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Electrowetting display (EWD) is the most potential technology among new electronic paper
technologies. It not only has the advantages of electrophoretic display (EPD) technology
but also can realize color video playback. Therefore, this technology has been widely
studied in recent years. Driving waveform is a voltage sequence which can drive pixels to
display gray scales in EWDs. As one of the key technologies, it directly affects the display
effect of pixels. In this paper, we give a review of the display principle of EWDs and the
research status of driving waveforms. At the same time, the contact angle hysteresis,
charge trapping, and oil splitting are also reviewed, which can provide a reference value for
designing driving waveforms.

Keywords: electrowetting displays, driving waveform, charge trapping, response time, aperture ratio

INTRODUCTION

Display is one of the most important modes of human-computer interactions, and display devices
play a key role in daily life. Along with the rapid increase of network information, people expect
better displays to meet various requirements. At present, the most common displays are liquid crystal
displays (LCD) and light-emitting diode (LED) displays [1, 2]. These self-luminous displays have the
defect of high power consumption which can severely limit the using time of electronic products.
Nevertheless, electronic paper displays, such as electrophoretic displays (EPDs) and electrowetting
displays (EWDs), have the advantages of paper-like reading experience and low power consumption
due to its reflective display. EPDs are the most widely used electronic paper. It has been widely used
in e-books, e-labels, etc. However, it cannot achieve video playback and the luminance of color is not
enough [3–6]. As a result, many scholars began to pay attention to EWDs for obtaining better paper-
like display performance in recent years.

The principle of EWDs was first proposed by Beni in 1981 [7]. In 2003, Hayes and Feenstra have
successfully demonstrated that the electrowetting technology can be used to form a basis of a new
reflective display. Its display principle is to utilize the voltage-controlled movement of a colored oil
[8]. As a new reflective electronic paper display, EWDs have excellent display characteristics, such as
paper-like reading experience [9, 10]; low power consumption [11, 12]; color display [13–16]; fast
response speed which can meet the requirements of video playback [17]; low manufacturing cost
because part of the manufacturing process is the same as LCDs [18, 19]. Hence, EWD technology
becomes the most potential paper-like display technology. The voltage sequence which can control
gray scales in EWDs is driving waveform [20–23]. The earliest driving waveform of EWDs is a pulse
width modulated (PWM) square wave [24]. However, some defects are caused by this driving
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waveform, such as gray scale distortion which is caused by contact
angle hysteresis [25–28]; maximum aperture ratio is reduced due
to oil splitting [29–31]; oil backflow caused by charge trapping in
the hydrophobic insulator [32–36]. The movement of oil is
directly controlled by the driving waveform, the optimization
of driving waveform can affect the display effect of EWDs. Hence,
the equivalent circuit models, capacitor-voltage (C-V)
characteristics and contact angle hysteresis characteristic of
EWDs have been studied by scholars, and some new driving
waveforms were proposed for better performance of EWDs.

In this paper, driving waveforms of EWDs are summarized,
and classified with different categories according to functions. It
includes optimizing contact angle hysteresis, reducing charge
trapping and oil splitting. The display quality of EWDs was
greatly improved by these driving waveforms. Furthermore, it
provided an important reference for the further study of EWDs.

PRINCIPLE

Principle of Electrowetting Displays
EWD is essentially an optical switch [37, 38]. Its structure is
shown in Figure 1A. Each pixel is composed of a hydrophobic
insulating layer, colored oil, polar liquid, pixel walls, a electrode
which is made by ITO (Indium tin oxide) glass, a substrate. The

colored oil is controlled by driving voltage to turn pixels on or off.
The state of oil shrinkage can be described by the contact angle.
The Lippmann-Young equation is considered as the basic theory
of electrowetting technology. As shown in Eq. 1 [39–42]. The
relationship between the voltage and the contact angle can be
described by this equation.

cos θ � cos θ0 + 1
2
ε0εr
dc

V2 (1)

Where θ is the contact angle when the driving voltage isV. θ0 is the
contact angle when the driving voltage is 0 V ε0 is a vacuum
dielectric constant and εr is a relative dielectric constant. d is the
thickness of a hydrophobic insulation layer, c is interfacial tension
between oil and electrolyte solution. V is the driving voltage.

When the driving voltage is 0 V, the contact angle is
approximately equal to zero due to Lippmann-Young
equation. At this stage, because the oil is spread on the
substrate, the pixel displays the color of colored oil, as shown
in Figure 1A. With the increase of driving voltage, the electric
field force is increased. Therefore, the oil original force balance is
broken and oil begins to shrink to one corner of a pixel. The oil
completely shrinks in one corner of the pixel when the voltage
increases to Vmax. The aperture ratio cannot become bigger when
the voltage is greater than Vmax [43]. The value of Vmax depends
on the size of the pixel and the thickness of hydrophobic

FIGURE 1 | The structure of an EWD pixel and the phenomenon of defects in EWDs. (A) The whole pixel is covered with oil and the color of oil is displayed when the
driving voltage is 0 V. (B) Phenomenon of contact angle hysteresis. The blue curve is the aperture ratio when the driving voltage is increased from 0 to 30 V, and the red
curve is the aperture ratio when the driving voltage is decreased from 30 to 0 V. (C) Phenomenon of charge trapping. When the oil shrinks to one corner of a pixel, the
charge distribution in a pixel. Charge trapping would be caused when the interaction between ions and hydrophobic insulating layer is stronger than that between
ions and conductive liquid. (D) Phenomenon of oil splitting. A is the colored oil which shrinks to one corner of a pixel. B and C are oil which is split into two parts.
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insulating layer. At this stage, the pixel displays the color of
substrate. Therefore, the pixel can display different gray scales by
applying different driving voltages [44–47].

Contact Angle Hysteresis
Ideally, in the process of driving voltage rise or fall, the aperture ratio
of the same driving voltage value should be the same. But
experimental result is completely inconsistent with the
expectation. The relationship between aperture ratio and voltage
when the driving voltage rises from 0 to 30 V and falls from 30 to 0 V
can be tested, respectively. As shown in Figure 1B [48]. The blue
curve represents the relationship between the aperture ratio and the
voltage when the driving voltage is rising. The red curve represents
the relationship between the aperture ratio and the voltage when the
driving voltage is falling. When the driving voltage is close to 0 and
30 V, the aperture ratio of these two curves almost coincide. But the
difference of the aperture ratio is big when the driving voltage is in
the middle stage. When the aperture ratio increases as the voltage
increases, the contact angle is called as advancing angle. On the
contrary, when the aperture ratio decreases as the voltage decreases,
the contact angle is called as receding angle. Therefore, this distortion
is called contact angle hysteresis [48]. The accurate gray scale display
cannot be achieved because of this phenomenon.

Charge Trapping
Theoretically, the aperture ratio of a pixel is related to the applied
voltage due to Lippmann-Young equation. But the oil can backflow
when the same voltage is applied continuously. Thus, the aperture
ratio is reduced. It has been found that some charge is trapped in the
hydrophobic insulator when driving voltage is applied to EWDs
[49]. The charge distribution is shown in Figure 1C. A three-phase
contact line is formed where the oil, water and hydrophobic
insulator are in contact. Positive ions gather on the three-phase
contact line, and then, the nearby electric field can be distorted. The
backflow can be caused due to the imbalance between Laplace
pressure and Maxwell pressure at the three-phase contact line [50].
It can also reduce the maximum aperture ratio of EWDs.

Oil Splitting
Ideally, the oil shrinks in one corner of a pixel when driving voltage
is applied to EWD in the process of oil shrinkage. However, oil may
be split to two or more parts. The reason is that the charges in the
hydrophobic insulator can cause a sudden change in electric field.
When the capacitance value of a pixel increases rapidly, it is likely
to cause oil splitting [51]. As shown in Figure 1D, the oil is divided
into B and C from A in a pixel. The areas covered by oil are SA, SB,
SC . The sum of SB and SC is greater than SA. Therefore, the aperture
ratio becomes smaller when the oil is divided into two parts. The
more the oil is divided, the smaller the aperture ratio.

DRIVING WAVEFORMS DESIGN

Driving Waveforms for Optimizing Contact
Angle Hysteresis
The fundamental reason of contact angle hysteresis is the rough
surface of hydrophobic insulation layer and the viscous resistance

of two-phase liquid [52]. The precise gray scale cannot be displayed
by EWDs because of contact angle hysteresis. The contact angle
hysteresis can be reduced by optimizing driving waveforms. A
multi-waveform adaptive driving scheme was proposed [53]. In
this scheme, the contact angle hysteresis curves of EWDs driven by
a square wave, a sine wave and a triangle wave were tested. Then,
the optimal waveform of each stage could be selected by
superimposing the three hysteresis curves, and an activation
voltage sequence was added in front of the first stage. The
maximum distortion caused by contact angle hysteresis could
be effectively reduced by this driving scheme. Besides, the
inhibitory effect of alternating current (AC) voltage on contact
angle hysteresis was proved in another driving scheme [48].

Driving Waveforms for Reducing Charge
Trapping and Oil Backflow
With an applied constant voltage, the shrinking oil cannot be
maintained in a stable state because of charge trapping. This
defect can also be solved by optimizing driving waveforms. A
method showed that charge trapping can be reduced by a reverse
electrode pulse voltage which takes a few milliseconds, and the
proposed driving waveform is shown in Figure 2A [54].
Furthermore, the influence of oil backflow caused by charge
trapping can also be reduced by the reset signal [55], as
shown in Figure 2B. The proposed driving waveform was
divided into a driving signal and a reset signal. The driving
signal S0 and S3 were direct current (DC) signals. They were used
to drive the pixel to a target gray scale, and the reset signal was
used to release trapped charges. S2 in the reset signal was a driving
recovery phase. It was used to obtain a faster gray scale response
speed. But it has been proved that the higher the brightness of the
target gray scale, the more serious the charge trapping [56].
Therefore, the dwell time of the reset signal needed to be
adjusted according to the gray scale. However, the additional
power consumption of EWDs caused by charge trapping and oil
backflow cannot be reduced by these methods. A driving
waveform with a rising gradient and a sawtooth wave was
proposed to reduce the power consumption by reducing
charge trapping [57]. The power consumption of various
waveforms was compared, and the driving waveform is shown
in Figure 2C. It was proved that the sawtooth wave can prevent
oil backflow caused by charge trapping, and lower power
consumption can be obtained by sacrificing the maximum
aperture ratio. Besides, charge trapping can slow down the
turn-off time of EWDs, which makes it difficult to achieve
high quality video playback. It is important to solve this
problem when the driving waveform is designed for video
playback. The earliest two methods for video playback were
amplitude modulation and pulse width modulation. These
methods can divide the driving waveform into a display phase
and a reset phase. The Charge trapping can be reduced due to the
reset phase. But a multi-gray scale video could not be obtained in
previous studies [58]. An improved multi-gray scales dynamic
symmetrical driving waveform was proposed [59]. In this
method, the display stage was divided into two identical parts.
The probability of applying a constant voltage for a long time can
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be greatly reduced. Thus, this method could achieve 16 gray scales
and reduce oil splitting and charge trapping.

Driving Waveforms for Reducing Response
Time
In order to obtain a higher frame rate video playback and a better
display effect, it is necessary to shorten the response time of

EWDs. There are several different methods to achieve this goal.
First, although some defects are caused by contact angle
hysteresis, the hysteresis curve can help to design new
waveforms. An amplitude-frequency mixed modulation driving
system was proposed according to the contact angle hysteresis, as
shown in Figure 2D [60]. The driving voltage and driving time of
each stage were determined by the hysteresis curve of a target gray

FIGURE 2 | Different driving waveforms. (A) The multi structural driving waveform was designed to increase aperture ratio. (B) Driving waveform with a rising
gradient and a sawtooth wave was designed to reduce power consumption. (C) The driving waveform with a reset signal. The reset signal consisted of S1 and S2. The
driving signal S0 was a DC signal. The DC signal was used to drive the EWD to the target gray scale. (D) Amplitude-frequency mixed modulation driving waveform was
designed to reduce response time. (E) The DC and ACmixedwaveform. The DC driving stage was used to drive the EWD to the target gray scale and the AC driving
stage was used to prevent oil backflow.
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scale. Next, a driving waveform based on an exponential function
was proposed to reduce the response time [51]. The optimal time
constant of the exponential function was designed by testing the
influence of the time constant on the aperture ratio oscillation
range. Then, it has been proved that excessive reverse voltage can
cause a chemical reaction between water and ITO [50]. In order to
solve this problem, a mixed DC and AC waveform was proposed,
as shown in Figure 2E. The driving waveform was composed of
two parts. The first part was a DC driving stage. It was used to
drive pixels to reach target aperture ratios. The second part was an
AC driving stage, and a reverse voltage was used to prevent oil
backflow. This scheme could effectively reduce the response time.
Lastly, due to the response speed of the oil was increased when the
driving voltage was increased, the work showed that overdriving
voltage can reduce the response time [61]. The influence of
different overdriving voltages on response time was tested in
this work.

Driving Waveforms for Reducing Oil
Splitting
The reset frame is often used to solve the problem of charge
trapping in EWDs. However, the reset frame could affect the
instantaneous display state, such as flickers and the decrease of
reflective luminance [57]. Therefore, a separated reset waveform
was proposed to solve this problems [62]. The instantaneous
reverse driving voltage can be achieved by adjusting the voltage of
the common electrode. The charges can be released quickly with
the overdriving voltage, and another lower instantaneous reverse
driving can keep the oil active. In addition, DC balance is not
complied in the improved multi-gray scales dynamic symmetrical
driving scheme, which may cause polarization in EWDs.
Therefore, a DC balanced driving waveform was proposed
[63]. In this work, a long frame was divided into two short
frames. In the two short frames, DC balance can be complied due
to the reversal of polarity.

Generally, the oil splitting caused by the sudden change of
electric field force could be prevented by a rising voltage. In a
previous study, the sinusoidal waveform could reduce oil splitting
effectively [64]. Therefore, a novel driving scheme was proposed
to reduce oil splitting [65]. The driving voltage increased
gradually from a value which was below the threshold voltage

to a final voltage with a sinusoidal curve. It was proved that this
driving waveform could reduce oil splitting and increase the
aperture ratio of pixels.

CONCLUSION

The design of driving waveform plays a key role for improving the
display quality of EWDs. In this paper, we reviewed new driving
waveforms. At first, the shortcomings of EWDs were described,
including contact angle hysteresis, charge trapping phenomenon
and oil splitting. Then, driving waveforms for improving these
shortcomings were classified. It provide a reference value for
reducing response time, increasing aperture ratio and improving
oil stability of EWDs. In the future, driving waveforms design
would become an important part of driving system design with
the development of EWDs, and an excellent driving waveform
design is expected to achieve higher quality performance for EWDs.
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