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The advancement of non-invasive quantitative optical diagnosis techniques such as
polarization-sensitive second harmonic generation microscopy (PSHG) for diseases
such as cancer presents opportunities for improving disease understanding and
survival rates. Here, novel and developing techniques in PSHG microscopy applied for
the differentiation of cancerous or diseased tissues are presented, including circular
dichroism, modulation of laser linear polarization, detection of outgoing linear laser
polarization, and double-Stokes Mueller. Typically, initial cancer diagnosis is performed
by visual inspection of stained biopsy or surgical resection tissue sections under bright-
field microscopy, however, early diagnosis is challenging due to variability in morphological
interpretation of the tissues, and because cancer initiation regions can be small and easy to
miss. Therefore, pathologists could benefit in identifying cancer on biopsy or surgical
resection sections by using unbiased quantitative automated technologies with high
spatial resolution and improved disease specificity that can check the entire slide pixel-
by-pixel. Second harmonic generation microscopy offers the opportunity to measure
ultrastructural alterations in collagenous scaffolds of organ tissues virtually background
free on submicron-sized tissue regions. The approach is particularly interesting for cancer
diagnosis applications, because during cancer initiation and progression, the collagen in
the affected tissue extracellular matrix is often deregulated and becomes disorganized.
This mini-review contains a thorough summary of PSHG techniques that have interrogated
diseased tissues, and discusses their technical variations and successes in disease
discrimination.
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INTRODUCTION

Second harmonic generation (SHG) or frequency doubling is a nonlinear optical process which
occurs efficiently in a microscope when two laser photons of wavelength λ interact with matter to
produce light at λ/2 (Figure 1B). Only non-central symmetric materials at both molecular and
macromolecular scales can produce SHG and therefore, microcrystalline structures are required
for SHG. In animals, most SHG occurs from fibrous collagenous connective tissues or myosin in
muscle tissues, both having a non-central microcrystalline structure. Since the SHG is emitted due
to the presence and ultrastructure of the muscle or collagen interacting with the laser, no dyes or
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sample modification procedures are needed, and the signal can
be interpreted as a direct indicator of structural sample
changes.

SHG is energy conserving and consequently does not
photobleach, differing significantly from non-parametric
processes, such as fluorescence, where absorbed Stokes
energy often leads to sample damage and photobleaching.

For biological imaging, lasers with wavelength outside of
the tissue absorption spectrum are typically chosen,
therefore reduced heat is deposited into the sample allowing
for long duration functional in vivo studies.

The SHG intensity and polarization can be written:
I
.

SHG ∝ χ2:E
.
E
.
, where “:” is the tensor product, E

.
is the

intensity and polarization of the laser electric field, and χ(2)

FIGURE 1 | Typical microscope schematics for forward- (A) and epi-detection (C) configurations for polarization-sensitive second harmonic generation (SHG)
microscopy. The energy state diagram of SHG (B) along with the coordinate system, where Z-X is the image plane and the laser propagates along Y, for an arbitrarily
oriented fiber (D) is shown. Abbreviations: SM-scanning mirrors, PSG-polarization state generator, EO-excitation microscope objective, CO-collection microscope
objective, PSA-polarization state analyzer, F-filter, PMT-photomultiplier tube detector and DM-dichroic mirror. Example images obtained using PI-SHG (E), CD-
SHG (F), DSMP-SHG (G) and PIPO-SHG (H). SHG intensity (E-i), fitted ρ (E-ii) and fitted ρ distribution width (E-iii) are shown for normal and fibrotic liver [14]. SHG images
(F) of normal skin and osteogenesis imperfecta (O-i) skin tissues using right-handed circularly polarized light (RHCP), left-handed circularly polarized light (LHCP) and CD-
SHG (CD) where red and blue show positive and negative values, respectively [43]. Laboratory-frame χ(2) values (G) of normal and double + breast tissue using DSMP-
SHG [44]. Brightfield (H-i), SHG (H-ii), ρ (H-iii), δ orientation (H-iv) and DOLP (H-v) images of normal, triple +, double +, ++-, and triple–breast tissue [44]. Images E-H were
adapted with permission from [14, 43, 44] © The Optical Society.
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is the second-order nonlinear optical susceptibility tensor,
containing up to 18 unique elements, describing the sample.
The equation shows that intensity and polarization of SHG
depends on the sample orientation and ultrastructure,
encoded in χ(2), and on the polarization and intensity of
the laser. Kleinman symmetry [1, 2], where

K � χ(2)zxx/ χ
(2)
xxz � 1, as well as cylindrical C6v symmetry are

typically assumed, resulting in only two unique χ(2)

elements whose ratio is historically designated ρ � χ(2)zzz /χ
(2)
zxx

[3]. Since E
.

is controlled and I
.

SHG is measured, ρ, and the in-

plane projection of the orientation angle of collagen, δ, can be
extracted via PSHG measurements (see Figure 1D for
coordinate system). This review is focused on polarization-
sensitive SHG approaches specifically used for discriminating
diseased collagenous tissues, and thus many great papers
using SHG microscopy are regretfully not included.

Historical Interpretation of the PSHG
Parameters Pertaining to Collagen
Researchers, Freund et al. [3–6], pioneered the use of SHG to
investigate the structure of collagenous biological tissue by
utilizing different laser polarizations. They focused a
Q-switched Nd:YAG laser onto rat tail tendon, collecting SHG
in the forward direction, similar to Figure 1A, but without scan
mirrors and at different scattering angles. They found an SHG
peak at the 0° scattering angle, indicative of the macroscopic
ordered polar structure of collagen, and found that χ(2) of tendon
exhibited cylindrical symmetry, since rotation about the tendon
axis did not appreciably change SHG parameters. They attributed
the signal predominantly to C-N bonds in the amino acids,
arguing these are the likely dominant polarizable,
noncentrosymmetric and non-mobile candidates. They used a
polarization state analyzer (PSA) consisting of a polarizer to
directly measure ρ for tendons from rats of different age groups,
and showed this parameter distinguishes the variation in the
developing biological structure.

Noting the important SHG theoretical work of Dick [7], two
groups, Plotnikov et al. [8] and Tiaho et al. [9], attributed ρ to
the helical pitch (θ) of the protein triple helix via
ρ/(2 + ρ) � cos θ. However, it is likely that all the levels of
the collagen tissue hierarchy can contribute to the
polarization-dependent SHG parameters [10]. Therefore, the
question of which hierarchical levels of collagen in different
tissues are expressed in PSHG microscopy remains open. It
also presents an opportunity to investigate which disease states
affect the quantitative imaging results. Since the dyes used for
standard staining of histopathology samples in hospitals,
hematoxylin and eosin Y, seem to be compatible with
PSHG microscopy [10], therefore PSHG capability could be
added to existing histopathology slide scanners enabling the
new modality without altering standard hospital sample
preparation procedures. The resulting automated
quantitative analysis could yield pathologists with an
additional quantitative marker for improved diagnosis and
evaluation.

APPLICATIONS OF SHG MICROSCOPY
FOR DETERMINING THE
ULTRASTRUCTURE OF DISEASED
COLLAGENOUS TISSUES

Polarization-In SHG Microscopy
Pioneered in 1979, polarization-in SHG (PI-SHG) microscopy
utilizes a polarization state generator (PSG) to rotate the laser
linear polarization state. One method is to use a half-wave plate
(HWP) in a motorized rotating mount, located before the
excitation objective lens (Figures 1A,C). An SHG intensity
image is recorded at each HWP angle, typically with 10–30
steps in the range 0°–90°. Since SHG is predominantly
forward-directed, most epi-detected photons require
backscattering, which is less efficient than forward-detection
[11], and results in depolarization of a fraction of the SHG.
Parameters ρ and δ can be found using this methodology by
performing nonlinear data fitting.

PI-SHG microscopy was used to distinguish normal and
diseased tissue regions in several tissues (Table 1) with
statistical significance, via the χ(2)zzz values of osteosarcoma,
breast cancer and melanoma tissues [12], as well as the ρ and
θ values of fibrotic and control liver vessels [13, 14]. A significant
increase in the ρ value was also found between breast cancer
biopsy tissues [15, 16], and during thermal denaturation of
corneal stroma [17]. Several other studies were performed
using this technique, including on liver fibrosis [18],
osteoarthritis [19], and keratoconus [20, 21].

To avoid delays due to nonlinear data fitting, a fast Fourier
transform (FFT) algorithm has been developed to extract ρ values
quickly [22]. It was used in the study of normal and keratoconic
human corneas [23], human breast carcinoma samples [16, 24]
and to investigate mechanical load in energy storing versus
positional collagen fibrils [25]. The FFT approach has also
allowed use of a generic structural model, where rather than
assuming a particular symmetry, the second-order FFT
coefficients (I2 and ϕ2), which quantify the modulation depth
of the polarization SHG response (I2) and its phase (ϕ2), are
reported and compared. This approach was used for a survey on
cartilage in osteo-arthritic tissue [26, 27], for a study of ageing via
investigating ribose-glycated fibrils isolated from rat tail [28], and
to investigate needle puncture damage in bovine annulus
fibrosus [29].

Several groups have also investigated the excitation anisotropy
(α) for distinguishing diseased tissues, α � Iv − IH/Iv + IH, where
Iv and IH are the SHG intensities when the incident light is
vertically and horizontally polarized, respectively. α is related to δ,
and was measured in skin exposed to UVB [30, 31], and using a
fast motion-artefact free implementation in cheek and eye corner
skin at two ages [32].

Polarization analysis of the outgoing SHG has also been
incorporated using a PSA typically located after the collection
objective in a forward-detection geometry (Figure 1A), or
after a dichroic mirror that separates SHG in epi-detection
(Figure 1C). While variable PSAs are reviewed in Double
Stokes Mueller Polarimetric SHG (DSMP-SHG) Microscopy
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and Polarization-In, Polarization-Out SHG (PIPO-SHG)
Microscopy sections, stationary PSAs are also used. In one
implementation, SHG intensity through a polarizer parallel
(I||) and perpendicular (I⊥) to the laser linear polarization is
recorded allowing the SHG anisotropy (β) to be calculated:
β � I|| − I⊥/I|| + 2I⊥. A study of dysplastic human skin showed
that optimization of the selection of linear laser polarization
orientations using a Fourier algorithm on the SHG intensity
obtained with circularly polarized light allowed β values to
distinguish diseased areas more effectively [33], while in rat
skin, β significantly changed during ageing [34]. In another
study, the β values of femurs from wild-type mice and oim
mice, a model for human osteogenesis imperfecta, were similar
[35] while different β values are reported for dysplasia and
colon cancer [36] as well as ovarian cancer tissue [37].

Stationary PSAs where the collagen axis is aligned to the
laboratory polarization axis have also been used for
investigating effects of mechanical load [38] and irradiation
with high intensity infra-red light [39].

Interestingly, analysis of the PSHG data has also been
achieved through Fourier projection of the PSHG image
stacks onto two phasor plots referred to as microscopic
multiparametric analysis by phasor projection of PSHG
(µMAPPS). This technique has been used to compare the ρ
values of SHG data taken from biopsies of the left flank of mice
days after implantation of melanoma [40], colon carcinoma
and breast cancer cells [41].

PI-SHG microscopy was also used to image submucosa of
esophageal squamous cell carcinoma (ESCC). The ρ values from 4
stages of ESCC showed few differences between one another, and

TABLE 1 | A summary of the PSHG microscopy techniques used for quantifying the differences in collagen structure in diseased tissue and the corresponding parameters
measured with those techniques. The following abbreviation is used NR: Not reported.

Technique Condition Parameters:
Statistical significance

References

PI-SHG Osteosarcoma, Breast cancer and Melanoma χ(2)zzz: Yes, β: NR [12]
PI-SHG Liver fibrosis ρ: Yes, θ: Yes [13, 14]
PI-SHG Mammary dysplasia and breast cancer K: Yes, ρ: Yes, χ(2)xxx/χ

(2)
zxx: Yes [15]

PI-SHG Breast ductal carcinoma β: Yes, ρ: Yes [16]
PI-SHG Thermal denaturation θ: Yes [17]
PI-SHG Liver fibrosis ρ: NR, χ

(2)
xxz/χ

(2)
zxx: NR [18]

PI-SHG Osteoarthritis Polarization plots: NR [19]
PI-SHG Keratoconus Polarization plots: NR [20]
PI-SHG Keratoconus δ: No [21]
PI-SHG Keratoconus θ: NR, δ: NR [23]
PI-SHG Breast carcinoma ρ: Yes [24]
PI-SHG Mechanical load ρ: Yes [25]
PI-SHG Osteoarthritis I2 and ϕ2: NR [27]
PI-SHG Aged I2 and ϕ2: Yes [28]
PI-SHG Needle puncture damage I2: No [29]
PI-SHG UVB exposure α : Yes [30, 31]
PI-SHG Aged δ: NR [32]
PI-SHG Skin dysplasia β: NR [33]
PI-SHG Aged β: Yes [34]
PI-SHG Osteogenesis imperfecta β: No [35]
PI-SHG Colorectal dysplasia and cancer β: Yes [36]
PI-SHG Ovarian cancer β: NR [37]
PI-SHG Mechanical load ρ: Yes [38]
PI-SHG Irradiation ρ: Yes [39]
PI-SHG CT26 derived tumor from mice ρ: NR, θ: NR [40]
PI-SHG Implantation of B16 melanoma cells ρ: NR, θ: NR [40]
PI-SHG Implantation of CT26 colon carcinoma cells and 4T1 breast cancer cells ρ: NR, θ: NR [41]
PI-SHG Esophageal squamous cell carcinoma ρ: No [42]
PI/CD-SHG Ovarian cancer θ: Yes, β (0°): Yes, ICD-SHG: Yes [49]
CD-SHG Osteogenesis imperfecta ICD-SHG: Yes [43]
CD-SHG Idiopathic pulmonary fibrosis θ: No, ICD-SHG: Yes [47]
CD-SHG 3D spheroid models of idiopathic pulmonary fibrosis θ: Yes, ICD-SHG: Yes [48]
DSMP-SHG Breast cancer with ER, PgR and HER2 expression K: No, χ(2)zzz, χ

(2)
zxx, χ

(2)
zxz, χ

(2)
xxx, χ

(2)
xzz, and χ(2)xxz: NR [44]

PIPO-SHG Breast cancer with ER, PgR and HER2 expression ρ: Yes, DOLP: Yes [44]
PIPO-SHG Thyroid carcinomas and diseases ρ: Yes, C: No, DOLP: Yes [55, 58, 59]
PIPO-SHG Non-small cell lung carcinoma ρ: Yes, C: Yes, DOLP: Yes, δ: Yes [56]
PIPO-SHG Non-small cell lung carcinoma ρ: Yes [57, 58]
PIPO-SHG Pancreatic ductal adenocarcinoma ρ: Yes, C: Yes, DOLP: Yes [58, 60]
PIPO-SHG Bone cancer ρ: Yes [61]
PO-SHG Breast cancer θ: No [62]
PO-SHG Atherosclerosis ρ: No [63]
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authors concluded that PI-SHG microscopy cannot be used for
staging ESCC because the structural changes are likely of
macromolecular rather than micromolecular origin [42].

Circular Dichroism Second Harmonic
Generation Microscopy
In circular dichroism SHG (CD-SHG) microscopy, two SHG
images are obtained using left-handed (IL) and right-handed (IR)
circularly polarized laser light, with no PSA in the SHG detection
path (Figures 1A,C). The CD-SHG intensity (ICD-SHG) is the
normalized difference of the two quantities,
ICD−SHG � 2(IL − IR)/(IL + IR). One way to implement CD-SHG
is via a liquid-crystal rotator (LCR) followed by a quarter-wave
plate (QWP) as the PSG [45]. ICD-SHG is a complicated parameter
when expressed in terms of the sample susceptibility, and
according to equation 12 in [46], only measures structures
with nonzero chirality (χ(2)xyz), nonzero phase between χ(2)

elements, and nonzero angle to the imaging plane (ψ in
Figure 1D). Nonzero phase between tensor elements can
occur due to a resonance transition near the laser wavelength
and/or the SHG wavelength, due to a molecular magnetic dipole
or due to an electric quadrupole rather than dipolar
interaction [46].

CD-SHG microscopy was applied to determine differences
between normal and osteogenesis imperfecta skin tissues as well
as idiopathic pulmonary fibrosis human lung tissue where
variations in ICD-SHG were statistically significant [43, 47, 48].
Another study used CD-SHG microscopy to find differences
between 4 ovarian tissue classifications. The mean ICD-SHG
value for normal ovarian tissue was significantly higher than
the other tissues [49].

Double Stokes Mueller Polarimetric SHG
Microscopy
Double Stokes Mueller polarimetric SHG (DSMP-SHG)
microscopy, introduced in 2015 [50, 51], is an alternative
method to performing PSHG microscopy. DSMP-SHG
microscopy aims to obtain all possible polarization
information in the smallest amount of measurements. Stokes
vectors are used to describe the laser polarization ( s

.
) and

polarization of the SHG signal ( s
.′). Their relation is described

by the function s
.′ � M s

.
, where M is a double Mueller matrix

which can be characterized via measurement. One such
implementation using a single detector required 54
measurements. A PSG produced linearly polarized states at
angles 0°, ±45°, 90°, 157.5°, two elliptical states, and two
circularly polarized states, while at each PSG state, 6 SHG
polarization intensities are measured to obtain a Stokes vector
using the PSA. Both the PSG and PSA consisted of a polarizer,
HWP and QWP at the laser and SHG wavelengths, respectively,
with waveplates in mechanical rotation mounts (Figures
1A,C) [44].

DSMP-SHG has the advantage that 6 laboratory frame
susceptibility components can be extracted from double
Mueller matrix components: χ(2)xxx , χ

(2)
xzz , χ

(2)
xxz , χ

(2)
zxx , χ

(2)
zzz , χ

(2)
zxz

(calculated relative to one component), and for each
component, the real (Figure 1G) and imaginary parts can be
extracted, for each pixel of the image. Figure 1G can be used to
compare tensor components for each pixel of the image [44].
Additionally, one can obtain the degree of polarization (DOP),
degree of linear polarization (DOLP) and degree of circular
polarization (DOCP) at each input polarization. DSMP-SHG
microscopy was used to study microarray slides of human
breast cancer types, finding that components of χ(2) are
predominantly real and validating Kleinman symmetry [44].
When the χ(2) components are real and birefringence is
negligible, the polarization of the SHG signal will not have a
circular component, hence a reduced polarimetric measurement
with only linearly polarized incoming and outgoing states known
as polarization-in, polarization-out SHG microscopy can be
performed [50–52].

Polarization-In, Polarization-Out SHG
Microscopy
Polarization-in, polarization-out SHG (PIPO-SHG) uses a
simplified PSA compared to DSMP-SHG as well as the same
PSG as in the PI-SHG technique, and hence is typically
implemented using a forward-detection geometry (Figure 1A).
The PSA measures the linear polarization state of the SHG signal
at different angles of the linear polarization of the laser. The
simplest PSA consists of a linear polarizer in a motorized rotation
mount. SHG images are typically captured with at least 8 PSG
angles and 8 PSA angles, hence at least 64 images are recorded for
the technique, resulting in ∼20 min acquisition times in
comparison to PI-SHG which takes ∼1.5 min [53]. The
additional dimensionality of the data is thought to produce
higher accuracy fitting, although at the time of writing this
manuscript no study has performed the comparison with the
other techniques. Fitting of the SHG intensity versus PSA and
PSG angles yields δ and ρ. When the more generalized C6

symmetry is assumed, χ(2)xyz appears, and can be measured as

the chirality ratio (C � χ(2)xyz /χ
(2)
zxx ) [54].

The PIPO-SHG measurements also allow the DOLP of the
SHG signal to be obtained, where the SHG light is fully linearly
polarized when DOLP � 1, and increasingly depolarized or
circularly polarized as it approaches 0. DOLP measurements
were performed at 8 incident laser polarizations
(θ � 0˚, 22.5˚, 45˚, 67.5˚, 90˚, 112.5˚, 135˚, 157.5˚) and for
each one, two DOLP calculations were averaged, one using
measurements at analyzer angles 0˚, 45˚, 90˚, 135˚ and
another at 22.5˚, 67.5˚, 112.5˚, 157.5˚ [55]. An improved
DOLP is obtained when structures with δ orientations closest
to the normal of the crystal axis are ignored, since they have the
lowest signal in collagen imaging, which can result in a low signal-
to-noise ratio [44]. Lower DOLP values can occur due to
ultrastructural disorder of collagen, or due to fragmentation of
collagen within the focal volume, where SHG is emitted from
uncorrelated domains [56].

A PIPO-SHG microscopy study of pathology slides of lung
samples from patients with non-small cell lung carcinoma
revealed significant differences in the mean ρ values [57]. A
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more recent study of that disease showed that the median ρ and
the median average distribution (MAD) of δ could differentiate
stages II and III from normal tissue, while the MAD of C and
DOLP could differentiate stage I [56]. Human thyroid tissues
were also investigated with PIPO-SHG, and revealed significant
differences in the average DOLP values between normal thyroid
tissue and follicular variant of papillary thyroid carcinoma,
classical papillary thyroid carcinoma, follicular nodular disease,
Grave’s disease, and anaplastic or undifferentiated carcinoma.
This was also true for the mean ρ values except for insular thyroid
tissues [58, 59]. Pancreatic ductal adenocarcinoma tissue was also
investigated with PIPO-SHG and demonstrated significant
differences between the mean ρ values of tumor tissue and the
periductal, lobular and parenchymal regions of normal pancreatic
tissue. The DOLP values of the pancreatic tumor regions were
only significantly different from normal periductal and
parenchymal tissues [60] while the C values in diseased
thyroid and pancreas were not significantly different from
normal tissues [58–60].

PIPO-SHGmicroscopy was also applied to study a microarray
slide containing 3 pathological human breast cancer types
(Figure 1H) with the overexpression/absence of estrogen
receptor, progesterone receptor, and human epidermal growth
factor receptor 2: triple +, double +, and triple -. The mean and
median ρ values of triple + and double + as well as the mean and
median DOLP values for double + were significantly different
from normal breast tissue [44]. Bone cancer was also investigated
and the ρ values of bone adjacent to tumor was found to be
significantly different to bone adjacent to normal marrow [61].
Polarization-out SHG (PO-SHG) microscopy was also attempted
by varying the angle of an analyzer before the detector, as in
PIPO-SHG, but with only one linear input polarization state,
however, it did not achieve differentiation between normal and
diseased tissue [62, 63].

DISCUSSION

Automated digital histopathology using PSHG microscopy is a
promising technology for diagnosis of disease in
histopathological samples, however, implementation requires
fast imaging and data analysis balanced with maintaining high
measurement accuracy to obtain diagnosis based on the fewest
amount of analyzed pixels. To reduce imaging time due to the
different laser polarizations needed, liquid crystal or electro-optic
modulators can be used [64–66], or beams with different
polarizations can be interleaved. The clever use of fewer input
polarizations could also be used, such as in Stokes-Mueller SHG
[67] which uses four polarizations in a PI-SHG setup, or
advanced polarimeters with multiple detectors can be used for
simultaneous detection of the SHG polarization states [68]. In

another technique, polarimetry analysis can also be performed
using circularly polarized laser excitation, only requiring a single
scan [53, 69]. Fourier techniques could be used for faster data
analysis [16, 23, 24], while imaging rates can be increased using
higher repetition rate pulsed lasers combined with faster scanners
such as spinning mirrors, or by increasing the field of view using a
wide-field imaging approach [70]. With these developments, it is
reasonable that PSHG microscopy may be implemented in a
modified hospital pathology slide scanner. Furthermore, since
SHG requires no dyes, it can be implemented as an epi-detection
setup in an endoscope for in vivo quantitative imaging as a biopsy
tool [71–73].

It is evident that PSHG imaging can quantitatively
differentiate certain diseased tissues based on their
ultrastructure in pathological sample slides however, care
must be given to PSHG image quality and the image
analysis methods used. For instance, when assessing the
quality of PSHG images, it has been found that using SHG
intensity as a criterion is only suitable in specific instances [74].
Furthermore, while statistical discrimination based on many
samples has been validated in different tissues, the efficacy of
diagnosis in individual regions remains unclear and must be
addressed. Improved differentiation could be obtained via
additional implementation of complementary SHG intensity
analysis techniques, such as texture analysis [56, 75–77], the
Hough transform [78] and the structure tensor [79, 80]. These
analysis techniques could be extended to PSHG ρ or δ images.
Additional information about diseased tissues can be obtained
by coupling complementary techniques, such as polarization-
sensitive two-photon excitation fluorescence microscopy [81],
and polarization-sensitive third harmonic generation
microscopy [82]. The idealized scanning system could find
potential hotspots and report them to the pathologist who
could confirm the diagnosis, aiding in the difficult task of
finding small diseased regions in comparatively large
samples, saving pathologists time and lives by pinpointing
regions of interest.
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