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Emerging evidences have suggested that oscillation is important for the induction of cell
death. However, whether and how oscillation behavior is involved and required for
necroptosis remain elusive. To address this question, a minimal necroptotic circuit is
proposed based on the CNS pathway. Stochastic parameter analysis demonstrates that
the essential structure for oscillation of the CNS circuit is constituted by a paradoxical
component embedded with positive feedback among the three protein nodes, i.e., RIP1,
caspase-8, and RIP3. Distribution characteristics of all parameters in the CNS circuit with
stable oscillation are investigated as well, and a unidirectional bias with fast and slow
dynamics that are required for high occurrence probability of oscillation is identified. Four
types of oscillation behaviors are classified and their robustness is further explored,
implying that the fast oscillation behavior is more robust than the slow behavior. In
addition, bifurcation analysis and landscape approach are employed to study
stochastic dynamics and global stability of the circuit oscillations, revealing the possible
switching strategies among different behaviors. Taken together, our study provides a
natural and physical bases for understanding the occurrence of oscillations in the
necroptotic network, advancing our knowledge of oscillations in regulating the various
cell death signaling.
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INTRODUCTION

Oscillatory signaling is ubiquitous in vital movement, and precisely controls the sequential behaviors
of many important physiological processes [1–3], such as circadian rhythm [4], embryonic
development [5], neuron electrophysiology [6], and cell cycle [7]. Oscillation behavior of
molecules, for instance, calcium ions, tumor suppressor gene p53, p38 MAPK (mitogen-
activated protein kinases), and NF-κB (Nuclear Factor-kappa B) in inflammatory response,
determines the fate of cells [8–10]. Organisms can identify, encode, and transmit different
biological information, and perform different responses with different modulation methods
through oscillatory signaling, including amplitude modulation or frequency modulation [11, 12].
The biological systems are nonlinear and quite complicated, and the dynamic behavior of oscillation
in individual cells might be annihilated in population average dynamic behavior [9]. Thus, to
accurately understand how biological oscillation controls biological functions is still a challenge.
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Oscillations seem to be an important prerequisite for the
processing of the cell death signaling [13–18]. The bistable,
excitability, and oscillation are combined with spatial coupling
mechanism like diffusion, which can propagate as trigger waves
[19]. Recently, the spread pattern of self-regenerating trigger
waves had been confirmed in the process of apoptosis [20].
Besides, reports have shown that the ferroptosis signal spreads
stably in the cell population in a wave-like pattern [21, 22].
Necroptosis, a passive and irreversible inflammatory form of cell
death, is quite different from apoptosis and ferroptosis. Its
physiological manifestations are cell volume expansion, cell
membrane rupture, intracellular material overflow, incomplete
DNA degradation, and local severe inflammatory reaction.
Necroptosis is involved in many diseases, such as acute
pancreatitis ischemia, cardio-cerebrovascular disease, and so
on [23, 24]. Whether and how the cellular necroptosis
signaling (CNS) could spread and induce cell death in the
form of oscillation-induced trigger waves remains unclear.

Mathematical modeling with qualitative or quantitative
analysis has become an important approach for dissecting the

complex regulatory mechanisms of biological system [25].
Numerous studies have explored the design principle of
signaling circuits with various biological functions. The
relationships between network motifs [26] (such as
paradoxical components [27–29], feed-forward loop [30], and
feedback loop [31–33]) and biochemical oscillator [34–36],
adaptation [37], robustness [38–41], and noise attenuation
[42–44] have been revealed successively. Designing and
developing a signaling circuit system with regulatory function
is of guiding significance for the further understanding of how
oscillation signals regulate biological processes [13, 45]. For
instance, the minimum free-energy cost of biological
oscillation to overcome the large fluctuations from the
environment and maintain coherence has been successively
revealed [46–48]. The design principle of a biological
oscillation network with high accuracy and sensitivity under
limited energy cost was further explained [49, 50].

In our study, we propose a CNS circuit to systematically
analyze the robust oscillation dynamics in the CNS pathway.
The essential structure of the circuit for generating the occurrence

FIGURE 1 | Schematic diagram of the CNS pathway, highlighting the key components and interaction. (A) The CNS signaling pathway. (B) The coarse-grained
CNS circuit. (C) Three types of significant interaction among components in the circuit, i.e., negative feedback components (NFC, contradictory interaction and feedback
loops), paradoxical components (PC, incoherent feedforward), and positive feedback components (PFC, self-activation, mutual activation or inhibition, and feedback
loops).
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of necroptotic oscillation is determined. Moreover, how each
component in the network mediates the probability of oscillation
occurrence is investigated. The two different incoherent
dynamics, fast and slow dynamics within a unidirectional bias,
are demonstrated to be the key mechanism for the high
probability of oscillation occurrence. Ultimately, both the
bifurcation analysis and potential landscape theory are
performed to explore the switching strategies among different
types of oscillation through regulating the interaction within the
unidirectional bias.

RESULTS

Overview of the Core Circuit in CNS
Pathway
The diagram of TNF-induced necroptotic signaling is shown
in Figure 1A. Upon TNF stimulation, TNF binds TNFR1 on
cell membrane and promotes oligomerization of TNFR1 to
form homotrimer. Oligomerization of TNFR1 induces the
conformational changes in its intracellular domain, leading
to the recruitment of TRADD (TNFR1 associated death
domain protein) and RIP1 (Receptor-interacting protein
kinase 1) to form Complex-Ⅰ [51]. TRADD and RIP1
compete for the binding sites on TNFR1 in complex I to
mediate the downstream signaling [52]. Then, the modulated
RIP1 dissociates from Complex Ⅰ and combines with the RIP3
through RHIM-domain to form a “Necrosome” complex [53].
RIP3 is phosphorylated by RIP1 in necrosome [54, 55].
Besides being activated by RIP1, RIP3 can also be
autophosphorylated in the kinase domain of Ser227
(human)/Thr231-Ser232 (mouse) [54, 56, 57]. RIP1 also
binds FADD through the death domain, and further
recruit caspase-8 into necrosome [58–60]. TRADD can
also drop from complex I to recruit FADD and caspase-8,
which is an important process for the activation of caspase-8
[61]. Under normal circumstances, cleavage of RIP1 and RIP3
by caspase-8 limit the occurrence of necroptosis [62, 63].
Besides, a very recently study reported that phosphorylated
RIP3 suppresses caspase-8 activity through the recruitment of
RSK [64]. Necrosome subsequently recruits and
phosphorylates the downstream protein MLKL [65], which
will form oligomers and transfer from cytoplasm to the cell
membrane, resulting in the induction of necroptosis.

To intuitively describe the interaction of the core module,
coarse-grained method [66] is employed to simplify the CNS
pathway into circuit, and the schematic diagram is shown in
Figure 1B. The circuit includes four components, i.e., TRADD,
RIP1, caspase-8, and RIP3. The necroptotic dynamics are mainly
determined by these four components in necrosome, while MLKL
is not considered in the CNS circuit. This is because MLKL
mediates cell necroptosis as a downstream substrate of RIP3.
Studies have shown that knocking down MLKL expression by
RNA interference will not affect the RIP3 or the other upstream
signaling [67, 68]. In the circuit, there are various interaction
among the four proteins (Figure 1C), such as negative feedback
components, positive feedback components, and the paradoxical

components [27–29], which can produce abundant dynamic
behaviors [36, 69–71].

Searching the Essential Structure for
Oscillation Within the CNS Circuit
To discuss the oscillation dynamics in the CNS pathway, we construct
a set of self-evolving ODEs model based on the circuit shown in
Figure 1B. The model has four variables and ten interaction terms.
ODEs and the detailed description of the parameters in the interaction
terms can be found in Supplementary Information S1.1. In the
model, the components are switched between active and inactive
forms by phosphorylation, dephosphorylation, or cleavage. For
systematically analysis, Latin Hypercube Sampling method [72] is
employed to randomly scan the network parameters in the widely
parameter space for evaluating the stable oscillation behavior of the
CNS circuit (Supplementary Information S1.2). For sampling
uniformity, the exponential sampling range of k_i is −1 to 1, and
the exponential sampling range of j_i is −3 to 2. The Hill coefficient
n_i is a random integer sampling with 1–4. All the parameters k_i, j_i,
and theHill coefficient n_i of themodel are sampledwithin the proper
ranges based the previous studies [31, 37]. We randomly select more
than 30 million sets of parameter combinations, in other words, we
analyze 30 million dynamic systems to test whether the system can
produce robust oscillation. The probability of robust oscillation of
pRIP3 (phosphorylated RIP3) is taken as the evaluation object and the
analysis procedure is shown in Figure 2A.

We firstly intend to identify the key protein nodes and essential
interaction in the CNS circuit (Figure 2B) that required for oscillation
generation. In the numerical simulation, 500,000 groups of random
samples are taken for each simulation test, and each simulation test is
repeated 5 times. For the four protein nodes, i.e., TRADD, RIP1,
caspase-8 and RIP3, we respectively set their total amounts to 0 one by
one and count the probability of oscillation behavior of pRIP3. This
total amount is determined by the natural generation rate and
degradation rate of protein, which is considered as unit 1 in the
normalized model [9]. Thus, the steady states of the system could be
regulated by the total amount of the proteins. As the result shown in
the upper panel of Figure 2C, TRADD is not required and the
probability of circuit oscillation without considering TRADD exhibits
nearly 3-fold compared with the full model (FM). While RIP1,
caspase-8, and RIP3 are essential for the circuit to oscillate. We
next explore the key interaction for the generation of oscillation by
limiting the corresponding parameters. There are 10 interaction terms
among TRADD, RIP1, caspase-8, and RIP3 in the circuit, which are
mainly described by the 10 parameters (k1–k10). The 10 parameters in
these terms are in turn fixed at 0, respectively. As the result shown in
the lower panel of Figure 2C, when the four parameters of k6, k7, k8,
and k10 are limited, the probability of pRIP3 oscillation is zero,
indicating that the interaction terms characterized by these four
parameters are necessary for producing oscillation behavior.
Moreover, two interaction parameters are simultaneously fixed to
zero in turn in our further analysis (Supplementary Figure S2),
supporting the results shown in Figure 2C. The statistical results of
simultaneously fixing three or more parameters to zero are similar.
Therefore, based on these statistical analysis, the essential structure for
generating oscillation of theCNS circuit is determined and highlighted
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in Figure 2D. The structure is constituted by a paradoxical
component embedded with a positive feedback among three
protein nodes (i.e., RIP1, caspase-8, and RIP3). Despite the
parameters of k3 and k4 are not necessary for the oscillation
behavior, the probability of the system is only one-third of FM
when k3 or k4 is set to 0 (Figure 2C, down panel), indicating
these two interaction terms are also important for the oscillation
induction.

Oscillation Determined by the Fast and Slow
Dynamics Within a Unidirectional Bias
Having identified the essential structure for generating robust
oscillation, we further explore the control mechanism of how the
behavior is generated and regulated by the key protein nodes and
essential interaction. Figure 3A presents how the network oscillation

probability is regulated by the total amounts of the three key nodes,
i.e., RIP1, caspase-8 and RIP3. As the results suggested, the oscillation
probability increases with the increase of the total amount of RIP1 or
caspase-8. A 10-fold increase of their total amounts will improve the
oscillation probability by nearly 7-fold. However, variation of RIP3
amount has no significant effects on the probability. Therefore, high
amount of RIP1 or caspase-8 will accelerate the occurrence of
oscillation in the CNS circuit.

We next select more widely the parameter combinations that can
generate oscillation. By collecting 33 million sets of parameters, we
obtain 14,906 sets of oscillation parameter combinations thatmeet the
appraisal standard (Supplementary Information S1.1). We cluster
the 14,906 sets of parameters, however, no matter what clustering
algorithm (such as k-means clustering, spectral clustering, etc.) is
adopted, it is unable to distinguish their parameter features. The result
of spectral clustering is shown in Supplementary Figure S3A,

FIGURE 2 | Identification of the essential structure in the CNS circuit. (A) The Latin Hypercube Sampling method analysis procedure for a set of given parameters.
The dynamic behavior of pRIP3 is the object of investigation. (B) The full model (FM) contains four major proteins and ten interaction terms, in which each interaction is
controlled by the corresponding parameters. (C) The statistical results of the circuit oscillation probability after removing one protein or one interaction, respectively. (D)
The red mark highlights the essential structure of the CNS circuit for generating oscillation.
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meaning that the parameter set that produces oscillation behavior of
the system only follows one distribution characteristic. Thus, we could
project the high-dimensional parameter space to each dimension to
investigate the distribution characteristic of a single parameter. The
distribution characteristics of the four identified essential interaction
terms (Figure 2D) in the parameter space are investigated and the

corresponding results are presented in Figure 3B, indicating that k6 or
k10 should be large, k7 is at an intermediate value, and k8 trends to be
small to promote the occurrence of oscillation.

If an interaction term is constrained to be beneficial to improve the
oscillation probability of the system, then the term is functionally
significant [35]. We constrain the interaction terms in most probable

FIGURE 3 | Effects of the components within the essential structure on the circuit oscillation probability. (A) Effects of the three key proteins total amount on the
oscillation probability. (B) The parameter distributions with stable oscillation of the four parameters in the essential structure. (C) The probability of RIP3 oscillation is
substantially improved when two interaction terms are constrained during the random parameter search. The “+” indicates that the term is constrained, and the “−”

indicates that the term is unconstrained. (D) The heat maps that reflect the variation of probability when two-parameters are changed. (E) Schematic diagram of the
fast and slow dynamics within the essential structure. Thick red lines indicate fast dynamics and thin blue lines indicate slow dynamics.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 7266385

Xu et al. Oscillations in Necroptotic Signaling

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


strength range according to the statistical results in Figure 3B. In
numerical simulation, we first constrain a single interaction term, and
then constrain two groups of interaction terms simultaneously
(Figure 3C). The result shows that when the interaction term of
RIP3 inhibition by caspase-8 (k10) is restrained alone, the oscillation
probability is improved most significantly, and the probability is
increased about 7.3-fold compared with all parameters randomly
sampled (yellow bar in Figure 3C). While restricting the two
interaction terms characterized by k10 and k7 (inhibition of
caspase-8 by RIP3) at the same time significantly increases the
oscillation probability 19.5-fold compared with all parameters
randomly sampled.

We further systematically analyze the relationship between
oscillation probability and two-parameters variations. As the four
heat maps shown in Figure 3D, the high oscillation probability is
always in the top left of the diagonal line, indicating the larger value of
k6 or k10 compared to k7 or k8. Thus, the most probable dynamics of
the essential structure are shown in Figure 3E, indicating that RIP1
activates caspase-8with a fast dynamic (represented by k6), while RIP1
phosphorylates RIP3 with a relatively slow dynamic (represented by
k8). Moreover, caspase-8 blocks RIP3 (represented by k10) with a
relatively faster dynamics compared with the suppression of RIP3 by
caspase-8 (represented by k7). Therefore, above analysis indicates that
the fast and slow dynamics within the essential structure are
functionally significant for the occurrence of oscillation.

Aside from the essential structure, how the rest interaction
terms within the CNS circuit mediate the oscillation probability are

studied as well to identify the most probable structure for robust
oscillation. In addition to the distribution characteristics of four
parameters shown in Figure 3B, the distribution characteristics of
other parameters are shown in Figure 4A and Supplementary
Figure S3B. As the results indicated, the strength of this interaction
term of RIP1 activated by RIP3 (represented by k3) trends to be
strong to promote the occurrence of oscillation, while the other
terms prefer a weak or at an intermediate strength. Hence, themost
probable structure for oscillation of the CNS circuit is proposed
and presented in Figure 4B. Apparently within the structure, a
unidirectional bias is captured by the two feedback loops formed by
RIP1, caspase-8, and RIP3 (Figure 4C). That is, the negative
feedback loop interaction formed by k3, k6, and k10, and the
positive feedback loop interaction formed by k8, k4 and k7. The
negative feedback loop presents fast dynamics, while the positive
feedback loop presents slow dynamics, which provides a general
underlying mechanism for the oscillation behavior of the CNS
circuit.

Classification of Oscillation Behaviors by
Amplitude and Period
Our above analysis determines the essential structure and further
reveals the unidirectional bias with fast and slow dynamics for
oscillation of the CNS circuit. The distribution of various oscillation
behaviors can be characterized by amplitude and period, as shown in
Figure 5A. We thus divide the total oscillation groups in detail

FIGURE 4 | The unidirectional bias within the CNS circuit. (A) The parameter distributions of the other six parameters in the core module of the CNS circuit except
that shown in Figure 3B. (B) Schematic diagram of the interaction strength within the CNS circuit for inducing the high probability of oscillation. The thickness of the line
represents the optimal value in the parameter distribution. (C) The unidirectional bias captured by the feedback loops formed by RIP1, caspase-8, and RIP3. Thick red
lines indicate strong fast interaction, while thin blue lines indicate weak slow interaction.
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according to amplitude and period. As a fact, experimental data are
lacking to set the boundary of amplitude and period of different
oscillation behaviors. In our study, the boundary of period is set to
100min based on the osicllation period of NF-κB, which is also an
important cell death regulator [10, 73]. While the boundary of
amplitude is set to 0.4, which is the median value of all the counted
amplitudes. The boundary of amplitude divides the oscillation

behavior into low amplitude and high amplitude. The boundary
of the period divides the behavior into fast and slow oscillation. The
results in Figure 5A show that the low amplitude accounts for about
37.74% and the slow period accounts for about 13.42% of the total
oscillation groups. As shown in Figure 5B, there are four types of
oscillation, i.e., Low-Fast (LF): fast low-amplitude oscillation
(36.63%), Low-Slow (LS): slow low-amplitude oscillation (1.11%),

FIGURE 5 | Four types of CNS circuit oscillation behaviors. (A) The probability distribution of amplitude and period of pRIP3 oscillation in total 14,906 groups.
OSC � 0.4 and period � 100 min are set as the boundary for amplitude and period, respectively. (B) Four typical oscillation behaviors and their corresponding
probabilities. Low-Fast (LF): fast low-amplitude oscillation, Low-Slow (LS): slow low-amplitude oscillation, High-Fast (HF): fast high-amplitude oscillation, and High-Slow
(HS): slow high-amplitude oscillation. (C) Time series of the four typical oscillation behaviors. (D)Comparison of parameter distribution of k4 and k10 between LF and
HF oscillation. The upper magenta and light brown histograms represent the parameter probabilities in the sub-range, and the curves fit the parameter distribution
characteristics of the two oscillation behaviors respectively. The scatter diagram of the bottom panel shows the distribution error of the whole parameter space. (E) Total
difference of distributions for the six parameters within the unidirectional bias between LF oscillation and HF oscillation. If the value exceeds 0.2, it is defined that there is a
significant difference.
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High-Fast (HF): fast high-amplitude oscillation (49.95%), and High-
Slow (HS): slow high-amplitude oscillation (12.31%). The
representative time series of the four types oscillation behaviors
are displayed in Figure 5C.

To investigate the discrepancy among different types of
oscillation, the link between the parameter characteristics
within the unidirectional bias (Figure 4C) and the four types
of oscillation are further explored. We take the top two high

FIGURE 6 | Oscillation dynamics and bifurcation behavior of an example of deterministic CNS circuit. (A) Bifurcation diagram of TNF stimulation strength in a
deterministic circuit. The solid and dashed black lines respectively represent the stable and unstable equilibrium points of the system, the colored lines represent the
extremes of the oscillations, and the colors of the dots in the sub-figure represent the periods. (B) Landscape of the CNS system with an annular potential well, and the
two-dimensional phase diagram in the lower panel has two typical evolution trajectories. (C) Bifurcation diagrams of three representative parameters within the
unidirectional bias of the circuit. (D) The phase diagram of k8-k10 two-dimensional parameter space, the upper and lower panels on the left respectively indicate
amplitude and period, and the warm color indicates high amplitude and fast period oscillation behavior. The four typical time series on the right panel correspond to the
four points in the phase diagram, where the values of (k8, k10) are (8.0, 0.68), (0.29, 0.12), (9.5, 3.5), and (1.5, 0.3) respectively.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 7266388

Xu et al. Oscillations in Necroptotic Signaling

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


probability of oscillation, LF and HF as an example. The spatial
parameter distribution of the LF and HF are presented in the top
panel of Figure 5D (k4 and k10) and Supplementary Figure S4.
We further calculate the spatial distribution difference of
parameters under the two oscillation forms (Supplementary
Information S1.2). The results of the probability distribution
difference between LF and HF for each subspace are shown in the
bottom panel of Figure 5D. Then, the statistical diagram of the
total difference of distributions for the six parameters within the
unidirectional bias (Figure 4C) is shown in Figure 5E, indicating
that parameters of k4 and k10 are the top two significant
differences between LF and HF oscillation. Hence, from the
point of dynamics mechanism, the suppression of RIP1
(represented by k4) and RIP3 (represented by k10) by caspase-
8 are important for determining the amplitude behavior of fast
oscillation.

Oscillation Behaviors Switching Controlled
by the Unidirectional Bias
Having classified the four typical oscillation behaviors of the CNS
circuit, we next seek to explore their switching dynamics. For
simplification, we select a set of deterministic parameters in a
reasonable biological range (Supplementary Information S2.1)
as an example to investigate the switching of oscillation behaviors
by tuning the interaction terms within the unidirectional bias.
Dynamic behavior of the deterministic model upon TNF
stimulation is shown by the bifurcation diagram in Figure 6A.
The solid and dashed black lines respectively represent the stable
and unstable equilibrium points of the system, and the colored
lines represent the maximum and minimum amplitudes of the
oscillations. A more detailed oscillation behavior (amplitude and
period) is shown in the sub-figure, indicating that the stimulation
strength of TNF for the deterministic system to oscillate ranges
from 0.11 to 0.14.

To systematically study the stochastic properties of the CNS
oscillations, we further employed the recently developed potential
landscape theory [74–77] that describes the global dynamic
behavior of the CNS system in phase space (Supplementary
Information S1.2). The dimensionless potential function (U)
and steady state probability distribution (P) of the system is given
by the Boltzmann relation, that is, U � −log(P). The system
exhibits HS oscillation upon TNF � 0.13 and the corresponding
potential landscape of the system that mapped onto the caspase8-
RIP3 phase space is shown in Figure 6B. As a result, the system
evolves into a unique annular valley from any initial values,
indicating that there is a unique limit cycle in the two-
dimensional phase space. Taking two typical evolution
trajectories as examples (Figure 6B, down panel), it is shown
that the system will eventually evolve into the ring trap in any
initial state. Similar results of potential landscapes that mapped
onto other two-dimensional phase spaces are shown in
Supplementary Figure S5.

Bifurcation analysis of all the six sets parameter within the
unidirectional bias of the system is performed and the results
shown in Figure 6C and Supplementary Figure S6, confirming
that variations of these parameters can efficiently switch the

oscillation behaviors besides k3. As an example presented in
Figure 7A, the dynamic behavior of the deterministic system is
switched from HS oscillation (green line) to LS oscillation (black
line) by tuning the interaction term of caspase-8 activated by
RIP1. However, no matter how single interaction term is tuned of
the system, we could not realize the transition from fast to slow
oscillation behavior, which is supported by the bifurcation
diagram of all parameters shown in Figure 6C and
Supplementary Figure S6. To further quantitative analysis the
regulation mechanism of interaction parameter k_i in oscillation
behavior, the phase diagrams in two-dimensional parameter
space are shown in Figure 6D and Supplementary Figure S7.
Two panels on the left of Figure 6D respectively show the phase
diagrams of amplitude (upper panel) and period (lower panel) in
the phase space of k8–k10, in which the amplitude is characterized
by oscillation coefficient. The four typical representative time
series of pRIP3 are displayed in the right panel, and they
correspond to four parameter combinations in the left phase
diagram. Here, the quantified values of amplitude and period of
oscillation behavior are marked in the figure, also only indicating
that oscillation has been switched between HS and LS.

Next, we try to tune the interaction of two terms at the same
time to obtain the switching of the system from HS oscillation to
LF or HF oscillation. As the simulation results shown in Figures
7B,C, by simultaneously tuning the two interaction terms of RIP1
suppressed by caspase-8 and RIP1 phosphorylated by RIP3, the
HS oscillation is converted into HF (yellow line) or LF oscillation
(red line). We further perform the phase diagram of the system
with these two terms (Supplementary Figure S8). There are two
discontinuous oscillation regions, one slow oscillation region and
one fast oscillation region, revealing that the CNS oscillation
circuit has strong period robustness and relatively weak
amplitude robustness. In addition, the landscapes of the
system after corresponding switching are shown in Figures
7D–F. The characteristics of the oscillation behavior can be
displayed globally by quantifying the landscape topography.
The size of the potential well on the two-dimensional phase
plane quantitatively characterizes the amplitude. While the depth
and breadth of the potential well reflect the stability and
attraction domain of the limit cycle attractor [78].

Strong Period and Weak Amplitude
Robustness of the CNS Oscillation
In the previous section, we have explored the switch mechanism
between different oscillation behaviors using a deterministic
system, implying that the fast oscillation behavior of the
system has strong robustness. We next comprehensively
investigate the robustness of the CNS oscillation network. We
randomly select 100 systems from each of the four types
oscillation behaviors. The value of the parameters in the
unidirectional bias are tuned sequentially and continuously in
the whole range, and the maximum value of oscillation amplitude
change and the maximum value of oscillation period change are
recorded. The violin plots in Figure 8 show the effects of the six
parameters within the unidirectional bias on the amplitude and
period of the four types of oscillation. The wide area in the violin
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plot means that the data density in this region is higher, and the
white dots in the box diagram embedded in the violin plot are the
median of the data.

The statistical results indicate that the period robustness of the fast
oscillation systems (LF and HF) is stronger than that of the slow
oscillation systems (LS and HS), but the amplitude robustness is
weaker. For HF oscillation system, the amplitude robustness is the
weakest, especially for the statistical results of amplitude sensitivity of
k3, k4, and k6, which present two obvious high-density regions. This
suggests that most HF oscillation systems are easy to switch to LF
oscillation by tuning these interactions. However, owing to the strong
period robustness, it is difficult to switch HF oscillation to HS or LS.
For LS oscillation system, the amplitude robustness is the strongest
among the four types, but its period robustness is the weakest. Thus,
we can switch LS oscillation to LF by tuning a single interaction term,
but it is difficult to switch to HS or HF. The results of other relative
parameters are shown in Supplementary Figure S9, supporting the

conclusion that the robustness of fast oscillation systems (LF and HF)
is stronger than that of the slow oscillation systems (LS and HS).
Therefore, these results provide potential guidance for efficiently
switching oscillation behaviors among various types.

DISCUSSION

Oscillations are important characteristics for regulating many cellular
physiological processes, which are conducive to stable diffusion of
biological signals in vivo. In this study, we propose a circuit of the CNS
pathway and further reveal the essential components and pivotal
interaction terms for oscillation. Stochastic parameter analysis
indicates that the essential structure for oscillation is constituted by
a paradoxical component embedded with positive feedback among
the three protein nodes, i.e., RIP1, caspase-8, and RIP3 (Figure 2D).
The negative feedback of caspase-8 cleavage by pRIP3 could provide

FIGURE 7 | Parameters tuning in loop of the unidirectional bias leads to oscillation behavior changes. (A) The values of (k6, j6) from (0.24, 3.2) to (0.38, 3.55)
switches the system behavior from HS oscillation (OSC � 0.46/period � 209.5) to LS oscillation (OSC � 0.12/period � 201.2). (B) The values of (k4, j3) from (0.2, 78.6) to
(2.3, 0.005) switches the system behavior from HS oscillation (OSC � 0.46/period � 209.5) to HF oscillation (OSC � 0.83/period � 99.0). (C) The values of (k4, j3) from
(0.2, 78.6) to (2.19, 0.22) switches the system behavior from HS oscillation (OSC � 0.46/period � 209.5) to LF oscillation (OSC � 0.20/period � 66.0). (D–F)
Landscape of the system with switching oscillation behavior by tuning parameters. (D) The LS oscillation corresponds to sub-figure (A). (E) The HF oscillation
corresponds to sub-figure (B). (F) The LF oscillation corresponds to sub-figure (C). The gray curve in the lower panel represents an evolution trajectory in the
phase plane.
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an indirect time delay effect within the paradoxical component, which
is consistent with the previous study that a paradoxical component
with time delay could induce oscillation [27]. Most recently, we have
found that the paradoxical component is also necessary for the
biphasic roles of RIP1 in necroptosis [66], indicating that the
paradoxical component is a core module for the CNS pathway to
induce various dynamic behaviors.

We also explore how each component and interaction termwithin
the circuit mediate the oscillation occurrence probability. Our results
suggest that high levels of RIP1 and caspase-8 accelerate the

occurrence of oscillation, while high level of TRADD reduce the
probability. Thus, the oscillation of CNS pathway likely occurs in the
cell types with high expression levels of RIP1 and caspase-8, and low
expression level of TRADD. For efficiently inducing the occurrence of
oscillation, we show that a unidirectional bias with incoherent fast and
slow dynamics is required. Actually, besides the cell death type of
necroptosis, oscillation has been proved to be important for
propagating the death signaling of apoptosis and ferroptosis. Our
results provide a valuable guidance for the finding of oscillation
behaviors in CNS pathway, which will further advance our

FIGURE 8 | Parameter sensitivity analysis of the four types oscillation behaviors. The Magenta violin plots represent LF oscillation, the sallow violin plots represent
HF oscillation, the navy violin plots represent LS oscillation and the turquoise violin plots represent HS oscillation. The box diagrams embedded in violin diagrams show
the extreme and median values of the variations of OSC and period. 100 random systems corresponding to each biological oscillation behavior were considered. The
box plots are embedded in each violin, and white dots represent the median of statistical data.
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knowledge of the mediation of various necroptotic signaling on
cell death.

Biological oscillation signals contain the information of amplitude
and period. Different types of oscillation signals selectively activate the
downstream signaling and thus performing different biological
functions. Our recent study has uncovered that the cytosolic
calcium regulates apoptosis mainly through the oscillation
amplitude, rather than period [14]. In this study, four types of
oscillation behaviors have been classified within the CNS circuit.
We have determined their probability distributions and discussed the
robustness of these behaviors. The amplitude and period robustness of
different oscillation behaviors are significantly different. We also
evaluate the possible switching strategies among different
oscillation behaviors. Our results of potential landscape provide a
physical and quantitative explanation for the mechanism of mode-
switching behavior of the CNS oscillation network. An urgent
question is that how different oscillation behaviors can activate the
downstream signaling, such as MLKL, thus determining the diverse
cell fates. Salazar et al. proposed that oscillation signal is more effective
than stabilization signal when kinase has a low affinity [79]. Hansen
et al. found that the information transmitted via amplitude
modulation signal is more reliable than that transmitted by
frequency modulation signal in stress-responsive of yeast
transcription factors Msn2 [80]. We suspect that RIP3 oscillation
dynamics may transmit necrosis signals downstreammore effectively,
and MLKL can decode the information according to the amplitude
and period of RIP3. However, modeling analysis of the effects of
different oscillation behaviors on biological functions is still a
challenge because of the lacking of effective experimental data.
With the combination of further experimental observations, a
more comprehensive model can be considered to dissect this
urgent issue in the future. Moreover, emerging evidences have
suggested the important role of oscillatory behavior in drug
delivery [81, 82]. Our study provides clues for efficiently switching
different oscillation behaviors, which is relevant to the development of
more effective strategy for medical application.

The spatial structures of oscillation model might play important
roles in the cell necroptosis signal pathway. In 2018, Ferrell et al.
observed that apoptosis of Xenopus laevis eggs spread through trigger
waves [20]. Specifically, intracellular caspase family proteins are
activated and then come into contact with adjacent caspase by
floating and activating them. The apoptotic trigger waves with the
speed of∼30 μmperminute or even faster, while the average diameter
of the normal cell is 10–20 μm. Thus, the spatial spread time of the
proteins signaling is quite fast compared with the time from the
initiation of programmed cell death to the end of ∼12 h [83]. In our
study, the necroptosis signal pathway is highly correlated with the
apoptosis signal pathway [61, 84]. The occurrence time from the

initiation to the end of necroptosis is about 6–10 h. Thus, the spatial
structure of intracellularmolecules can be approximated by themean-
field relative to the time scale of the cell death signaling. Actually, most
protein-protein interaction network models were modeled in 2-
dimensions, which can make great achievements in explaining
experimental phenomena and predicting biological functions [9,
14]. This possibly due to the different time scales between proteins
activation time and the spatial spread time. In our future work, we will
decide to consider the spatial structures of the model and hope to find
more important results.
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