
Negative Photoconductive Effects in
Uncooled InAs Nanowire
Photodetectors
Xingfei Zhang1,2, Yiyun Zhang1,2*, Dong Pan2,3*, Xiaoyan Yi1,2, Jianhua Zhao2,3 and
Jinmin Li1,2

1R&D Center for Solid-state Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, 2State Key
Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China,
3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China

One-dimensional, direct, and narrow band gap indium arsenide (InAs) nanowires (NWs)
have been emerging with great potentials for the next-generation wide-spectrum
photodetectors. In this study, metal–semiconductor–metal (MSM) structure InAs NW-
based photodetectors were fabricated by transferring MBE-grown NWs onto a sapphire
substrate via a mechanical stamping method. These NW detectors exhibit strong negative
photoconductive (NPC) effects, which are likely caused by the carrier dynamics in the “core-
shell” structure of the NWs. Specifically, under the irradiation of a 405 nm violet laser, the
maximum Idark/Ilight ratio reaches ∼102 and the NPC gain reaches 105 at a low bias voltage of
0.2 V. At room temperature, the rise and decay times of InAs NW devices are 0.005 and
2.645 s, respectively. These InAs NWdevices with a high Idark/Ilight ratio and NPC gain can be
potentially used in the field of vis/near-IR light communication in the future.
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INTRODUCTION

In recent years, III-V semiconductor nanowires (NWs) have attracted great attention in the areas of
wide-spectrum photodetectors with high photoconductive gain and fast response and have achieved
tremendous progress [1–10]. Among them, indium arsenide (InAs) NWs are used as an alternative
material for photodetectors because of their high electron mobility, intrinsic narrow band gap
(0.35 eV), and other excellent properties [11–19]. In the meanwhile, InAs NWs also have a huge
specific surface area and abundant surface defect states, which makes them outstand as an important
role in photosensitive devices [20–26]. Interestingly, unlike other NWs that have a positive
photoconductive (PPC) effect [17, 27, 28], the intrinsic InAs NWs have negative
photoconductive (NPC) effects in contrast [29–31], that is, as the excitation power intensity
increases, the photocurrent in the channel would gradually decrease, some of which is even cut
off [29]. The main reason is that the indium at the outermost layer of the NW is easily oxidized in the
air to form indium oxide, leading to numerous defect-trapping centers with the indium oxide (InOx)
simultaneously [30, 32]. It is often called as the photogating layer (PGL) [29]. So far, designs of most
photodetectors based on NWs primarily aim to form a junction, in general, to achieve a larger net
photocurrent, such as the Schottky junction [33, 34], p-n junction [17], or heterojunction [35, 36], by
suppressing the dark current as much as possible. Among them, a typical design is the
metal–semiconductor–metal (MSM) photodetector, which is realized by two back-to-back
Schottky junctions. Recently, a new type of NW photodetector has been demonstrated to
enhance the response through the ferroelectric field [37]. These detectors have extremely high
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responsivity due to the low dark current. The use of narrow band
gap materials readily enables wide-spectrum detection and
extends their applications, but it is difficult to achieve good
responsivity at all wavelengths of interest [28, 30].

In this work, to explore the possibility of using InAs NWs as
the broadband photodetectors, we propose an MSM
photodetector based on InAs NWs grown by MBE. The
response of the device under various wavelengths of laser
irradiation is investigated. A considerable NPC effect is found,
which is strongly dependent on the wavelengths of incidence. It
can be largely attributed to the carrier redistribution dynamics in
the intrinsic “core-shell” structure, consisting of the oxides on the
crust of the NW and its interiors. Especially, under 405 nm laser
irradiation, the detector has the largest Idark/Ilight ratio,
responsivity, and response speed.

EXPERIMENTAL SECTION

The InAs NW array was grown on commercial p-type silicon
(111) wafers by MBE [38]. To start the processing, InAs NWs

were first transferred onto pre-cleaned sapphire substrates via
a mechanical stamping method. Then, standard
photolithography and electron beam evaporation were used
to fabricate the source and drain metal electrodes. A film of Ti/
Au with a thickness of 50/200 nm was deposited in sequence.
After the metallization, the metal lift-off process was carried
out and the sample was cleaned in the acetone and methanol
solutions for removing the photoresist residuals. The as-
fabricated InAs NW photodetector was checked by a
scanning electron microscope (SEM) (Hitachi S-4800,
Tokyo, Japan) and an atomic force microscope (AFM)
(D3100, Veeco, New York, United States). The surface
chemical composition was characterized using an X-ray
photoelectron spectroscope (XPS) (Thermo Escalab 250Xi,
Waltha). The optoelectronic properties of the fabricated NW
devices were characterized using a Lake Shore TTPX probe
station together with a Keithley 4200A-SCS semiconductor
parameter analyzer. The modulated continuous wave (CW) laser
was used as pulsed incident signals, which was coupled to a
multimode tapered optical fiber and guided to the tip as an
optical probe. The pulse width and intensity could be precisely

FIGURE 1 | (A) SEM image of the as-grown InAs NWs to transfer. The scale bar is 5 μm; (B) 3D schematic diagram of the device structure; (C) SEM image and (D)
AFM image of the as-fabricated InAs NW photodetector. The scale bar is 1 µm.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 7256802

Zhang et al. InAs Nanowire Photodetectors

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


tuned by the external modulator. The light spot shed on the sample
was about 500 μm2. The dynamic response of the device was obtained
bymeasuring the current at eachmoment under a given fixed voltage.
Moreover, all tests were carried out at room temperature and
atmospheric pressure.

The SEM image of the as-grown NW sample is shown in
Figure 1A, and the nominal length of the InAs NWs is about 5 µm.
Figure 1B shows the three-dimensional schematic diagram of the
device. Figure 1C presents a SEM image of an as-fabricated InAs
NW photodetector device with the channel length about 1.8 µm
and the diameter about 35 nm. Figure 1D shows theAFM image of
the InAs NW photodetector. The corresponding cross-sectional
line profile records the height variation across the InAs NW. The
maximum height (35.6 nm) marked with a pair of inverted
triangles can be taken to represent the actual nanowire diameter.

RESULTS AND DISCUSSION

As shown in Figure 2A, typical I–V curves were obtained when
the NW device was exposed to laser illumination at different
wavelengths (405, 650, and 940 nm), at a power density of
500 mW/cm2. Different from the conventional
photoconductive photodetectors, our test results reveal that the
photocurrent will decrease sharply as laser irradiation is shed on
the NW device. It can be clearly found that the response of the
nanowire detector to light becomes weaker as the wavelength of
light irradiation increases. For the InAs NW photodetector with a
physical size far smaller than the wavelength of incidence,
refraction of photons may lead to a weak light absorption.
This effect would get severer as the wavelength of incidence
gets longer, which is one of the main factors for low
photoresponse to the infrared light [39, 40]. In addition, the
surface electron accumulation layer has a great influence on
carrier transport, resulting in a lower detectivity in the

infrared regime as well [41–44]. Here, the Ilight is defined as
the photocurrent under the illuminated state. The Idark is defined
as the dark current, and the net photocurrent (IPC) is defined as
IPC � | Ilight–Idark |. Figure 2B shows the dark current to
photocurrent ratio as a function of bias voltage at different
wavelengths. Under different wavelengths of incidence, the
maximum dark current to photocurrent ratios are ∼130
(405 nm), ∼25 (650 nm), and ∼1.5 (940 nm).

To further understand the photoresponse characteristic of
these NW detectors, the dependence of device photocurrent to
the laser irradiation intensities (0.1, 50, 150, and 500 mW/cm2) is
investigated and depicted in Figure 3A. For a typical
photodetector with a positive photoresponse, the
photoconductive gain (G), defined as the number of charges
collected by the electrodes due to the excitation by one photon,
can be expressed as [17]

G � IPC
e

× hv

P
,

where hν is the energy of an incident photon, e is the electron
charge, and P is the light power absorbed by the InAs NW.
However, for the anomalous photoresponse in this work, the
negative photoconductive gain is defined as the number of
carriers absorbed by NWs per incident photon. In order to
compare better with other NW detectors, which
conventionally have a positive photoresponse, we chose to
adopt this similar definition. The only difference is that the
gain is negative in this case. Under the assumption that light
incident on the channel is absorbed completely, a negative gain of
2.8 × 105 is obtained at 0.2 V.

The photoresponsivity (Rλ) is a very important parameter for a
photodetector, which can be calculated as follows [28]:

Rλ � |IPC|
P

,

FIGURE 2 | (A) I–V characteristics of the InAs NW photodetector device under 405 nm (blue), 650 nm (red), and 940 nm (dark green) illumination. The inset shows
the zoom-in I–V curve swept from −0.1 to 0.1 V. The light intensity is 500 mW/cm2. (B) The dark current to photocurrent ratio as a function of bias voltage under laser
incidence with different wavelengths.
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where IPC is the net photocurrent and P is the light power absorbed
by the NW. The responsivity of the device at a bias voltage of 0.5 V is
shown in Figure 3B. The device exhibits a very large responsivity
(closed to 105 A/W) when the light intensity is reduced to 0.1 mW/
cm2, indicating a good sensitivity of the NW detector for weak
signals. The inset shows the histogram distribution of the maximum
Idark/Ilight ratio collected from 22 single InAs NW photodetectors.
The devices all exhibit good negative photoelectric response, with the
highest Idark/Ilight ratio of 700 being achieved.

The dynamic photoresponse is another important
parameter to evaluate the performance of the detector. The

time-resolved photoresponse of NW photodetectors is shown
in Figure 4. The frequency of the modulation signal is set as
0.1 Hz, while the duty cycle is 50% and the light intensity is
150 mW/cm2. The detector can work stably after dozens of
complete cycles. The rise and decay time constants, defined as
the time interval for the current rise from 10 to 90% of the peak
value and vice versa, representing the response and recovery
time, are found to be 0.005 and 2.645 s, respectively, indicating
the fast response and the slow recovery of the device. Different
from the positive photoresponse, although the negative
photoresponse exhibits a relatively fast photocurrent

FIGURE 3 | (A) I–V characteristics of the InAs NWphotodetector under the 405 nm laser incidence at 0.1, 50, 150, and 500 mW/cm2. The inset shows the zoom-in
I–V curve swept from −0.1 to 0.1 V. (B) Responsivity as a function of the incident illumination intensity. The inset shows the histogram of the maximum Idark/Ilight ratio of 22
InAs NW photodetectors.

FIGURE 4 | (A) Photoresponse of the NW photodetector under an illumination intensity of 150 mW/cm2. The chopped pulse frequency is 0.1 Hz, and the duty
cycle is 50%. (B) A high-resolution transient photoresponse of the device to a pulse incidence.
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response process, the photocurrent recovery process is
relatively slow. The slow recovery of photocurrent is
believed to be caused by the increase in the dynamic
relaxation time of carriers because of the traps in the light-
induced gating layer. By fitting the light recovery current
according to the following equation [32]:

I � I0[1 − A exp(t0 − t)
τrec1

− B exp(t0 − t)
τrec2

],
τrec1and τrec2 correspond to the lifetimes in the recombination
processes. One is coming from the surface depletion region
relaxation, and the other is a slow recovery process dominated
by the trapping of carriers via defect states, which can be
estimated to be about 0.245 s and 2.400 s, respectively, as
shown in Figure 4B.

To further explain the NPC effect, the chemical composition
of the nanowires was first tested and analyzed using the high-
resolution XPS, as shown in Figure 5. From the spectra, three
sharp peaks at 40.63, 443.99, and 531.14 eV can be observed,
representing the As3d, In3d, and O1s peaks, respectively.

Furthermore, the In3d characteristic doublet peaks are
shown in Figure 5C. The In3d 5/2 and In3d 3/2 binding
energies appear at 443.9 and 451.4 eV, respectively. These
observations have clearly shown the existence of the
oxidization layer as the InAs NW exposed to the air. When
there is no light, the free electrons in the NW core are driven by
an external electric field to form a current, which is the so-
called dark current. Due to the numerous defects, the Fermi
level of the NW surface is pinned, leading to an energy bending
in both conduction and valence bands. Acting as the PGL, the
oxide layer would trap photogenerated carriers through the
surface states, leading to a loss in the number of the carriers
[29]. Additionally, it is worthy to note that surface scattering
and recombination processes will also cause a degradation of
the electron mobility close to the surface of the nanowire [45].
Meanwhile, as the incident power is very low, the
photogenerated carriers would also recombine in the
collection process, all contributing to a sharp decrease in the
channel current. The NW size may play a role in the
redistribution of carriers as well. [45, 46].

FIGURE 5 | (A) High-resolution XPS spectra of InAs NWs. XPS spectra of (B) As3d and (C) In3d. (D) O1s for InAs NWs.
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CONCLUSION

To conclude, InAs NWs have been grown on p-type silicon
(111) wafers by MBE, and high-performance MSM
photodetectors have been demonstrated. A high
responsivity of approximately 105 A/W, an NPC gain of
over 105, an Idark/Ilight ratio of more than 100, and a fast
response time of less than 5 ms are obtained under normal
temperature and pressure under 405 nm laser irradiation.
Further analysis found that InAs nanowires are easily
oxidized in the air, forming a gating layer, which can
capture the photogenerated carriers in the nanowires.
Moreover, this NW photodetector will pave a way to
enable novel high-sensitivity broad-spectrum room-
temperature detection.
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