mapping holds true for various classes
of scale-invariant interactions as long as the interaction strength
satisfies a similar relation as Eq. 34 (see Supplementary
Appendix A). We also note that our mapping for the unitary
system can be alternatively proved using the scaling solution of
the unitary Fermi gas in the time-dependent harmonic trap [37,
38] (see Supplementary Appendix B).

3.3 Effects of Dimensions, Quantum
Statistics of the Particles, and Higher-Body
Interactions
We note that the Huang and Yang pseudo-potential Eq. 29 and the
Bethe-Peierls boundary condition Eq. 31 are only valid in three
spacial dimensions. For low-dimensional systems, the Bethe-Peierls
boundary condition should be modified as [22, 36, 37, 39].

limrij → 0Ψ(r1, r2, . . . , rN)

� ln
rij

a(2D)ij

⎛⎝ ⎞⎠A(Rij, r1, . . . , ri−1, ri+1 . . . , rN ) (40)

for a two-dimensional system, and

limrij → 0Ψ(r1, r2, . . . , rN) �
|xij| − a(1D)ij( )A(Rij, r1, . . . , ri−1, ri+1 . . . , rN ) (41)

for a one-dimensional system, respectively. Here, a(2D)ij and a(1D)ij
are two-dimensional and one-dimensional scattering lengths,
respectively. By using these boundary conditions, we can
follow almost the same argument as in Section 3.2. We then
arrive at the same conclusion: the two-dimensional and one-
dimensional systems of the Caldirola-Kanai model Eq. 26 and the
corresponding inverted harmonic model Eq. 27 are equivalent via
the mapping Eq. 28 if and only if the s-wave scattering lengths of
the two systems satisfy Eq. 34 for any ij particles at any time. This
can be also shown by using the Huang-Yang pseudo potential in
two and one dimension [40, 41].

Vij(rij) � − πZ2δ(2)(rij)
μij ln(qΛa(2D)ij ) × 1 − ln(qΛrij)rij z

zrij
[ ] (2D), (42)

Vij(xij) � − Z2

μija
(1D)
ij

δ(xij) (1D), (43)

where q � 1
2 e

C with C � 0.577. . . is the Euler gamma, and Λ is an
arbitrary momentum scale.

It is then tempting to conclude that our exact mapping is also
valid for the strongly interacting two-dimensional and one-
dimensional systems. However, this is not the case: our
mapping for the unitary interacting system should be non-
trivial only for three-dimensional system. Indeed, the unitary
system a � ±∞ is known to be non-interacting and thus trivial in

two and one dimensions, which is in stark contrast to the three
dimensional system where it is genuine strongly interacting
system [21, 22, 37, 42]. This well-known fact can be easily
understood from Eqs. 42 and 43, where the interaction
becomes non-interacting Vij � 0 when a � ±∞. This is in
contrast to Eq. 29 in three dimension where Vij ≠ 0 when a �
±∞. Therefore, our mapping for low dimensional quantum
systems is trivial and has limited range of applications.

We note that we have solely considered two-body interaction,
neglecting three- and higher-body interactions. In most
interacting quantum systems, the two-body interaction is
much more relevant than the three- and higher-body
interactions, even when it is present. Thus, our assumption
seems plausible. We should remark however that the unitary
interacting system may essentially require the three- and higher-
body interactions. A prime example is a system of identical
bosons interacting via the unitary interaction a � ±∞, where
the Efimov effect occurs [35, 36, 43, 44]. When the Efimov effect
occurs, the Hamiltonian with only the unitary two-body
interaction in Eq. 29 becomes singular, and one needs to
introduce the three-body boundary condition to make the
Hamiltonian well-defined [35, 36, 45, 46]. As this three-body
boundary condition is generally not scale invariant, our exact
mapping breaks down. The Efimov effect generally occurs for
three-dimensional unitary interacting bosonic systems, and thus
our result is not applicable. On the other hand, the Efimov effect
does not tend to occur for fermionic system due to the Pauli
exclusion principle. In particular, it is shown that the spin-1/2
identical fermions with the unitary interaction Eq. 29, i.e., the
unitary Fermi gas, is well-defined as there is no three-body nor
higher-body Efimov effect [36, 47–52]. Our result should therefore
be useful for the unitary Fermi gas. Furthermore, as the mass-
imbalanced Fermi system does not show the Efimov effect either
when the mass imbalance is M/m ≲ 13 [36, 47, 48, 52, 53], we can
state that we can readily apply our exact mapping to such mass-
imbalanced two-component unitary Fermi gas systems [54, 55].

We also note that the Efimov effect does not occur for two-
dimensional and one-dimensional systems [35–37, 42, 56]. The
Hamiltonian with the two-body interaction Eqs. 42, 43 are thus
well-defined even without the higher-body interaction, and our
argument on the two- and one-dimensional systems above are
valid regardless of the quantum statistics of the particles. We
repeat however that the two-dimensional and one-dimensional
unitary systems correspond to non-interacting systems, so that
the mapping would not be so useful.

4 CONCLUSION AND DISCUSSIONS

We have studied a quantum dissipative dynamics of the
Caldirola-Kanai model (see Eqs. 2 and 26), and shown that it
can be rigorously mapped to a dissipationless quantum dynamics
under an inverted-harmonic potential (see Eq. 27). While this
mapping has been known for a single-particle and non-
interacting systems [17–19], we have shown that it also holds
true for strongly interacting systems. In particular, we have found
that the dissipative dynamics of the unitary Fermi gas can be
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exactly mapped to a dissipationless dynamics of the unitary Fermi
gas under an inverted harmonic potential.

The unitary Fermi gas has been recently realized in cold atom
experiments [6, 7, 27–32]. It has attracted a lot of research
interests, because unveiling the properties of the unitary Fermi
gas is important for understanding nuclear matters and neutron
star physics [20–26]. Our work therefore should be particularly
useful for cold atoms and nuclear systems. The external potential
can be well-controlled in cold atom experiments with laser and
magnetic field, and it is possible to engineer the harmonic or
inverted-harmonic potential [21, 22] and observe its quantum
dynamics. It is thus a promising system where our mapping
would be useful. We also note that we can control the s-wave
scattering length in a time-dependent manner in cold atoms [57].
It is thus possible to realize a situation where our condition in Eq.
34 holds, so that our exact mapping is valid for systems with finite
scattering length or low-dimensional systems.

A more challenging but interesting system to apply our
result is nuclear physics. Nuclear systems composed of protons
and neutrons can be approximately regarded as the unitary
Fermi system as the s-wave scattering lengths between the
nucleons are large. With recent studies on nuclear reactions,
it has been pointed out that the dissipative quantum tunneling
may play an important role in low-energy fusion reactions
[58–60]. It is also suggested that quantum dissipations of the
nuclear matters are indispensable for understanding the
dynamics of the neutron stars [61, 62]. Although we should
remark that the Caldirola-Kanai model is a rather simple toy
model and that the range corrections and three-body
interaction neglected in our study often turns out to be
relevant in the nuclear systems [46, 63, 64], our analytical
mapping between the dissipative and dissipationless systems
can provide us with novel qualitative perspective to understand
those nuclear phenomena.
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