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Regular pattern is a typical feature of vegetation distribution and thus it is important to study
the law of vegetation evolution in the fields of desertification and environment conservation.
The saturated water absorption effect between the soil water and vegetation plays an
crucial role in the vegetation patterns in semi-arid regions, yet its influence on vegetation
dynamics is largely ignored. In this paper, we pose a vegetation-water model with
saturated water absorption effect of vegetation. Our results show that the parameter
1/P, which is conversion coefficient of water absorption, has a great impact on pattern
formation of vegetation: with the increase of P, the density of vegetation decrease, and
meanwhile it can induce the transition of different patterns structures. In addition, we find
that the increase of appropriate precipitation can postpone the time on the phase transition
of the vegetation pattern. The obtained results systematically reveal the effect of saturated
water absorption on vegetation systems which well enrich the findings in vegetation
dynamics and thus may provide some new insights for vegetation protection.
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1 INTRODUCTION

In nature, vegetation is very widely distributed in different places all over the world. At the same
time, vegetation, as a producer in nature, converts carbon dioxide into carbohydrates through
photosynthesis, which ensures the food source for humans and animals and keeps the content of
carbon dioxide and oxygen in the environment relatively stable [1, 2]. Moreover, the soil and
water conservation function of vegetation is also very significant. For example, vegetation can
reduce the loss of rainwater on the surface and the erosion of the surface soil, and protect the
sloping land. Vegetation stems and leaves release water vapor into the atmosphere by
transpiration, so that water vapor emitted into the atmosphere and condensed water
alleviates drought. Based on the above functions of vegetation, it is particularly necessary to
study vegetation dynamics [3–6].

In recent years, duo to the impact of the greenhouse effect on human life and climate, vegetation
plays an indispensable role in climate regulation [7, 8]. As for vegetation, people are always
concerned about its growth and distribution. There are many factors affecting vegetation
distribution, among which climate, geographical conditions and human factors are the most
important. Moreover, different conditions will form different vegetation structure, and
inhomogeneous distribution of vegetation is called vegetation pattern [9]. Pattern is a kind of
non-uniform macroscopic structure with some regularity in space or time, which is ubiquitous in
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nature, such as stripes of clouds in the sky, waves on the water,
figures on the animals and regular spatial pattern which observed
in spatiotemporal systems far from equilibrium states [10, 11].

Patterns have been extensively studied and a wide range of
patterns are found including vegetation patterns [12], infectious
disease patterns [13], and patterns on predator-prey systems
[14–16]. They are induced by different mechanisms and it is
vital to understand these mechanisms. Mathematical modeling
has become one of the most useful tools in exploring the
mechanisms on vegetation dynamics including pattern
formation and ecological functions [17]. There are many
studies on vegetation pattern. In 1997, Lefever and Lejeune
established a single-variable model, which revealed a resource
competition mechanism among vegetation communities, namely
promotion at short distance and inhibition at long distance [18].
In 1999, Klausmeier firstly proposed the classical vegetated-water
model, explaining the regular stripes on the slopes and irregular
mosaics on the ground, and pointed out that nonlinear
mechanisms play a major role in determining the spatial
structure of plant communities [19]. In 2013, Sun et al.
revealed the relationship between precipitation and pattern
formation: when rainfall is small, the vegetation will form spot
pattern; when precipitation increases, the density of the spot
pattern will increase, and vegetation appears as spot-stripes
mixed pattern with low density [20]. In 2018, Liu et al.
proposed a cross-diffusion vegetation system, in which the
phenomenon of spot pattern transition was found [17]. In
addition, cross-diffusion increased the vegetation density. In
2017, Zhang et al. proposed a vegetation-soil model and
explained that wind can induce the generation of vegetation
spot pattern. These models do not take into account that
vegetation water absorption is not immoderate [21]. When
vegetation water absorption reaches a certain degree,
vegetation water absorption rate will decrease, which is called
the saturation effect of vegetation water absorption. Yuval
revealed that high water absorption and rapid diffusion of
water in perennial herbs [22]. Of particular interest, this work
showed that the pattern transition between multi-steady states is
not necessarily catastrophic, yet it can be gradually phase-
changed. Based on the observation data of mathematical
model, the cause of fairy circles vegetation patch is explained
as intra specific competition and the scale dependent effect of
vegetation between animals that capture from plants [23]. There
are also some work on the early warning signal of desertification
[24–26].

Water absorption by vegetation is an important process of
vegetation growth. The existed work assumed that water
absorption is a linear function of vegetation biomass [6, 9, 19].
However, many types of vegetation have a saturation effect when
absorbing water [27–30], which is generally not well studied by
scientists. In fact, this saturated water absorption may have great
influences of the vegetation pattern. In this sense, we will show
the effect of saturation on the dynamical behavior of vegetation
system.

The paper is organized as follows. In Section 2, we pose a
vegetation-water model with saturated water absorption of
vegetation and mathematical analysis on the emergence of

Turing patterns is presented. In Section 3, we reveal the
influences of saturated water absorption of vegetation on the
patterns and persistence of vegetation system. In the last section,
we give some discussion and conclusion.

2 MATHEMATICAL ANALYSIS

In this section, we will introduce two-dimensional model to
descrbe the interactions of vegetation and water, which is
posed by Klausmeier [19]:

zW
zT

� A − LW − RWN2 + V
zW
zX

,

zN
zT

� RJWN2 −MN + DΔN.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

In the abovemodel, there are seven parameters, which are used
to depict vegetation physiological phenomena and the change of
water. They are all positive depend on what the parameters mean.
The first equation of the model (1) represents the change of water.
A represents precipitation and water is reduced by evaporation at
rate LW. Vegetation absorbs water at rate RG(W)F(N)N, where
G(W) � W is saturated water absorption on vegetation, and take
F(N) � N. The second equation of the model (1) is used to
simulate the growth process of vegetation, where J is the
conversion rate of vegetation into biomass through water
absorption and M is lost through mortality. Water flow
downhill at speed V and vegetation dispersal is modeled by a
diffusion term with diffusion coefficient D.

In this work, we introduce a model contains two variables with
saturated vegetation water absorption. This model is more
reasonable compare with that model, in which the saturation
of vegetation in absorbing water is not taken into account. It is
because that the physiological process by which vegetation
absorbs water from the soil and forms vegetation biomass is
not inordinate, instead, as water increases, it is absorbed by

FIGURE 1 | Saturated water absorption on vegetation. When the water
concentration is small, the water absorption of vegetation will increase with the
increase of water concentration. However, as the water concentration
continues to increase, the water absorption of vegetation tends to be
constant.
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vegetation to a state of saturation. Therefore, we take F(N) � aN
1+bN

to model the saturated water absorption of vegetation (Figure 1).
At the same time, due to the diffusion of water, we will add

D1Δ �W to our system, namely:

z �W

z�T
� A − L �W − R �W

a �N2

1 + b �N
+ D1△ �W,

z �N

z�T
� RJ �W

a �N2

1 + b �N
−M �N + D2Δ �N ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

where the biological meanings and units of the parameters in
system (2) can be found in Table 1.

Let

t � L�T , N � b �N , B � M
L
, S � RJaA

L2b
, P � Ra

Lb2
,

W � RJa
Lb

�W, x �
����
bD2

L

√
X, y �

����
bD2

L

√
Y , D � D1RJa

D2Lb2
.

After the original system (2) is dimensionless, the following
system is obtained:

zW
zt

� S −W − P
WN2

1 + N
+ D△W,

zN
zt

� WN2

1 + N
− BN +△N .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

The initial conditions and boundary conditions are as follows:

W(x, y, 0)> 0, N(x, y, 0)> 0, (x, y) ∈ Ω � 0, Lx[ ] × 0, Ly[ ], (4)

zW
zn⃗

� zN
zn⃗

� 0, (x, y) ∈ zΩ,

where Lx and Ly give region size in the directions of x and y
respectively, n⃗ is the outward unit normal vector of the boundary
zΩ, here we consider the boundary zΩ with no flux, namely,
Neumann boundary [31–33].

In the absence of diffusion, we consider the following
system:

dW
dt

� S −W − P
WN2

1 + N
bf (W,N),

dN
dt

� WN2

1 + N
− BNbg(W,N).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

It is easy to gain that system (3) has a boundary equilibrium
E0 � (S, 0) and two positive equilibriums

E1 � W1,N1( ) � B+ 2PB2

S−B+
������������
(B− S)2 − 4PB2

√ ,
S−B+

������������
(B− S)2 − 4PB2

√
2PB

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

E2 � W2,N2( ) � B+ 2PB2

S−B−
������������
(B− S)2 − 4PB2

√ ,
S−B−

������������
(B− S)2 − 4PB2

√
2PB

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

provided that

(1)S>B; (2)(B − S)2 − 4PB2 > 0; (3)
�������������
(B − S)2 − 4PB2

√
< S − B.

Under conditions (1), (2), (3), we focus on the stability of three
equilibriums E0, E1, and E2. The Jacobian matrix corresponding
to equilibrium (Wp, Np) as follows:

J � a11 a12
a21 a22

( ),
where a11 �−1− PN2

1+N, a12 � −2PWN
1+N + PWN2

(1+N)2, a21 �
N2

1+N, a22 � 2WN
1+N − WN2

(1+N)2.

Then we can gain the linearized system:

dW
zt

� a11W + a12N ,

dN
zt

� a21W + a22N .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

And characteristic equation is:

λ2 − a11 + a22( )λ + a11a22 − a12a21 � 0, (7)

where

− a11 + a22( ) � b1,

a11a22 − a12a21 � b2.

i) When we consider E0(S, 0), one can obtain

|λE − J|E0 � (λ + B)(λ + 1),
and thus it is clear that E0(S, 0) is stable.

ii) When we consider E1 � (W1, N1), then one can obtain the
Jacobian matrix of system (5) at equilibrium E1:

TABLE 1 | Description of the parameters in the model (2).

Parameter Units Description

A kg/m2yr−1 Precipitation rate
L yr−1 Water evaporation rate
R (kg/m2)−1yr−1 Water consumption rate
J (kg/m2)−1yr−1 Conversion coefficient of plant water absorption into biomass
A − Water absorption rate
B − Saturated rate
M yr−1 Mortality rate
D1 m2/yr−1 Diffusion coefficient of seed
D2 m2/yr−1 Diffusion coefficient of soil-water
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J|E1 �
−1 − PN2

1

1 + N1
−PB N1 + 2( )

1 + N1

N2
1

1 + N1

B
1 + N1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

F(λ)|E1 � |λE − J‖E1 � λ2 + b11λ + b12,

where

b11 � 1 + PN2
1 − B

1 + N1
, b12 � B PN2

1 − 1( )
1 + N1

.

Therefore the necessary and sufficient conditions for the
equilibrium E1 being stable is b11 > 0 and b12 > 0.

Now combining biological significance of each parameter, S >
B holds. Then

b12 � △ +(S − B) ��
△

√
S − B + ��

△
√ + 2PB

> 0,

where △ � (B−S)2− 4PB2. In the following, we consider the sign
of b11,

b11 � 1 + (S − B + ��
△

√ )2 − 4PB3

2B(S − B + ��
△

√ + 2PB)
� 1 +△ +(S − B) ��

△
√ + 2PB2(1 − B)

B(S − B + ��
△

√ + 2PB) .

When S(S − B) + S
��
Δ

√
> 2PB3, b11 > 0 holds.

iii) Next, we investigate the stability of E2 � (W2, N2). Similarly,
we note the above equation as:

F2(λ) � λ2 + b21λ + b22,

b21 � 1 + PN2
2 − B

1 + N2
, b22 � B PN2

2 − 1( )
1 + N2

.

Substituting N2 for b21 and b22, then we can obtain:

b21 � Δ −(S − B) ��
Δ

√ + 2PB(1 − B)
B(S − B − ��

Δ
√ + 2PB) + 1, b22 � Δ −(S − B) ��

Δ
√

S − B − ��
Δ

√ + 2PB
.

Then analyzing the sign of b21 and b22. Because��
Δ

√ �
�������������
(S − B)2 − 4PB2

√
< S − B,

therefore b22 < 0. So the equilibrium E2 is unstable.
Therefore the system has only one stable positive equilibrium

E1. From biological perspective, we are interested in studying the
stability behavior of E1. The Jacobian matrix corresponding to E1
is as follows:

J � a111 a112
a121 a122

( ),
where

a∗11 � −1 − (S − B + ��
Δ

√ )2
2B(S − B + ��

Δ
√ + 2PB)< 0,

a∗12 � −PB 1 + 2PB

S − B + ��
Δ

√ + 2PB
( )< 0,

a∗21 � − (S − B + ��
Δ

√ )2
2PB(S − B + ��

Δ
√ + 2PB)< 0,

a∗22 �
2PB2

S − B + ��
Δ

√ + 2PB
> 0.

In the absence of diffusion, E1 is stable, whereas become
unstable when diffusion is added, which is called Turing instability.

zW
zt

� a11W + a12N + DΔW,

zN
zt

� a21W + a22N + ΔN .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

Nonuniform perturbation near the equilibrium point E1:

w
n

( ) � w∗

n∗( ) + ε
wk

nk
( )eλt+ikn⃗ + c · c · +O ε2( ), (9)

where λ is the growth rate of perturbations in time t, and i is the
imaginary unit, k is the wave number, r

⃗ � (x, y) is the spatial
vector in two dimensional space and c. c. stands for the complex
conjugate. Substituting (Eq. 9) into (Eq. 8), we obtain
characteristic equation:

λ2 − tr(k)λ +△k � 0,

where

trk � a11 + a22 −(1 + D)k2 � tr0 − k2(1 + D), (10a)

Δk � a11a22 − a12a21 − k2 a11 + a22D( ) + k4D � Δ0 − k2 a11 + a22D( ) + k4D.

(10b)

It is easy to get trk < 0 for any k due to that tr0 < 0, while the
sign of △k is indeterminate. Hopf bifurcation occurs when Im
(λ0) ≠ 0, Re (λ0) � 0, that is a11 + a22 � 0, a11a22 − a12a21 > 0, then
we obtain critical Hopf bifurcation curve a11 + a22 � 0. Then
choosing S as Hopf bifurcation parameter, then

SH � B2

B − 2
, (11)

Im (λk) � Re (λk) � 0 at k � kT ≠ 0, that is ΔkT � 0. And critical
wave number satisfies

k2T � a11 + a22D( )
(2D) .

We take S as Turing bifurcation parameter, and its critical
value ST satisfies the following equation:

B2D2 + 2BD + 1( )S4(
+ P2D4B4 + 16B3P2D3 − 20B3PD3 + 4B3D3 + 64B2P2D2 − 16B2PD2

+ 26B3PD3 − 12B3D3 + 64B2PD2 − 8B2D2( )S
+ −6B3PD3 + 12B3D3 − 14B2PD2 + 17B2D2 − 16BPD + 4BD( )S2
+ −4B3D3 − 10B2D2 − 6BD( )S3)B � 0.
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In this paper, takingD � 30, B � 5, we gain the Turing region of
system (3). In this region, stationary patterns can be observed
(Figure 2). In addition, we obtain the dispersion relation, and
find that the real part of the eigenvalueR(λ) increases as the value
of P increases. Moreover, Turing pattern will appear within the
appropriate parameter range. Dispersion relation shows that
when there is no space, the equilibrium point E1 is stable.
When combined with space, loss of stability occurs in relation
to the wave numbers. These curves reveal that saturated water
absorption induces the instability of system (3).

3 MULTIPLE SCALE ANALYSIS FOR
TURING PATTERNS

The standard multiple-scale analysis yields the well-known
amplitude equations. Close to the onset S � ST, the eigenvalues
associated to the critical modes are close to zero, and they are
slowly varying modes, whereas the off-critical mode relax quickly
[15, 34]. Consequently, the whole dynamical behaviors can be
mainly determined by the dynamics of the active slowmodes. The
stability and the selection of the different patterns close to onset
can be derived from the amplitude equations that govern the
dynamics of these active modes. Turing patterns (e.g., hexxagon
and stripe patterns) are thus well described by a system of three
active resonant pair of modes (kj,−kj) (j � 1, 2, 3) making angles of
2π
3 and |kj � kT|. We obtain the linearized form of model (3) at the
equilibrium point E1 as follows:

zx
zt

� a11x + a12y − PN∗ N∗ + 2( )
1 + N∗( )2 xy − PW∗

1 + N∗( )3y
2 − P

1 + N∗( )3 xy
2 + PW∗

1 + N∗( )4y
3 + DΔx,

zy
zt

� a21x + a22y + N∗ N∗ + 2( )
1 + N∗( )2 xy + W∗

1 + N∗( )3y
2 + 1

1 + N∗( )3 xy
2 − W∗

1 + N∗( )4y
3 + Δy.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (12)

We note

a13 � −PN
∗ N∗ + 2( )
1 + N∗( )2 ; a14 � − PW∗

1 + N∗( )3; a15 � − P

1 + N∗( )3;

a16 � PW∗

1 + N∗( )4;

a23 � N∗ N∗ + 2( )
1 + N∗( )2 ; a24 � W∗

1 + N∗( )3; a25 �
1

1 + N∗( )3;

a26 � − W∗

1 + N∗( )4;
and we will gain:

zx
zt

� a11x + a12y + a13xy + a14y
2 + a15xy

2 + a16y
3 + DΔx,

zy
zt

� a21x + a22y + a23xy + a24y
2 + a25xy

2 + a26y
3 + Δy.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(13)

Close to onset S � ST, the solutions of model (5a) (5b) can be
expanded as

U � US + Σ3
j�1U0 Ajexp ikj · r⃗( ) + Ajexp −ikj · r⃗( )[ ]. (14)

At the same time, the solution of model (12) can be
expanded as

U0 � Σ3
j�1U0 Ajexp ikj · r⃗( ) + Ajexp −ikj · r⃗( )[ ], (15)

where US represents the uniform steady state. Aj and the
conjugate Aj are the amplitudes associated with the modes kj
and −kj, respectively. The amplitude equations are described
through the equations:

FIGURE 2 | (Color online) (A) The bifurcation diagram for system (3) in P—S plane. In Turing region, Turing pattern will form. (B)Dispersion relation of system (3) with
different P, other parameter values are taken as: S � 10, B � 5, D � 30, which reveals that the real-part of eigenvalues R(λ) increases with P increasing.
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τ0
zA1

dt
� μA1 + hA2A3 − g1|A1|2 + g2 |A2|2 + |A3|2( )( )A1,

τ0
zA2

dt
� μA2 + hA1A3 − g1|A2|2 + g2 |A1|2 + |A3|2( )( )A2,

τ0
zA3

dt
� μA3 + hA1A2 − g1|A3|2 + g2 |A1|2 + |A2|2( )( )A3.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ (16)

where μ � (ST − S)/ST is a normalized distance to onset, τ0 is a
typical relaxation time. In the following, we will give the exact
expressions of the coefficient τ0, h, g1 and g2. Setting X � (x, y)T,
N � (N1, N2), model (12) can be converted to the following
system:

zX
zt

� LX + N , (17)

where

L � a11 + DΔ a12
a21 a22 + Δ( ),

N1

N2
( ) −PN

∗ N∗ + 2( )
1 + N∗( )2 xy − PW∗

1 + N∗( )3y
2 − P

1 + N∗( )3 xy
2 + PW∗

1 + N∗( )4y
3

N∗ N∗ + 2( )
1 + N∗( )2 xy + W∗

1 + N∗( )3y
2 + 1

1 + N∗( )3 xy
2 − W∗

1 + N∗( )4y
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

During the calculation, we just analysis the behavior of the
parameter close to onset S � ST. With this method, we can
expanded S in the following term:

ST − S � εS1 + ε2S2 + ε3S3 + O ε4( ), (18)

where ε is a small parameter. Expanding the variable X and the
nonlinear term N according to this small parameter, we have the
following results:

X � x
y

( ) � ε
x1
y1

( ) + ε2
x2
y2

( ) + O ε3( ), (19)

N � ε2h2 + ε3h3 + O ε4( ). (20)

where h2 and h3 are corresponding to the second and the
third order of ε in the expansion of the nonlinear term N. At
the same time, the linear operator L can be expanded as
follows:

L � LT + ST − S( )M, (21)

where

LT � a∗11 + DΔ a∗12
a∗21 a∗22 + Δ( ),

M �
a11 − a∗11
ST − S

a12 − a∗12
ST − S

a21 − a∗21
ST − S

a22 − a∗22
ST − S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � m11 m12

m21 m22
( ).

Here one can have the expression of a∗ij by substituting AT for
A in aij and bij is easy to be obtained. As for multiple-scale
analysis, what really pivotal is that we can separate the dynamic
behavior according to different time or spatial scale. We only

need to separate the time scale for model (16) (i.e., T0 � t, T1 � εt,
T2 � ε2t). Each time scale Ti can be considered as independent
variable. The derivative with respect to time becomes the
following form:

z

zt
� z

zT0
+ ε

z

zT1
+ ε2

z

zT2
+ O ε3( ). (22)

Since that amplitude A is a variable that changes slowly, the
derivative with respect to time z

zT0
, which changes fast does not

effect on the amplitude A. As a result, we have the following
result:

zA
zt

� ε
zA
zT1

+ ε2
zA
zT2

+ O ε3( ). (23)

By using the Eq. 19, Eq. 20, Eq. 21, Eq. 22, and expanding Eq.
15. according to different orders of ε, we can obtain three
equations as follows: The first order of ε:

LT
x1
y1

( ) � 0;

The second order of ε:

LT
x2
y2

( ) � z

zT1

x1
y1

( ) − S1M
x1
y1

( )
−

−PN∗ N∗ + 2( )
1 + N∗( )2 xy − PW∗

1 + N∗( )3y
2

N∗ N∗ + 2( )
1 + N∗( )2 xy + W∗

1 + N∗( )3y
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠;

The third order of ε:

LT
x3
y3

( ) � z

zT1

x2
y2

( )+ z

zT2

x1
y1

( )− S1M x2
y2

( )− S2M x1
y1

( )−Z,

Z �
−PN∗ N∗ + 2( )

1 + N∗( )2 x1y2 + x2y1( ) − 2PW∗

1 + N∗( )3y1y2 −
P

1 + N∗( )3x1y
2
1 +

PW∗

1 + N∗( )4y
3
1

N∗ N∗ + 2( )
1 + N∗( )2 x1y2 + x2y1( ) + 2W∗

1 + N∗( )3y1y2 +
1

1 + N∗( )3x1y
2
1 −

W∗

1 + N∗( )4y
3
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

As for the first order of ε:

LT
x1
y1

( ) � 0, (24)

as LT is the linear operator of the system close to the onset,
(x1, y1)

T is the linear combination of the eigenvectors that
corresponding to the eigenvalue 0. Solving the first order of ε,
we can obtain:

x1
y1

( ) � l
1

( ) W1e
ik1 r⃗ +W2e

ik2 r⃗ +W3e
ik3 r⃗( ) + c.c., (25)

where |kj| � k∗T , l � a∗11−a∗22D
2a∗12D

. Wj is the amplitude of the mode eikjr⃗

when the system is under the first order perturbation.
For the second order of ε, we can obtain:
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LT
x2
y2

( ) � z

zT1

x1
y1

( ) − S1M
x1
y1

( ) −
−PN∗ N∗ + 2( )

1 + N∗( )2 xy − PW∗

1 + N∗( )3y
2

N∗ N∗ + 2( )
1 + N∗( )2 xy + W∗

1 + N∗( )3y
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Fx
Fy

( ). (26)

According to the Fredholm solubility condition, the vector
function of the right hand of Eq. 25. must be orthogonal with
the zero eigenvectors of operator L+c , where L+c is the adjoint
operator of L+c . In this system, the zero eigenvectors of operator
L+c are

1
−lD( )e−ikj r⃗ + c.c.(j � 1, 2, 3) (27)

The orthogonality condition is

1,−lD( ) Fi
x

Fi
y

( ) � 0, (28)

where Fi
x and Fi

y , separately, represent the coefficients

corresponding to eikjr⃗ in Fx and Fy. Taking eik1 r⃗ for instance,

we will gain

l(1 − D) zW1

zT1
� S1 m11l +m12( ) − lD m21l +m22( )[ ]W1

+ 2 a13l + a14( ) − lD a23l + a24( )[ ] �W2
�W3. (29)

The coefficient in Eq. 30. are obtained by solving the sets
of the linear equations about exp (0), exp(ikjr⃗ ),
exp(i2kjr⃗ ), exp(i(kj − kk)r⃗ ).

With this method, we have

FIGURE 3 | Snapshots of contour pictures of the time evolution of vegetation at different instants with p � 0.15, S � 10, D � 30 and B � 5. (A) 0 iteration; (B) 1,000
iterations; (C) 2000 iterations; (D) 4,000 iterations; (E) 10,000 iterations; (F) 20,000 iterations.

FIGURE 4 | Snapshots of the countour pictures of evolution of vegetation with different values of P, (A) p � 0.14286; (B) p � 0.15; (C) p � 0.16; (D) p � 0.18;
(E) p � 0.21; (F) p � 0.22. The other parameters are taken as S � 10, B � 5, and D � 30.
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X0

Y0
( ) � f0

g0
( ) |W1|2 + |W2|2 + |W3|2( ),

Xi � lYi,

Xjj

Yjj
( ) � s

t
( )W2

j ,

Xjk

Yjk
( ) � p

q
( )Wj

�Wk,

For the third order, we can gain

LT
x3
y3

( ) � z

zT1

x2
y2

( ) + z

zT2

x1
y1

( ) − S1M
x2
y2

( ) − S2M
x1
y1

( ) − Z. (30)

Using the Fredholm solubility condition again, we can obtain

l(1 − D) zW1

zT2
+ zY1

zT1
[ ]

� S1 m11l +m12( ) − lD m21l +m22( )[ ]Y1 + S2 m11l +m12( ) − lD m21 l +m22( )[ ]W1

+ 2 a13 l + a14( ) − lD a23l + a24( )[ ] �Y2
�W3 + �Y3

�W2( )
− G1|W1|2 + G2 |W2|2 + |W3|2( )( )W1 ,

where

G1 � a13 − lDa23( ) lg0 + f0( ) + 6 a15l + a16( ) − lD a25l + a26( )[ ]
G2 � a13 − lDa23( ) lg0 + f0( ) + 9 a15l + a16( ) − lD a25l + a26( )[ ]
By transformation of W, the other two equations can be

obtained and the amplitude Ai can be expanded as

Ai � εWi + ε2Yi + O ε3( ). (31)

For the order ε2 and ε3, we can obtain the amplitude equation
corresponding to A1 as follows:

τ0
zA1

zt
� μA1 + h�A2

�A3 − g1|A1|2 + g2 |A2|2 + |A3|2( )( )A1, (32)

where

τ0 � l
H
ST(1 − D), μ � ST − S

ST
, h � 2C

lHST
,

g1 � G1ST
Hl2

, g2 � G2ST
Hl2

.

withH � [(m11l +m12) − lD (m21l +m22)], C � 2 [(a13l + a14) − lD
(a23l + a24)].

The other two equations we can gain by transforming the
subscript of A. Based on Ref. [10], one can calculate the values of
μi (i � 1, 2, 3, 4). When the controlled parameter μ increase to the
critical point μ2 � 0, the stationary state of the system begins to
lose stability. If μ1 < μ < μ2, then the system exists a bistable region
in the range of the controlled parameter. The emergence of Stripe
patterns derives from supercritical bifurcation which are unstable

FIGURE 5 | (Color online) The time series of vegetation with P taking
different values.

FIGURE 6 | Snapshots of the countour pictures of evolution of vegetation with different values of P, (A) p � 0.16; (B) p � 0.17; (C) p � 0.18; (D) p � 0.23;
(E) p � 0.238; (F) p � 0.25. The other parameters are taken as S � 10.5, B � 5, and D � 30.
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for μ < μ3 and stable for μ > μ3. When the controlled parameter μ
exceed μ4, there is coexistence of hexagon and stripe pattern.

4 MAIN RESULTS

In order to verify the above theoretical results, we carry out
numerical simulation by taking B � 5, D � 30, and S � 10. This
paper focuses on the spatial distribution of vegetation with the
change of parameter P.

Currently, the desertification phenomenon is particularly austere, so
it is the fundamental way for people to understand the cause of
desertification correctly to master the law of vegetation evolution
[35, 36].

Figure 3 shows the evolution of the spatial pattern of vegetation at 0,
1,000, 2000, 4,000, 10,000 and 20,000 iterations with p � 0.15. In (A),
the vegetation distribution presents an irregular uniform mixing state,
and the vegetation is uniformly distributed in the two-dimensional
space. Then in (B), the vegetation can be observed to begin to gather
into spot and stripe, but the density is not high.With time going by, in
(C), the vegetation density increased. In (D), the spatial distribution of
vegetation changes, forming a low-density stripe state. However, in (E),
the structure of vegetation changes from low density stripe to higher
stripe state gradually. At last, in (F), the density of the mixed pattern
increases to form a clearer mixed pattern, and it doesn’t change for a
long time. The above figures show the change and evolution of
vegetation structure over time. It can be concluded from this figure
that random distribution can result in mixed patterns.

In Figure 4, we can find that the pattern is self-organizing.
When the parameter(P) describing the saturated water
absorption of vegetation changes, self-organizing patterns of
different states can be obtained. Figure 4 shows the transition
of the vegetation pattern with p � 0.14286, 0.15, 0.16, 0.18, 0.21
and 0.22, where B � 5, D � 30, S � 10. From the simulation results

of Figure 5, we can conclude that vegetation density get smaller
and smaller with P increasing, which is consistent with the fact
that 1/P is proportional to the rate at which vegetation absorbs
water to generate vegetation. Meanwhile, we can find that the
pattern changes from honeycomb pattern to mixed pattern, then
changes from mixed pattern to labyrinth pattern, at last pattern
changes from labyrinth pattern to spot pattern. As a result, we can
conclude that the change of P induces pattern phase transition.
Many researchers have proposed that spot pattern is the early
warning of desertification [31, 37, 38], therefore we can get that P
is of great significance in indicating desertification. Moreover,
from the tendency of pattern phase transition, it can be found that
P also has a vital influence on the ecosystem robustness. The
larger P is, the more unstable the system tends to be. In general,
the bigger vegetation density corresponds to a more robust
ecosystem.

It is well known that precipitation plays a very significant role in
vegetation growth. However, the relationship between precipitation
and saturated water absorption of vegetation is still unclear. To reveal
the relationship between them, we take S � 10.5, B � 5 andD � 30 and
perform simulations. Then we gain the effect of P on the pattern phase
transition and find several types of typical patterns in Figure 6.

On the circumstance of the increase of S, the pattern phase
transition is insensitive to P. That is to say, when P changes from
0.1428 to 0.15 with S � 10, the pattern structure changes from
honeycomb pattern to mixed pattern, however, when S � 10.5, the
same transition tendency of which pattern structure from
honeycomb pattern to mixed pattern will need a change of P
from 0.16 to 0.23. Of course, the increase of the value of
precipitation also increases the density of vegetation (Figure 7).

5 CONCLUSION

In this work, we show the effect of saturated water absorption on the
vegetation dynamics based on a mathematical model in the form of
reaction-diffusion equations. We gain rich pattern structures including
spotted,mixed, stripe, honeycomb, and labyrinth patterns. It is revealed
that there is a negative correlation between P and vegetation density.
That is to say, the vegetation biomass decreases as the increase ofP, and
saturated water absorption can induces the pattern transition of
vegetation structures in two-dimensional space. In addition, we also
conclude that appropriate precipitation increase can postpone the
pattern phase transition.

In this work, we focused our attention on the influences of
parameter change on the dynamical behaviors. The results
showed that small change may induce the behavior shift
between different dynamical regions [39]. The findings can
also be applied in other related fields, such as ecosystems,
disease transmission, evolutions and so on.

It needs to point out that climatic factors are important impact
factors for vegetation dynamics [40, 41]. In this sense, we need to
combine these factors including temperature, illumination and
wind to the mathematical models. Furthermore, big data analysis
is useful to explore the inherent law of vegetation evolution in
both space and time [42, 43]. These topics will be well addressed
in the further study.

FIGURE 7 | (Color online) The average density map of vegetation is
compared when precipitation is taken S � 10 and S � 10.5 respectively.
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